
KyberIES Specification

Stephan Müller

2023-09-12

Abstract
This document specifies the KyberIES cryptographic algorithm. A

reference implementation of the algorithm is given with leancrypto.

Contents
1 KyberIES Algorithm 1

1.1 Introduction . 1
1.2 KyberIES Algorithm . 3

1.2.1 Notation . 4
1.2.2 KyberIES Cryptographic Aspects 6
1.2.3 Encryption of Data . 7
1.2.4 Decryption of Data . 7

1.3 References . 8

List of Figures
1 KyberIES Data Handling . 3

1 KyberIES Algorithm
This specification defines a hybrid Integrated Encryption Schema (IES) based
on the principles outlined in [SHOUP] chapter 5 named KyberIES. KyberIES
uses the the Kyber Key Encapsulation Mechanism (KEM) and combines it with
a symmetric encryption algorithm based on Authenticated Encryption with
Additional Data (AEAD). The KyberIES algorithm allows the encryption of
arbitrary plaintext data using the Kyber public key. The resulting ciphertext
can be decrypted using the Kyber secret key.

1.1 Introduction
This specification defines a hybrid encryption algorithm combining the Kyber
KEM with an AEAD symmetric algorithm. This algorithm can be used to

1

https://www.chronox.de/leancrypto.html

1.1 Introduction

encrypt and decrypt arbitrary user data using a Kyber asymmetric key pair.
Using the Kyber KEM, a shared secret is obtained that is used to generate the
symmetric key and IV, and possibly the MAC key for the AEAD algorithm. The
AEAD algorithm is instantiated with the key, IV and possibly the MAC key to
be used for encrypting plaintext data or decrypting ciphertext data.

The use of Kyber KEM offers a post-quantum computing asymmetric algorithm.
If the AEAD algorithm is equally unaffected by quantum computes - which is
commonly the case - KyberIES is quantum computer safe. In addition, the use
of an AEAD algorithm offers data privacy along with intrinsic data integrity
verification.

The KyberIES serves the same purposes as ECIES specified in [SEC1] chapter 5
or similar algorithms and is intended to serve as a suitable replacement for ECIES.
The main difference is that instead of generating an ephemeral key pair with
which the shared secret is generated and the encryptor must communicate the
public ephemeral key to the decryptor, KyberIES returns the Kyber ciphertext
along with the data ciphertext to the encryptor to be communicated to the
decryptor.

The purpose of the KyberIES algorithm is to allow the interaction of 2 entities
where one entity performs the encryption (called Alice henceforth) of the data
and the second entity performs the decryption (called Bob henceforth). Bob is
the owner of a Kyber asymmetric key pair and communicates the public key to
Alice before the start of the KyberIES operations. Alice performs the encryption
using Bob’s public key. The resulting data is communicated to Bob allowing
Bob to decrypt the data with his secret key. This schema therefore serves the
following purposes:

1. Only Bob’s public key must be communicated to Alice. This key only
requires integrity and authenticity protection during communication, but
not privacy protection.

2. The data generated by Alice during encryption can be send to Bob without
further protection. By using an AEAD algorithm, data integrity is verified.
This data integrity guarantees (a) that the ciphertext was not changed, and
(b) the Kyber KEM data sent along with the ciphertext are also modified.

Another purpose of the KyberIES algorithm is the encryption of data for local
storage. The use of an hybrid asymmetric algorithm allows data storage such
that data can be securely stored, but only retrieved when the key owner requests
the reading. In this scenario, the data owner’s public Kyber key is available to
the system all the time. However, the data owner’s secret key is not required
to be available while the data is stored protected (i.e. encrypted). The data
owner only need to provide the secret key when the data shall be retrieved
(i.e. decrypted). As mentioned before, the use of an AEAD algorithm allows
that the ciphertext as well as the additional Kyber KEM data can be stored
without applying additional protection mechanisms.

CC BY 4.0. Copyright (C) 2023 Stephan Müller, All rights reserved. 2

1.2 KyberIES Algorithm

1.2 KyberIES Algorithm
The KyberIES algorithm specification first outlines the notation followed by the
specification of the different components of the algorithm. Those components
are finally merged into the KyberIES algorithm specification.

A visualization of the entire KyberIES algorithm is given with Figure [1].

PK SK

CTK

Data AAD

CTD

Exchanged
Data

Key IV

SS

AEAD
Enc

AEAD
Dec

Data

Key IV

SS

Tag

Kyber IES Encryption Kyber IES Decryption

K
yb

er
K

ey
G

en
K

yb
er

K
E

M
A

E
A

D
C

ip
he

r
O

p
U

se
r

D
at

a

Figure 1: KyberIES Data Handling

This figure illustrates the managed data as well as the data transmitted over
potentially insecure channels. Information that do not require any protection are
marked green. Information that must be completely protected against adversaries
are marked in red. Transient yet sensitive data are marked in yellow. To illustrate
the confidentiality, and integrity protected user data, the information is marked
as red wrapped in a green layer. Optional non-sensitive data is marked white
wrapped in a green layer.

The top row illustrates the result of a Kyber key generation which returns a
Kyber public key pk and a Kyber secret key sk.

The KyberIES encryption operation shown in the left column uses the Kyber
public key pk to generate a shared secret ss and the Kyber ciphertext ct_k.
From the shared secret, a key and IV is derived of the required size for the AEAD
algorithm used to perform the actual encryption of the user plaintext data data
to be protected. Optionally, the AEAD algorithm may also receive additionally
authenticated data AAD from the user. The result is a ciphertext of the data
ct_d as well as the authentication tag tag that now can be communicated over
insecure channels.

The center column highlights the data to be exchanged over potentially insecure
channels. All this data is marked green which implies that an adversary cannot
deduct the sensitive, protected data from it.

CC BY 4.0. Copyright (C) 2023 Stephan Müller, All rights reserved. 3

1.2 KyberIES Algorithm

The right column shows the decryption operation of the KyberIES algorithm. It
mimics the encryption side. Using the Kyber ciphertext ct_k and the Kyber
secret key sk, the shared secret is obtained from which again the AEAD key and
IV are obtained. The AEAD algorithm performs the decryption of the ciphertext
ct_d along with the authentication tag tag using the obtained key and IV. The
result of the decryption operation is the protected user data.

1.2.1 Notation

1.2.1.1 Key Derivation Function KyberKDF(Kyber ss, Kyber ct,
ss_len) denotes the key derivation function (KDF) specified in [FIPS203]
section 3.3 which references the use of [SP800-108]. KyberIES uses the
KMAC-based KDF as specified in [SP800-108] section 4.4.

This KDF takes the Kyber shared secret K, the Kyber ciphertext c and the
requested shared secret length as input and generates the shared secret K' of
requested length:

KyberKDF(K, c, ss_len) -> K'

The KMAC-based KDF is used for this operation in the following way:

KMAC256(K = K,
X = c,
L = requested SS length,
S = "Kyber KEM SS") -> K'

1.2.1.2 KyberEnc KyberEnc(ek, ss_len) denotes the ML-KEM.Encaps(ek)
algorithm specified in [FIPS203] section 6.2 enhanced by a KDF. It takes the
Kyber public encapsulation key ek as input as well as the length of the shared
key to be generated and generates the Kyber ciphertext c and the shared key
K' of the requested length.

KyberEnc(ek, ss_len) -> K', c

The algorithm implements the following steps:

ML-KEM.Encaps(ek) -> K, c
KyberKDF(K, c, ss_len) -> K'

The intermediate value of the Kyber shared secret K is securely discarded after
the conclusion of the operation.

1.2.1.3 KyberDec KyberDec(c, dk, ss_len) denotes the ML-KEM.Decaps(c,
dk) algorithm specified in [FIPS203] section 6.3. It takes the Kyber secret
decapsulation key dk, the Kyber ciphertext c and the length of the shared secret
to be generated as input and generates the shared key K'.

KyberDec(c, dk, ss_len) -> K'

The algorithm implements the following steps:

CC BY 4.0. Copyright (C) 2023 Stephan Müller, All rights reserved. 4

1.2 KyberIES Algorithm

ML-KEM.Encaps(dk) -> K, c
KyberKDF(K, c, ss_len) -> K'

The intermediate value of the Kyber shared secret K is securely discarded after
the conclusion of the operation.

1.2.1.4 RND RND denotes the random bit generator to generate a random
bit strings of any size. It takes the numbers of bits to be generated as input to
generate the requested amount of random bits.

1.2.1.5 AEAD Algorithm AEAD denotes an authenticated encryption
with additional data algorithm. The particular algorithm is explicitly unspecified
allowing different types of AEAD algorithms, including AES-GCM, AES-CCM,
Encrypt-Then-MAC algorithms allowed as part of IPSEC and others. All these
algorithms share a common definition as follows which is used by KyberIES:

AEADEncrypt(key, IV, MAC Key, plaintext, AAD, taglen) ->
ciphertext, tag

Input:

• key: Encryption key - KyberIES requires a key size of 256 bits to be
supported by the AEAD algorithm

• IV: Initialization vector - KyberIES supports an arbitrary IV size, which
must be defined with the used AEAD algorithm

• MAC key: The optional MAC key - KyberIES supports an arbitrary MAC
key size, which must be defined with the used AEAD algorithm (if the
AEAD algorithm does not require a MAC key, the MAC key is an empty
string with zero bits in size)

• plaintext: The caller-provided plaintext data.

• AAD: The caller-provided additional authenticated data.

• taglen: The length of the message authentication tag to be generated.

Output:

• ciphertext: The ciphertext that can exchanged with the recipient over
insecure channels.

• tag: The message authentication tag that can be exchanged with the
recipient over insecure channels.

AEADDecrypt(key, IV, MAC key, AAD, ciphertext, tag) ->
plaintext, authentication result

Input:

• key: See AEADEncrypt

CC BY 4.0. Copyright (C) 2023 Stephan Müller, All rights reserved. 5

1.2 KyberIES Algorithm

• IV: See AEADEncrypt

• MAC key: See AEADEncrypt

• AAD: The caller-provided additional authenticated data.

• ciphertext: The ciphertext that was received from the send over potentially
insecure channels.

• tag: The message authentication tag that was received from the send over
potentially insecure channels.

Output:

• plaintext: The plaintext of the data.

• authentication result: A boolean indicator specifying whether the authen-
tication was successful. If it was unsuccessful the caller shall reject the
ciphertext.

1.2.2 KyberIES Cryptographic Aspects

1.2.2.1 Diversification of Shared Secret The Kyber algorithm generates
shared key using random bits. This is important for the security of KyberIES
to ensure that every encryption / decryption operation generates a different
shared secret. This allows the use of the same public/secret key pair for different
plaintexts in conjunction with stream-cipher-based AEAD algorithms. Stream
ciphers commonly loose their security strength if the key/IV is reused for
protecting different data.

The Kyber shared key is used as part of the key derivation mechanism whose
input from the Kyber KEM is based on 256 bits generated from a random bit
generator to obtain the key / IV used by the AEAD algorithm. This use of
the random bit generator guarantees that the resulting key/IV pair is always
different irrespective whether the same Kyber KEM keypair is used. This implies
that even stream-cipher-based AEAD algorithms can be safely used.

1.2.2.2 Security Strength The KyberIES algorithm provides a security
strength of 256 bits as all its components provide this security strength:

• The Kyber KEM algorithm of type Kyber1024 is required to be used as
defined in [FIPS203] chapter 5. This algorithm provides a security strength
of 256 bit.

• The AEAD algorithm is required to also provide a security strength of
256 bits. As is security strength is based on the used AEAD key size, the
KyberIES algorithm defines the use of a 256 bit key size to mandate a
security strength of 256 bits.

• KyberIES defines the use of KMAC256 which implies a security strength
of 256 bits.

CC BY 4.0. Copyright (C) 2023 Stephan Müller, All rights reserved. 6

1.2 KyberIES Algorithm

• RND defines a random bit generator that has a security strength of 256
bits and is seeded with at least 256 bits of entropy.

1.2.3 Encryption of Data

KyberIESEnc(ek, plaintext, AAD, taglen) ->
Kyber ciphertext, ciphertext, tag

Input:

• ek: Kyber public encapsulation key of the data owner

• plaintext: The caller-provided plaintext data.

• AAD: The caller-provided additional authenticated data. The AAD can
have any size including an empty bit-string.

• taglen: The length of the message authentication tag to be generated.

Output:

• Kyber ciphertext: Kyber ciphertext c as defined for KyberEnc

• ciphertext: The ciphertext that can exchanged with the recipient over
insecure channels.

• tag: The message authentication tag that can be exchanged with the
recipient over insecure channels.

The KyberIES encryption operation is performed as follows:

Kyber ciphertext, shared key =
KyberEnc(ek, 256 + AEAD IV length + AEAD MAC key length)

AEADkey = shared key[0:255] - the left-most 256 bits of shared key

AEADIV = shared key[256:AEAD IV length] - shared key bits starting with
256th bit of AEAD IV length

AEADMACKey = shared key[256 + AEAD IV length: AEAD MAC key length]
- shared key bits starting with first bit after AEAD IV bits of AEAD MAC key
length

ciphertext, tag =
AEADEnc(AEADKey, AEADIV, AEADMACKey, AAD, plaintext, taglen)

1.2.4 Decryption of Data

KyberIESDec(dk, Kyber ciphertext, ciphertext, tag) ->
plaintext, authentication result

Input:

• dk: Kyber secret decapsulation key of the data owner

CC BY 4.0. Copyright (C) 2023 Stephan Müller, All rights reserved. 7

1.3 References

• Kyber ciphertext: Kyber ciphertext c as defined for KyberEnc

• ciphertext: The ciphertext that was received from the send over insecure
channels.

• AAD: The caller-provided additional authenticated data. The AAD can
have any size including an empty bit-string.

• tag: The message authentication tag that was received from the send over
insecure channels.

Output:

• plaintext: The plaintext of the data.

• authentication result: A boolean indicator specifying whether the authen-
tication was successful. If it was unsuccessful the caller shall reject the
ciphertext.

The KyberIES decryption operation is performed as follows:

shared key =
KyberDec(dk, Kyber ciphertext, 256 + AEAD IV length + AEAD MAC key length)

AEADkey = shared key[0:255] - the left-most 256 bits of shared key

AEADIV = shared key[256:AEAD IV length] - shared key bits starting with
256th bit of AEAD IV length

AEADMACKey = shared key[256 + AEAD IV length: AEAD MAC key length]
- shared key bits starting with first bit after AEAD IV bits of AEAD MAC key
length

plaintext, authentication result =
AEADDec(AEADKey, AEADIV, AEADMACKey, AAD, ciphertext, tag)

1.3 References
[FIPS202] FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and
Extendable-Output Functions, August 2015

[FIPS203] FIPS 203 (Draft): Module-Lattice-based Key-Encapsulation Mecha-
nism Standard, August 24, 2023

[SEC1] SEC 1: Elliptic Curve Cryptography, Daniel R. L. Brown, Version 2.0,
May 21, 2009

[SHOUP] A Proposal for an ISO Standard for Public Key Encryption, Victor
Shoup, Version 2.1, December 20, 2001

[SP800-108] NIST SP 800-108r1, Recommendation for Key Derivation Using
Pseudorandom Functions, Lily Chen, August 2022

CC BY 4.0. Copyright (C) 2023 Stephan Müller, All rights reserved. 8

	1 KyberIES Algorithm
	1.1 Introduction
	1.2 KyberIES Algorithm
	1.2.1 Notation
	1.2.2 KyberIES Cryptographic Aspects
	1.2.3 Encryption of Data
	1.2.4 Decryption of Data

	1.3 References

