TACR Transactions on Symmetric Cryptology
ISSN 2519-173X, Vol. 2024, No. 1, pp. 5-34. DOI:10.46586/tosc.v2024.11.5-34

XDRBG: A Proposed Deterministic Random Bit
Generator Based on Any XOF

John Kelsey!'?, Stefan Lucks® and Stephan Miiller*

L NIST, Gaithersburg, USA
2 COSIC, KU Leuven, Leuven, Belgium
3 Bauhaus-Universitit, Weimar, Germany

4 atsec information security corp, Austin, USA

Abstract. A deterministic random bit generator (DRBG) generates pseudorandom
bits from an unpredictable seed, i.e., a seed drawn from any random source with
sufficient entropy. The current paper formalizes a security notion for a DRBG,
in which an attacker may make any legal sequence of requests to the DRBG and
sometimes compromise the DRBG state, but should still not be able to distingush
DRBG outputs from ideal random bits. The paper proposes XDRBG, a new DRBG
based on any eXtendable Output Function (XOF) and proves the security of the XDRBG
in the ideal-XOF model. The proven bounds are tight, as demonstrated by matching
attacks. The paper also discusses the security of XDRBG against quantum attackers.
Finally, the paper proposes concrete instantiations of XDRBG, employing either the
SHAKE128 or the SHAKE256 XDRBG. Alternative instantiations suitable for lightweight
applications can be based on ASCON?.

1 Introduction

Generating random bits is a critical function in almost any secure cryptographic
system. Usually, the process for generating these random bits is broken into two parts:
First, an entropy source provides some unpredictable input string as a seed. Second,
a cryptographic algorithm called a deterministic random bit generator (DRBG)
in [BK15] and this work, and called a PRNG (pseudorandom number generator),
cryptographic PRNG, PRG? or DRNG (deterministic random number generator)
elsewhere, produces the output bits. See [Mecl18, MMHH23, Fer19, AMD23, KSF99]
for widely-used examples of a DRBG.

Informally, a DRBG is seeded by providing it with an input string with some guaran-
teed amount of min-entropy. It then must must provide output bits on demand, which
(if the DRBG was properly seeded) are computationally indistinguishable from ideal
random bits. Further, because the internal state of a DRBG might be compromised,
output bits generated before a compromise must remain indistinguishable from ideal
random bits (called “backtracking resistance' in [BK15]), and the DRBG must recover
from a state compromise once provided sufficient new entropy (called “prediction
resistance” in [BK15]).

DRBGs are almost always constructed from other cryptographic primitives, such as
hash functions, block ciphers, or stream ciphers®.

1The content of this eprint is identical to [KLM24], except for the additional appendices F and G.

2PRG is also sometimes used for a different primitive that expands a seed to a long string without
providing other features expected of DRBGs.

3Thus, the DRBGs in [BK15] are based on AES [Nat01], SHA2 [Nat15a], or SHA3 [Nat15b], and the
DRBG currently used in Linux is based on ChaCha20 [NL18].

Licensed under Creative Commons License CC-BY 4.0. (@) |

https://doi.org/10.46586/tosc.v2024.i1.5-34
http://creativecommons.org/licenses/by/4.0/

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

In this paper, we propose a new DRBG that follows the interface and requirements
of two widely-used standards: NIST’s SP 800-90A [BK15] and BSI’s AIS 20/31
[Kill1, Pet23].

In [BDPAOQ7], sponge functions were proposed as a new way of constructing hash
functions. These functions use a large fixed permutation or function to process data,
but unlike traditional hash functions, they can generate arbitrary-length outputs.
The resulting broad class of cryptographic primitive (which might also be realized
using other constructions) was named a XOF (eXtended Output Function) in [Nat15b].
Informally, a XOF works like a cryptographic hash function, but allows for an arbitrary-
length output string. The calls X0F (z, n) and X0F(x, n + u) will yield identical results
in their first n bits. A XOF can reasonably be modeled as a random oracle with an
extremely long output for each query, which is then truncated to the desired output
length. See [BDPVAOS] for a security analysis of XOFs based on sponge functions such
as SHAKE128 and SHAKE256. In recent years, many new sponge-based hash functions
have been proposed; typically these also support XOF functionality. For example, see
[RS16, AMMS16, BKL*T19, DEM*20, DEMS22].

In this work, we: (1) Describe XDRBG, a new DRBG based on any XOF. (2) Propose a
security notion appropriate for DRBGs. (3) Prove XDRBG secure under this security
notion. The proof treats the XOF at hand as a random oracle. (4) Demonstrate
classical attacks matching our security bounds. (5) Describe the quantum security of
XDRBG. (6) Propose concrete parameters and instantiations for XDRBG. (7) Discuss
some remaining open questions.

Relationship with Prior Work. Bertoni et al. describe a generic construction for
cryptographic random bit generation based on a sponge construction in [BDPV10].
Additional proposals along these lines were made by Gazi and Tessaro[GT'16a, GT16b],
Hutchinson [Hut1l6a, Hut16b], and Coretti et al. [CDKT19]. While XDRBG is broadly
similar to these designs (and has been strongly influenced by the designs of Bertoni et
al. and Coretti et al.), our design differs from these earlier works in some important
ways:

1. XDRBG supports the interface defined for DRBGs in [BK15]. Unlike the designs
of Bertoni et al. and Coretti et al., XDRBG supports distinct INSTANTIATE and
RESEED calls, variable-length outputs from GENERATE calls, and untrusted
additional inputs provided by the caller.

2. XDRBG is intended to be usable with any XOF, with the DRBG making queries to
the XOF using a standard interface, and without making any assumptions about
its internal workings. Thus, our next DRBG state is part of the output from
the XOF instead of remaining in the capacity of the underlying sponge, and is
re-input in subsequent XOF queries by the DRBG. Similarly, we model the X0F
as an ideal object, rather than considering its underlying structure.

3. XDRBG is targeted for use in the realm of cryptographic random bit generation
under SP 800-90 [BK15, TBK'18, BKM*22] and AIS 20/31 [Killl, Pet23],
where entropy sources are independently evaluated and wvalidated. Thus we
assume the availability of known amounts of entropy on demand, with entropy
sources that are non-adversarial and whose entropy distributions are oracle-
independent. (L.e., we adopt the model of [DGH™"04] and later [WS19], rather
than the model of [CDKT19].) We suspect that the techniques of [CDKT19]
could be used to show that the XOF in XDRBG works as a seedless extractor (XDRBG
is quite similar to their sponge-based PRNG), but we leave this for future work.

2 Preliminaries

2.1 Entropy

A DRBG samples a seed from a random source. The mathematical model for a
random source is a distribution, and, for the purpose of the current paper, the

John Kelsey, Stefan Lucks and Stephan Miiller

all-essential property of a distribution is its min-entropy.

Let D" be a distribution over strings {0,1}*. We write S <-§D" if the string S is
chosen according to D". In that context, the superscript h indicates a lower bound
h < Hupin (Dh) for the min-entropy

Hunin(D") = —log, (max (Pr[S = T])) ,
S +$Dh,Te{0,1}*

rather than the more traditional Shannon entropy — ZTE{O,I}* (Pr[S = T)*log,(Pr[S =
TY))). Firstly, the min-entropy of a distribution is always a lower bound for the Shan-
non entropy of that distribution. Thus, by requiring at least h bits of min-entropy,

we will always get at least h bits of Shannon entropy. Secondly, in our context the

min-entropy is more intuitive: it describes the upper bound for the attacker’s chance

to guess the seed.

Below, we will consider two thresholds for the min-entropy:

e Hinit: Whenever the XDRBG is instantiated the seed is drawn from a source with
at least Hinit bits of min-entropy.

e H,sa: When the reseed command is called, the seed is drawn from a source with
at least H,sq bits of min-entropy.

2.2 Interface for DRBG
Following [BK15], we define three DRBG operations:

1. V < INSTANTIATE(S, o) creates a DRBG state V, using seed material S and
a string for optional personalization and other optional data* a. The seed S
must be drawn from an entropy source with min-entropy Hinit.

2. V < RESEED(V’, S, @) creates a DRBG state V from a previous state V', the
seed S and the string a. The seed S must be drawn from an entropy source
with min-entropy Hysq.

3. (V,X) « GENERATE(V', ¢, a) generates a new DRBG state V and an ¢-bit
output string 3 from the old state V' and the string . Y is required to be
indistinguishable from random bits.

In NIST SP 800-90A [BK15], DRBGs are defined with a particular interface which
assumes the DRBG can draw bits from the entropy source directly. Each DRBG has
a state of its own, identified with a state handle.

For clarity, we prefer a somewhat simpler interface. Instead of using state handles to
keep track of DRBG states, we simply pass in the DRBG state (a bit string in XDRBG)
to the DRBG function as a parameter. Each DRBG function returns an updated
DRBG state. Additionally, when entropy is provided to the DRBG, we draw entropy
from the source and pass it in to the DRBG function as a parameter. Note that the
cryptographic object being described is unchanged—only the description is different.
At first glance, INSTANTIATE and RESEED may seem redundant, but there is actually
an important difference between them. INSTANTIATE(.S, «) discards the previous state
and the new state only depends on the seed and the optional string «. RESEED(V, S, o)
refreshes the state based on the previous state, the seed, and the optional string a.
This is reflected by the operations we defined above: INSTANTIATE does not take a
DRBG state as input, while RESEED does take a DRBG state as input; both return
a resulting DRBG state. This distinction also matters for the security analysis of the
DRBG, and the amount of entropy required by each function call, as discussed below.

2.3 Security Level

For typical instantiations of the XDRBG, we will discuss their classical and quantum
security level, which specify approximately how much computation is needed to

4Throughout the paper, we use « (or aj, agq i, etc.) for those strings.

8 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

distinguish the outputs of the DRBG from random bits. More precisely, if the
attacker makes Q XOF queries, which implies @ to be a lower bound for the attacker’s
workload, then we claim L£-bit classical security if the attacker’s chance to decide the
DRBG output from random is at most % + € for small € and Q < 2%, say, € < Q£/16
and Q < 27%/%. For quantum security, we will assume a straightforward application
of Grover’s algorithm for an attack, in which case a classical security level of £ bits
implies a quantum security level of £/2 bit, because Grover’s algorithm must iterate
at least about £/2 times to succeed with high probability.

2.4 Forward and Backward Security

Informally, forward security (called backtracking resistance in [BK15]) requires that
earlier DRBG outputs remain secure when a later DRBG state is compromised. This
is a property of the DRBG algorithm. Likewise, backward security (called prediction
resistance in [BK15]) requires a DRBG to be able to recover from a compromise of
its state. This requires a reseed method (or calling instantiate again) to provide
additional entropy. A DRBG without access to any new seed material (e.g., from an
entropy source) simply cannot achieve backward security.

AIS 20/31 defines two similar properties: enhanced backward secrecy and enhanced
forward secrecy. Enhanced backward secrecy is approximately equivalent to back-
tracking resistance (aka, forward security); enhanced forward secrecy is approximately
equivalent to prediction resistance (aka, backward security).

2.5 Multitarget Attack on INSTANTIATE

Given many devices, each instatiated once, or a few or even one single device
instantiated many times, the following multitarget attack becomes possible.
Suppose at each startup the DRBG is instantiated with a seed S containing k bits of
entropy. Assume S € {0,1}* to be uniformly distributed. Assume that after each
instantiation at least k bits of output are produced. After I such instantiations, an
attacker can recover one DRBG state with a 2% /I search. The attacker simply guesses
2’“/[possible values of S, and for each one instantiates the DRBG with S, generates
an output, and checks it against the I output values.

This is within the normal security bounds of any k-bit scheme. Nevertheless, it
can substantially weaken some applications. For example, consider a single device
with a 256-bit ECDSA [Nat13] key, supporting 128-bit security. Suppose the device
instantiates its DRBG with & = 128 random bits at each startup, and that it is
restarted and produces an ECDSA signature I = 232 times in its lifetime. In spite of
formally supporting 128-bit security, this device is actually vulnerable to a 2%°-time
attack which will recover its signing key!

Let Ry be an upper bound on the number of times the DRBG will be instantiated.
As long as at least k + log,(R1) bits of min-entropy is provided for the seed when
instantiating the DRBG, the multitarget attack is blocked. As will turn out below, k
bits of min-entropy suffice for reseeding.

The requirements for DRBG instantiation in [BK15] include a nonce along with the
entropy input. The proposed new requirements for DRBG instantiation in [BKM T 22]
replace the nonce requirement with a requirement for additional entropy. Both the
old and new requirements effectively block this multitarget attack in the case that a
given user does not instantiate their DRBG more than 2% times.

2.6 Extendable Output Functions (XOFs)

Formally, a XOF is a function {0,1}* — {0, 1}", which we model as a random oracle.
To avoid returning an infinite sequence, the XOF gets an integer as a second parameter®:
XOF : {0,1}" x N — {0,1}". Now XOF(z, {) returns the first £ bits from the infinite

5In some applications of a XOF, the output length is not known at the time its inputs are provided;
these must support a somewhat more complicated interface.

John Kelsey, Stefan Lucks and Stephan Miiller 9

sequence. Thus, for every x € {0, 1}*, the first min(¢, ¢') bits of XOF(z, £) and X0F (x, £)
are the same, and, for all z’ # z, the sequences XOF(z, /) and XOF(z',¢') are two
independent random sequences of £ and ¢’ bits, respectively. The algorithm below
describes how our ideal XOF might be implemented by lazy sampling.

Algorithm 1 XOF definition.

1: function INIT

2: T+ {}

(# T holds a map {0,1}* — {0,1}*. Initially, T is empty. #)

3: function XOF(z, /)

4 if x € T then
5 if |T'[z]| < ¢ then
6: s' «5{0, 1}~ 170l
7
8
9

T[x] « Tlx] || ¢

else
T[x] +s{0,1}*
(# Now z € T, and |T[x]| > € #)
10: return(7[z] truncated to ¢ bits)

Of course, any real XOF does not provide unlimited ideal security. A typical XOF
will allow an attacker to make a sequence of queries, and then the attacker will try
to differentiate the XOF from an ideal XOF. Write W for the sum of the lengths of
all inputs and outputs (in bit) made by the attacker. We say, a XOF supports k-bit
security, if for every attacker, the advantage in distinguishing the X0F from random
is at most W/2".

FIPS 202 [Nat15b] defines two sponge-based X0Fs: SHAKE128 and SHAKE256. Both
employ a cryptographic 1600-bit permutation; SHAKE128 employs an internal state
(the capacity) of 256 bits and SHAKE256 512 bits.

A sponge-based XOF with a capacity of cbits can maintain about ¢/2 bit security
against classical attackers [BDPVAOS] and about ¢/3 bit security against quantum
attackers [Cza21].6 In that context, the term security has to be understood as indif-
ferentiability from a random oracle, when the underlying cryptographic permutation
is modelled as a random permutation.

Accordingly, SHAKE128 can claim 128 bit security against classical and 85 bit security
against quantum attackers, and SHAKE256 can claim 256 bit security against classical
and 171 bit security against quantum attackers.

3 XDRBG Definition

XDRBG is a DRBG based on an underlying X0F. One could also view XDRBG as a mode
of operation for a XOF to realize a DRBG. Note that unlike most prior designs of this
kind, XDRBG does not assume anything about the internal structure of the XOF.

Conventions and Notation.

1. When we encode an integer as a bitstring, we always assume network byte order,
and write X,, to represent encoding X as an n-bit integer.

2. For each instantiation of the XDRBG we will claim two approximate security
levels: one with respect to classical attackers, and a second one with respect
to quantum attackers employing Grover’s algorithm. A security level of k bits

6Cautionary note: To the best of our knowledge, the claimed c/3 bits of quantum security for a sponge
with ¢bit capacity has so far only been published at an eprint server [Cza21], but not yet at a peer-reviewed
conference or journal. In this paper, we assume the claim to be correct.

10 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

implies that the given attacker, when restricted to time ¢ < 2*, succeeds with
at most ¢/2* probability.

The classical (quantum) security level of an instantiation of the XDRBG, employing
a given XOF, is the minimum of the classical (quantum) security level of the
XDRBG in the ideal-XOF model and the classical (quantum) security level of the
XOF at hand.

3. The internal state of XDRBG is a single bitstring, V' of fixed size |V|.

4. All XDRBG functions support an additional input « to personalize the DRBG; «
can be empty. We assume a function ENCODE, which encodes its sequence of
inputs into a string in an unambiguous way, so that there can be no (S, a,n) #
(S',a’,n’) with ENCODE(S, o, n) = ENCODE(S’, o/, n). We write [ENCODE| =
|[ENCODE(S, a,n)| — |S| — |a] for the stretch of the encoding. See appendix B
for our recommended encoding function.

Within our proofs, we also assume a function’ PARSE. If S can be written as
S = ENCODE(s1, S2, 1), the function returns PARSE(S, 1) = s1, PARSE(S, 2) = s2,
and PARSE(S, 3) = 4. Further, we use the convention that PARSE(S, —1) gives
the last entry in the tuple that was ENCODEd. When there is no tth element
in the tuple that was encoded to construct the string S, PARSE(S, t) returns a
failure symbol L.

5. Output lengths are specified in bits. As discussed in Section 7, we recommend
an upper limit on the output from each GENERATE call, called maxout.

6. INSTANTIATE and RESEED calls require entropy to result in a secure DRBG
state. We thus define two parameters specifying how much min-entropy must
be provided. Each INSTANTIATE requires at least Hinit bits of min-entropy; each
RESEED requires at least H,sq bits of min-entropy.

The security analysis of XDRBG can continue without defining the size of the state
(JV]) or the entropy bounds Hysq and Hinis. Concrete recommendations for these
parameters — and a possible maxout limit for generate requests — appear in Section 7.

Algorithm 2 XDRBG Definition
The function ENCODE : {0,1}* x {0,1}* x {0,1,2} — {0,1}* takes two strings and
an integer and returns a string. We require ENCODE(s1, $2,7) 7 ENCODE(s], s5,1’) for
(517 52, Z) 7£ (5/17 S/Qa i/) € {Ov 1}* X {Oa 1}* X {07]-7 2}
1: function INSTANTIATE(seed, «)
(# Returns |V|-bit state; source for seed: > Hynie bits min-entropy. #)
V « XOF(ENCODE(seed, o, 0), |V])
return(V)
4: function RESEED(V’, seed, «)
(# Returns |V|-bit state; source for seed: > H,sq bits min-entropy. #)
V <« XOF(ENCODE((V' || seed), o, 1), |V])
return(V)

7: function GENERATE(V', ¢,)
(# Returns |V'|-bit state and €-bit string ¥. #)
8: T + XOF(ENCODE(V',,2), £+ |V])
9: V « first |V| bits of T
10: > < last £ bits of T'
11: return(V, Y)

7This function is not implemented as part of XDRBG, but its existence is required for XDRBG to be
secure—the encoded inputs must be unambiguously parseable.

John Kelsey, Stefan Lucks and Stephan Miiller

11

Design Rationale. The goal of XDRBG is to provide an efficient and comprehensible
DRBG based on any XOF. A simple, comprehensible design makes implementation,
cryptanalysis, proving security, and checking the proof all easier. These considerations
led us to define XDRBG so that: (1) Each call to a DRBG function (INSTANTIATE,
RESEED, or GENERATE) results in a single XOF query, and (2) The first |V| bits of the
XOF output always become the new state V. (In GENERATE calls, the remaining bits
of the XOF output become the DRBG output, X.) XDRBG assumes only access to the
normal XOF interface, not access to any internal state of the XOF.

4 The DRBG Security Game

In order to reason about the security of our DRBG, we first need to define what it
means for a DRBG to be secure. Informally, our security goals can be summarized
as follows: The attacker must not be able to distinguish the outputs from the DRBG
from perfect random bits. This must be true for any sequence of instantiate, generate
and reseed calls to different devices. The only exception is output generated in the
time following a state compromise and before the next intake of fresh entropy (i.e.,
before either reseeding or instantiating the DRBG).

For clarity of explanation, we will use the following terms in discussing the game:

e When the challenger or attacker interact with the XOF, this is a query.
(Example: The challenger makes a XOF query.)

e When the challenger interacts with a DRBG instance, this is a call.
(Example: The challenger makes an INSTANTIATE call.)

e When the attacker interacts with the challenger, this is a request.
(Example: The attacker makes a R_OUT request.)

Thus, when the attacker makes a R_OUT request, this causes the challenger to make a
GENERATE call to the DRBG, which then causes the challenger to make a XOF query.

4.1 Intuition for the Game

Broadly spoken, the goal of the security game is to capture all the legal ways an
attacker might interact with devices implementing SP 800-90A type DRBGs. Previous
security analyses of DRBGs have not captured the full range of these interactions,
including attacker choice of additional inputs, and forcing many instantiations on the
same device.

In the security game, the attacker can request any device to generate outputs, to
reseed, or to instantiate. The challenger simulates all devices using access to the
XOF and responds to each of the attacker’s requests. The only constraint is that the
first request to each device must be instantiate. The attacker is free to choose the
additional input («) for the requests. After every request, the attacker can learn
the DRBG state of a device by compromising it. A device must recover from a
compromise when an instantiate or reseed call is made.

The attacker can force a given device to repeatedly be instantiated. This captures
the multitarget instantiation attack on a single device described above, as well as
any other weaknesses in the instantiation process the DRBG might suffer from. By
allowing the attacker to repeatedly compromise the state of the device and to reseed it,
we capture any flaws in either the reseed process or in the backtracking or prediction
resistance of the DRBG. Similarly, the attacker can provide additional inputs to
different devices in an attempt to cause different devices’ DRBG states to collide, or
to try to force a device’s future state to collide with one of its past states.

Consider the set of all DRBG outputs state, from all devices. The attacker’s goal is
to distinguish that set of outputs from a set of independent uniformly distributed
random bits. Whenever a device state is compromised, i.e., has become known to
the attacker, the attacker can compute the device’s DRBG outputs on its own, and
thus trivially distinguish them from random bits. Our game handles this by having

12 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

compromised devices always provide the outputs from the DRBG, while the bits from
an uncompromised device will be ideal random bits or DRBG bits depending on the
value of the random bit b. We can thus exclude bits from a compromised device from
the distinguishing goal, since they will be identical whether b = 0 or b = 1.

4.2 Game Definition and Rationale

To capture the above intuition formally, we specify a security game, see Algorithm 3.
It can be seen as an extension of the proof model used in [WS19]. Our game
incorporates a wider range of possible attacks, and closely tracks with the assumptions
and requirements of the SP 800-90 series and AIS 20/31:

1. At the beginning of the game, the challenger generates a random bit b. If b =0,
all R_OUT requests will be answered by outputs from the DRBG; if b = 1, some
of those requests will be answered with ideal random bits, instead. All other
requests are answered in exactly the same way regardless of b.

2. We assume D devices the adversary can make requests to. The sum of all
requests sent to all devices is exactly R. (An adversary making R’ < R requests
can always be modelled by an adversary making exactly R requests while
ignoring any responses after the first R’ requests.)

3. An adversarial request is a quintuple (req, d, i, aq,;, leak):

o req € {R_INST,R_RESEED,R_OUT({)} defines the call the device needs to
make to handle the request.

e de{l,...,D} is the index of the device the request goes to.

o iis a counter: (req,d,i,aq,:,leak) is the i-th request to device d.

e g, denotes the additional information for the call.

e leak € {true,false} indicates a state compromise: if true, the adversary
learns Vg ;, i.e., the state of device d at the end of handling the request.

4. A request (req,d, i, aq,,leak) is valid, if and only if

e there has been no i-th valid request to device d before, and
o either this is the first valid request to device d (i.e., i = 1) and the device is
requested to instantiate (req = R_INST) or this is not the first valid request
to device d (i.e., ¢ > 1) and the (i — 1)-th valid request to device d has
already been handled.
The challenger only reacts to valid requests, cf. lines 10-15 from Algorithm 3.
Note the usage of the array Done(-,-) to keep track of valid requests.
This serves two purposes: It prevents requests to uninstantiated devices. And
it enforces a consistent notation: Requests to device d are numbered by ¢ = 1,
i =2,9=23, ..., in that order and without skipping or repeating an integer.

5. Each valid request results in a single DRBG call made by the challenger
(cf. Alg. 4). Each DRBG call leads to one single XOF query (cf. Alg. 2). In
parallel to the requests, the attacker can also query the XOF up to @ times
(cf. Line 7 from Alg. 3).

6. For each device, we assume the availability of a properly designed and tested
entropy source (known as an NTG.1, PTG.2 or PTG.3 in AIS 20/31) with a
specified min-entropy. As pointed out above, we assume lower bounds Hinit and
Hysa for the min-entropy of our entropy sources, namely Hinit when the DRBG
is instantiated, and H,sq when it is reseeded.

SP 800-90C requires a security parameter k and fixes the entropy bounds by
Hinit = 3k/2, and Hysq = k. AIS 20/31 requires® Hinix = Hysa = 240.
Assuming the specified min-entropy, we claim the validity of our results for all
realistic entropy sources.

8The current draft of ATS 20/31 [Pet23] stems from 2023. It requires either 240 bits of min-entropy or
250 bits of Shannon entropy. Older versions of AIS 20/31 [Killl] did allow smaller amounts of entropy.
AIS 20/31 also imposes additional requirements on seeding a DRNG [Pet23], which we disregard here.

John Kelsey, Stefan Lucks and Stephan Miiller 13

Algorithm 3 DRBG Security Game:
The attacker can access up to D devices and makes R requests in total. The challenger
responds to valid requests. The attacker can directly query the XOF up to @ times at
any time during the game, not counting the challenger’s own XOF queries, made when
addressing the R requests. (That is, the attacker get adaptive access to the XOF.) The
attacker wins if the final message from the challenger is 1.
1: function CHALLENGER(D, Q, R)
(# Start the game: randomly choose the secret bit b. #)
2 b<+s{0,1}
(# Initiate tracker for requests. #)

3: forde{l,...,D},ic{l,...R} do
4: Done(d, i) = false
(# Attacker first commits to distributions and then is granted access to XOF. #)
5: forie{l,...,D},j€{1,...R},h € {Hinit, Hisa} do
6: Attacker chooses distributions ij, as elaborated in the text.
7 Challenger grants direct access to XOF for attacker, for up to @ queries.
(# Attacker makes R requests. Handle valid requests, ignore invalid ones. #)
8: for step € {1,...,R} do
9: Attacker chooses request (reqd’i, d,i,0q4,,leak), as elaborated in the text.
10: if ((Done(d, 7)) A (i = 1) A (req,; = R_INST)) V ((i > 1) A Done(d, i — 1)) then
11: Vai < HANDLE__REQUEST(Vyi—1,b,reqy ;,d, i, q i, DY, D=1) (# see
Alg. 4 #)
12: Done(d, i) + true
13: if leak then (# Compromise current state of device d. #)
14: Send DRBG state V;; to attacker.
15: corrupt, < true

(# Finish the game: the attacker wins if it correctly guesses the secret bit b. #)
16: Receive b from attacker.
17: if b = b then send 1 to attacker else send 0 to attacker.

Algorithm 4 Subroutine Handle_ Request from DRBG Security Game.
1: function HANDLE _REQUEST(Va,i—1,b,req, ;, d, 4, aa, Dg;"it,pggsd)
2 if req,, is R_OUT({) then

3 (Va,i» Z) < GENERATE(Vy;-1,4, aq ;)

4 if b=1 AND NOT corrupt, then

5: Z +$ {O, 1}2
6

7

8

9

Send Z to attacker.

else if req,; is R_RESEED then
Sd,i —$ Dé{fd
Vd,i — PuESEED(Vvd’i,l7 Sd,i7 ad’i)

10 corrupt, < false

11: else if req,, is R_INST then

12: Sd,i +$ Df;““'

13: Vi,i < INSTANTIATE(Sq ;, @q,i)
14: corrupt, < false

15: return (Vd,i)

14

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

e At the beginning of the game, the attacker will specify a sequence of
distributions Dg’l, L. ,DQL’R with min-entropy h € {Hysa, Hinit} for each
device d. As the distributions are formally specified by the attacker, they
cover all realistic entropy sources with the required min-entropy.
Obviously, the entropy sources from different devices can be distributed
differently. Furthermore, a realistic entropy source may change its distribu-
tion over time, e.g., due to heating up or cooling down. Thus, the attacker
must choose a distribution Dﬁ,i for each possible triple (d, i, h).

e To restrict the entropy sources to realistic ones, we require the attacker
to commit to all distributions Dg’i at the very beginning of the game, in
advance of all queries to the X0F, either directly by the attacker querying the
XOF, or indirectly from the attacker’s requests (cf. lines 5-7 of Algorithm 3).°
This will allow us to apply Lemma 1 below: one cannot choose u # u’ with
Pr[XOF (u, £) = XOF (u/, £)] > 27", without first querying the XOF.

7. In some situations, the attacker may realistically be able to compromise a device
i.e., to learn its internal state Vg ;. This is indicated by leak, see above.
For each device d, the algorithm maintains a flag corrupt,. The flag is set
when the device’s state is compromised, and the flag is cleared when the state
is advanced randomly using fresh entropy, i.e., after each reseed and instantiate
request. (There is no need to initialize corrupt,, because the first valid request
to any device d is always instantiate, which sets corrupt, without prior reading.)
A stronger attack model might allow the attacker to set the device’s state
to a chosen or known value. Our game does not support this, because we
consider such attacks unrealistic. But we briefly discuss their potential impact
in section 8.3.

8. At the end of the game, the attacker tries to guess the random bit b chosen at
the beginning of the game.

In order for XDRBG to be acceptably secure, the probability of the attacker to
win the game must be no greater than 1/2 + € for some very small e.

5 Security Analysis

5.1 The Main Result and some Corollaries

Let (d,¢) denote the i-th request made to device d. Our results depend on the
maximum number A1 of requests (d,?) with the same aq4,;, and on the total number
A2 of unordered pairs (d,4) # (d',7') with aq; = aa i

A= mgx(|{(d,i) P Qg = a}|> and A = Z <|{(d,z) : ;Xd’i - a}|> . (D

a

We assume () =0 = (1), and in general (}) = N(l\éil)'

Theorem 1. Let Hini and Hysq be the min-entropy for R_INST and R_RESEED requests,
respectively. Let |V| > Hni be the state size of the DRBG. Let the attacker make Q
queries and R requests and let \1 and A2 be defined as in Equation 1.

The attacker’s probability to win the DRBG game is at most 1/2 + €, with

A1 1 Q A2 R?
e<@Q <2Hmm -Q—-R + 2Hrsa — + 2 X 2|V|> + 9 H init + 2 x 2VI 2

91n reality, the distributions stem from random sources with the required amount of entropy. Giving the

attacker the ability to choose those distributions Ds ; 1s not realistic, but matches the all-quantification: ILe.,

if we claim (as we actually do) security for all combinations of distributions with the required min-entropy,
we can, as well, model this by the adversary choosing the combination of distributions it likes. On the
other hand, if the attacker had access to the XOF before committing to D?, it might choose some Dzh with
Pr[XOF (u,£) = XOF (v, £)] > 27" +27¢ for £ > 1 and u,u’ +$ D!, even though Pr[u = u/] < 27", This is
not a realistic attack setting for a realistic entropy source.

John Kelsey, Stefan Lucks and Stephan Miiller

15

Below, we describe the security we guarantee, depending on different policies for the
choice of the ag,;. We assume log,(Q) < Hysd < Hinit < |V|. Because |V] is always
at least twice the security level of the DRBG, we also assume log,(Q) < |V|/2.

The first policy imposes no restrictions on the choice of the aq,;. The aq,; may even

be empty, or set to another constant string. With at most R adversarial requests,
2

A1 < Rand A2 < (§) < £ which gives the following bound:

Corollary 1. Let Hiny and H,sq be the min-entropy for R_INST and R_RESEED
requests, respectively. Let |V| > Hiny be the state size of the DRBG.

The attacker’s probability to win the DRBG game, making Q queries and R requests,
is at most 1/2 + ¢, with

R 1 Q R? 1 1
=@ <2Hm~t -Q-R t o -Q o 2IV> T <2H M 2|V‘> '

The above corollary incentivizes to choose Hysa < Hinit, actually: Hysqa =~ Hinit —
log,(R). However, we get improved bounds by requiring disjoint . The second policy
thus requires unique o, i.e., if aq; # aar o for (d,i) # (d',i'). In this case, we have
A1 =1 and A2 = 0 and an improved bound:

Corollary 2. Let Hiny and H,sq be the min-entropy for R_INST and R_RESEED
requests, respectively. Let |V'| > Hii: be the state size of the DRBG. Let all additional
inputs aq,; be unique. Let the attacker make Q) queries and R requests.

The attacker’s probability to win the DRBG game is at most 1/2 + €, with

1 1 Q R?
€< @x <2H7jmjt_Q_R+2Hrsd—Q+2><2|V|>+2><2V.

IL.e., unique additional data ag,; would incentivise Hinit = Hysa. On the other hand,
the aq,; are de-facto nonces, and handling nonces may not always be desirable for a
DRBG. Actually, the current draft of SP 800-90 [BKM™22] abandons the requirement
to use a nonce, which has been imposed so far [BK15]. Instead, [BKM™22] explicitly
requires Hinit > Hysd.

So finally, we study a policy in between no rules and strict uniqueness for all aq,;.
Each device d has a unique name idg, i.e., idg # idg for d # d’. The adversary makes
at most Rppy requests to each device, and there are at most D devices. l.e., the
number of requests in total is at most R = D X Rpey. Set aq,; = idg, i.e., all requests
to a device just use the device’s unique name as the additional input. We refer to
this as personalization. Then A1 < Rpgy and A2 < D x (Fov) < D X RDTE‘Z < %7
and thus:

Corollary 3. Let Hjnit and H,sq be the min-entropy for R_INST and R_RESEED requests,
respectively, and |V| > Hiny the state size of the DRBG. Assume D devices, each
responding to at most Rppy requests, idg being a unique name for deviced € {1,..., D},
and aq,; = idg. Let the attacker make QQ queries and at most R = D X Rpgy requests.
The attacker’s probability to win the DRBG game is at most 1/2 + €, with € <

RI)H\/ 1 Q R X RIJH\/ 1 1
Qx (QHmu —Q-R + 2Hrd — Q + 2 % 2V|) + 2 x (QHM + W) - (3)

Once again, this incentivizes Hysd < Hinit, but now Hysa = Hinit — logs (Rogy)-

Remark. Sometimes, devices d # d’ with identical names: idy = idy may exist. For
example, device IDs could be chosen at random, or a manufacturing error might cause
two devices to have the same serial number. In this case, the claimed security bound
still holds if we treat all devices with the same name as a single device. Namely, if
we redefine Rpev such that all devices di,dz, ... with idg, = id4, = - -+ together do
not respond to more than Ry queries, then equation 3 still applies.

16

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

5.2 The Proof of the Main Result

Notation for the Proof. As before, we use (d,i) as a shorthand for requests
(b,req ;,d,i, i, leak). A generate request (d, i) is either corrupted or faithful..
Namely, it is corrupted, if, and only if, at the point of time Handle_ Request is called,
corrupt, = true. Instantiate and reseed requests are always faithful.'® We refer to
the inputs to the attacker’s XOF queries as Wi, ..., Wg. Furthermore, recall that
Vi denotes the i-th state on device d. We write Ug,; for the matching input from
the challenger’s matching XOF query, i.e., Vg ; = X0F(Uq,, |V]):

e U4 = ENCODE(Sq,;, @i, 0) for instantiate,
e Uqg,; = ENCODE((Vgi—1 || Sa,i), @a,i, 1) for reseed, and
e Uqg,; = ENCODE(Vyi—1,aq,4,2) for generate.

Also, we say Uq,; is corrupted or faithful, if (d,7) is so.
If W; is a XOF query made by the attacker, write @),, for the number of queries in
Wi,...,Wq with PARSE(Wj},3) = n. Clearly, Q1 + Q2 + Q3 < Q.

Independent XOF queries. Our proof consists of a sequence of lemmas. The first
one is almost trivial.

Lemma 1. For any u # u' chosen independently from the XOF and any £ > 1
Pr[XOF (u, £) = XOF(u/, £)] = 27

Proof. Recall Algorithm 1. Since u # v, the values X0OF (u, £) and XOF (u', £) are chosen
as two independent random ¢-bit values. Their probability to collide is 27¢. (|

Collisions. A part of our proof is based on bounding the probability of an input W;
for a XOF query made by the attacker to collide with a faithful Uy, i.e., the event W; =
Uq,;. We refer to the triple (j, d, i) as a collision. A collision can only occur if the input
strings to the XOF are identical, and thus for every ¢, PARSE(W},t) = PARSE(Uq,;, t).
Specifically, this requires that PARSE(W;, —1) = PARSE(Uq,;, —1) = @i, so that a
given attacker XOF query can only collide with a XOF query from one kind of XDRBG call.
Note that for any given string a, there are at most A1 requests (d, i) with aq,; = a.

Instantiate Collisions. We start with collisions (j, d,), where (d,) is an instantiate
request, i.e., PARSE(W;, —1) = PARSE(Uqg,;, —1) = 0.

Lemma 2. Let BADY, denote the event that during the attack game a XOF query j
and an instantiate request (d,) is made with Uq; = W;. Then

Pr[BADYY] < %
Proof. An instantiate collision (j,d,?) implies that the attacker actually did make
both the XOF query W, and the instantiate request (d, %) during the DRBG security
game. If the query is made before request i, the attacker is trying to guess a random
value with Hinit bits of min-entropy, which will be chosen later (i.e., when the request
is made). In this case, Pr[Uy; = W;] < 2 it If request j is made before the
query, and the event BADy\" did not already occur before the request, then the
attacker is trying to guess a fixed unknown value with Hinit bits of min-entropy. But
in this case, the attacker may already know at most j — 1 relationships W1 # Uq s,
.y Wj—1 # Uq,;. Thus, the attacker’s chance to guess Ug,; when making up to Q1
queries W; with PARSE(W;, —1) = 1 is Pr[Uy,; = W;] < 1/(2Finie — Q).

10Note that the security game first calls Handle_ Request and only then considers the leak parameter.
Thus, a request (d,i) = (b,req, ;,d,i, a4 ,1leak) can be corrupted or faithful, regardless of leak. But if
leak = true then all subsequeni: generate requests (d,i + 1), (d,i + 2), ... to the same device will be
corrupted, until the first reseed or instantiate request is made.

John Kelsey, Stefan Lucks and Stephan Miiller

17

As there are at most Q1 X A1 triples (j,d,), with (d,) being an instantiate query
and aqg,; = PARSE(Wj, 2), the probability of any instantiate collision (j,d,) is

INIT Ql X A1 Q1 X A1
PI‘[BADUW] S 9Hinie — Ql S O Hinie _ Q

O

Repeating States. Another event, which can be beneficial for the attacker, is the
case that the challenger generates the same state Vg; = Vi ;v from two different
requests (d,7) and (d’,).

Lemma 3. Let BAD be defined as in lemma 2. Let BADyy denote the event that
some of the challenger’s states during the attack game repeat. Ile., for two requests
(d,i) # (d',1"), the i-th request to device d and the i’ -th request to device d’, it holds
that Vg, = Vd/ﬂ;/‘ Then

E—— Ao R? Q?
INIT
Pr[BAD.|BADM] < oYiom + % 3IV] + 5% 31V

Proof. If Ua,i # Ugr ir,
PI‘[Vd,i = Vd’,i"Ud,i # U, 171-/] = 1/2“/‘7

cf. lemma 1. As there exist at most (%) unordered pairs Ug; # Ugs i/
I _ R\ 1 R?
PI‘[Eld,’L,d , 100 (Udﬂ 7é Ud’,i’ A Vdﬂ = Vd’,i/)] S (2) |7‘ S W (4)
We still need to discuss Pr[Uqg,; = Uy ,iv]. W.lo.g., (d,:) is made before (d',i'). If
i,4’ > 1, then Vg1 # Vg1 (otherwise, the event BADyy has already occurred).
If at least one of the requests (d,i), (d’,i’) is not an instantiate request, then
Ug,i # Uy ;v follows from Vg1 #* Vd’,j’—b If ag,; # Qg ity then Ug,; # Ud/ﬂ'/.
To bound Pr{Uqg,; = Uy], we can thus assume (aq,; = ag,7) and both (d,7) and
(d',i') are instantiate requests. As the seeds Sq,; and Sy ;s are independently drawn,
and the min-entropy of each seed is at most Hinit, we get

1
Pr[Ua; = Ugr 1] < Pr[Sa = Sqr,0r] < S

As there exist at most A2 pairs (d, i) # (d',i) with aq; = aar i/, we thus have

A
Pr[3d,i,d' i’ : Uy = Uy 1] < 2Hfm. (5)

Finally, the attacker might try to cause a collision between two XDRBG states, using
his control over the a and his large number of allowed XOF queries. For example,
the attacker might compromise two different devices’ internal states, V, V', and then
search for an «, @’ such that XOF(ENCODE(V, «, 2), |[V|) = X0F(ENCcODE(V', o/, 2), |V]),
but perhaps there could be other ways to structure this collision search. We bound
the probability of this happening by bounding the attacker’s probability of finding
any pair of inputs to the XOF that might lead to a colliding pair of DRBG states. Let
W i], W[j] be XOF queries made by the attacker. The attacker’s probability of finding
a collision on the first |V bits of any XOF output is bounded by

(6)

Pr{XOF(W i), |V]) = XOF(W15],[V)] < (‘j) V< O

The lemma follows from combining equations 4, 5, and 6. O

18

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

Pr[BAD!Y*|BAD,, A BADI A BADEY] <

Reseed Collisions. How likely is a collision (j,d, 1), if (d, %) is a reseed request?

Lemma 4. Let BADyy be as defined in lemma 3. Let BADE denote the event that
(j,d, 1) exist, where (d,1) is a reseed request and Uq,; = W;. Then

T | —————. Q2
Pr[BADY’BADy,) < Lt

Proof. Assume (d, i) to be a reseed request, and BAD did not alreaday occur, i.e.,
Uai & {Wl, ey Wj71}~

First, consider query j being made before reseed request (d,4). Thus, W; is fixed,
and Pr[Uq; = W;] < —7—, since the min-entropy of Uqg,; is at least Hysa.

2Hyrsd ?

Now consider reseed request (d,4) has been made first. Even if the attacker knows
Va,j—1, maybe due to a previous compromise, it still has to guess the current seed
Sa,i. The probability to guess Sq4,; without prior knowledge is
there had been Q2 failed attempts to guess Sq,;, the probability to guess U ; when
choosing W is still Pr[W; = U] < 57 L

QHﬁ. If previously

rsd — Q2 :

Note that, even if the attacker knows Vg ;_1, we assume no repeating states (i.e.,
BADyy), so for any given Wj, there can be at most one request (d, ¢) such that (7, d, 7)
could possibly collide, namely the unique (d,¢) with PARSE(W},1) = Vz,;-1. So in
total, the attacker’s chance to find a collision within @ queries is

BT Q2 Q2
PY[BAD?J:“BADW} < 2rea — Qs < 2rea —

O

Faithful Generate Requests. In the case of a generate request, observe that if
(d,7) is compromised, i.e., if the attacker knows Vg ;_1, then the attacker may easily
match a challenger XOF query, leading to a collision between W; and Uy ;. But such
matches are useless for the attacker, who is trying to distinguish the output from
faithful generate requests from random values. So in our context, we consider only
faithful generate requests.

Lemma 5. Let BADy,, BADYN, and BADYY be as defined above. Let BADG™
denote the event that (j,d,i) exist, where (d,i) is a faithful generate query and
Ud,i = Wj. Then

Q3 X A1 < Q3 X A1
VI — Qs —R-2VI_Q-R

Proof. Assume (d, i) to be a faithful generate request, and Uq; & {W1,...,W;_1}.
Consider the probability of the attacker to choose W; with W; = Ug;. Essentially,
the attacker has to guess Vg ;1.

First, consider query j being made before request (d,¢). The event Ug; = W; only
occurs if the XOF generates the right |V|-bit output. Thus Pr[Uq; = W;] < 2‘—{4
Now consider query j being made after request (d,7). In this case, the attacker is
guessing an unknown |V| bit output from a challenger’s XOF query. Without other
information, Pr[W; = Ug ;] would be < 2‘—{4 But the attacker knows up to Q)3 values
W; which are not Ug;, and there can be up to R previously-disclosed DRBG states,
which the attacker can avoid to guess. So the probability of the attacker matching the
XOF query from a single faithful GENERATE request is Pr[W; = Ua,] < g

___ 1
Q3—R’

The claimed bound stems from the fact that there may be up to A; faithful generate
requests (d, i) with the same additional input aa,; = PARSE(Ug,;,2) and up to Q3
queries W; with PARSE(W)) = 3. O

No Bad Events. The last lemma we need for the main result is describes the
adversarial advantage in the absence of bad events.

Lemma 6.

Pr[b=b | (BADSY A BAD., A BADSY A BADEE)| = %

John Kelsey, Stefan Lucks and Stephan Miiller

19

Proof. By the definition of the attack game (cf. alg. 3), all those outputs sent to the
attacker which depend on b, stem from faithful generate requests.

The event BADyy implies that, since all the challenger’s states Vg ; are different, all
the XOF inputs Ug,; to answer generate requests are different. Thus, all the output
bits generated in line 3 of the attack game stem from calls XOF (Uq s, . . .) with different
inputs Ug,;. Depending on b, a faithful generate request will return either of the
following values to the attacker:

e By the definition of the X0OF, cf. Algorithm 1, all the output bits from a XOF
query are uniformly distributed random bits. I.e., if b = 0, the challenger
will compute T +$ {0, 1}“"/‘ in the XOF query and the attacker will see the
rightmost ¢ bits of T'.

o If b =1, the attacker is given Z <s${0,1}".

Regardless of b, if BADyy the distribution of responses to the attacker’s faithful
generate requests is the uniform distribution. To distinguish b = 0 from b = 1, the

attacker must thus make a query X0F(Uq,,...), which matches a faithful request.

Without such a matching query, i.e., when BADY A BADSY A BADS™, all the
answers to the attacker’s queries are uniform random values, independent from the
responses to faithful requests. O

Proof of theorem 1. According to lemma 6,

Pr[b=0b | (BADJW ABAD,, A BADEY ABADIY)] = %

Le., our advantage € in distinguishing b = 0 from b = 1 is at most the probability to
trigger one of the bad events. Hence ¢ is at most the sum of the the bounds from
lemmas 2, 3, 4, and 5:

Ql X)\1)\2 R2 Q2 Qz Q3 X)\1

€< tom Yo avi Taxovi "o —g TaVic QR

= 2Hinit — Q

We can simplify this to the claimed bound

A1 1 Q A2 R?
€es@ <2Hinit -Q—-R + 2Hisa — + 2 X 2‘/) + 2Hinit + 2 x 21VI

by applying g + 5fols < @A (since Hine < |V]and Q1 +Qs < Q)

and 92— < 9 (since Q2 < Q). O

2Hrsd —Q — 2Hrsd —Q

6 Matching Attacks

In this section, we will sketch attacks which closely match our claimed security bounds.

For the case of simplicity, we do not put any constraints on the usage of the additional
input — the attacker is even free to choose all the aq4,; as the empty string. This is
the case of corollary 1.

We assume each ij}i to be the uniform distribution of h-bit values. This tightly
matches the claimed min-entropy h for the Dg’i.

6.1 Classical Attacks

Attack 1 (R =~ 2 * 2H‘"“/2): The core idea for this attack is to maximise the
probability of the event BADyy and then to exploit it. Note that Hinit < |V|.

The attacker makes R/2 instantiate-requests. After each instantiate-request, it makes
one request to generate £ > Hinit/2 output bits.

If b = 0, the attacker can expect two of the £-bit outputs to be identical: The seeds for
the instantiate-requests are uniformly distributed Hinit-bit values, with probability
> 1/2 two of the R seeds will be identical. Thus, these two instantiate-requests will

20

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

initiate the same output state, which will then be used by the subsequent generate
requests to generate the same £-bit output.

If b = 1, then, since £ > Hinit/2, the probability for any two independent ¢-bit values
to be identical is negligible.

Attack 2 (Q = 2 * maX(ZH‘"“/R, 2H'5d)): The core idea for this attack is to
try to guess one of the challenger’s XOF inputs Ug,;. We split the attack into two
subcases:

Attack 2a (2Hm /R > 2Hw Q =~ 2 % 2Hwt /R): Similarly to attack 1, the
attacker makes R/2 instantiate requests, interleaved with R/2 requests to generate
£ > H,sq output bits each. In contrast to attack 1, the attacker now chooses Q/2
random seeds S1,...,Sg/2 € {0, 1}rsa and picks the £ rightmost bits from each
of the @ strings X0F (X0F (S}, |V]), |V| + £). With significant probability, one of the
attacker’s random states S; will collide with one of the challenger’s states Sq.;.

If b = 0, the collision of the attacker’s S; with one of the challenger’s states implies
the same ¢-bit output.

If b = 1, the probability for one of the attacker’s Q/2 ¢-bit output strings with one of
the challengers R/2 {-bit output strings is negligible, since £ > Hiyga.

Attack 2b (2Hm /R < 2H= Q =~ 2%2Hnsd): (Consider a sequence of a corruption
followed by a reseed request and then a request to generate ¢ > H,sq output bits.
Thanks to the corruption, the attacker knows the input state Vg,; for reseed. The
input state Vg ;41 for generate is computed by Vg ;41 = X0F((Va,i || Sa,i || @a,i), [V])
from the unknown seed Sg; <$ Df“d.

If b = 0, the visible output consists of the ¢ rightmost bits from X0F(Vy 41, |V]+ £).
By trying out all 274 choices for S4;, the attacker can find V1, with matching
output bits.

If b = 1, the visible output consists of ¢ random bits. Since ¢ > H,sq, the proba-
bility for the existence of any S € {0,1}=¢ such that the ¢ rightmost bits from
XOF(XOF (Vi || S,|V1]),|V] + £) match £ random bits is negligible.

6.2 Quantum Security: Applying Grover’s Algorithm

What happens if the attacker can use a quantum computer? In the current paper,
we always assume the DRBG to run on a classical computer. By implication, the
challenger is classical, and attack 1 still applies. As the attacker can use a quantum
computer, it can make XOF calls in superposition. This allows the quantum attacker
to use Grover’s algorithm to speed-up attack 2a from @ =~ 2H‘“”/R XOF calls down
to Q =~ 2H‘““/2/\/E and attack 2b from Q = 274 calls down to Q = 2rsa/2_ This
is a sertous issue for quantum secure DRBGs.

On the other hand, Grover’s algorithm doesn’t parallelize well. An implementation
of attack 2a or 2b, running c classical cores in parallel, speeds up by a factor of c.
The speed-up of Grover’s algorithm from running ¢ quantum cores is only +/c.

A concrete example: If the classical attack takes time 2%° on a single classical core,
then 2%° classical cores running in parallel suffice to reduce the wall-clock time for the
attack to the equivalent of 285 /2'5 = 27 sequential XOF calls. If Grover’s algorithm
takes the same 28° units of time on a single quantum core, we’d need 23° quantum
cores to mount the attack in time 2%°/1/230 = 2. Given the same number of 2%°
cores, but classical ones, and 27° units of wall-clock time, we could classically exhaust
a 100-bit search space. So let us assume the attacker not to be willing to wait for
more than the wall-clock time 27° cryptographic operations would take,'! either on
a classical or on a quantum computer. In this case, 85-bit quantum security is as

11'We argue that this assumption is realistic. No attacker cares about 1000 or 10000 years to mount an
attack on sequential hardware. The attacker cares about the amount of parallel hardware needed to finish
the attack in a given amount of time. The threshold size 270 is, of course, open for debate.

John Kelsey, Stefan Lucks and Stephan Miiller 21

good as 100-bit classical security. In general, a classical security level of 70 + 2t bits
is equivalent a quantum security level of only 70 + ¢ bits.'?

7 Concrete Proposals

7.1 Numerical Examples

Table 1 provides some numerical examples, derived from corollary 1 and 3, respectively.
The security levels depend on the state size, the entropy bounds, on the number
R of requests and, in the case of the bounds derived from corollary 3, also on the
maximum number Rppy of requests from a single device. E.g., if we assume |V| > 256,
Hinie > 192, Hygq > 128, R < 2%% and apply corollary 1, we can guarantee a classical
security level of 128 bits, and a quantum security level of 64 bits. But we can increase
the bound on R to R < 2'?®, we can maintain the same approximate security bound
if we assume personalized devices (i.e., each device is given a unique name as its
additional input), restrict each single device to at most Rpsy < 256 queries and apply
corollary 3.

Table 1: Approximate security levels for different instantiations of the XDRBG, assuming an ideal
XOF and derived by applying corollary 1 or 3, respectively. The quantum security levels assume a
straightforward application of Grover’s algorithm. Each row describes lower bounds for each of
|V|, Hinit, and Hysq, and an upper bound for R (and for Rpey in the lower part), to achieve a given
level L of classical and quantum security. Note that if R = Rpey, the bounds from corollary 1
and 3 are the same. The connection of @) and L is explained in section 2.3.

bounds derived from corollary 1
V| Hint Hyisa logg(R) | approx. security level £

> > > < classical quantum
256 192 128 64 128 64
512 240 240 56 192 96
512 384 256 128 256 128

bounds derived from corollary 3
V| Hinit Hysa logo(R) log, (Rpey) | approx. security level £

> > > < < classical quantum
256 192 128 128 56 128 64
512 240 240 128 56 192 96
512 384 256 128 128 256 128

7.2 Recommendation on Personalization of XDRBG Instances

We recommend to personalize all implementations of the XDRBG at least when the
bound for the number R of is less than 25%. If the XOF itself provides a personalization
option, as, e.g., cSHAKE does for the SHAKE XOF, one could make use of that option
and then leave the a empty.

In Appendix A.2 we briefly discuss the approach of going beyond personalization or
randomization by actually providing additional entropy for the additional input.

7.3 Proposed XDRBG Parameters Based on SHAKE128 and SHAKE256

We propose three XDRBG instances in Table 4. The first one employs SHAKE128 with
a capacity of 256 bits and provides 128 bits of classical security and 64 bits of

12Reality may be even worse for the quantum attacker. Evaluating a cryptographic primitive on quantum
circuits should be slower, in practice, than evaluating the same primitive on classical hardware.

22

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

quantum security. This matches category one (the lowest category) from the NIST
post-quantum security criteria, see Appendix D. The second and third instance
employ SHAKE256, where we claim security category three for the second instance and
category five, the top category, for the third instance.

Table 2: Three proposals for DRBG standards and their approximate security levels. The first
assumes SHAKE128 with its 256-bit capacity, the second and third SHAKE256 with its 512-bit
capacity. The first two require personalized devices, with the bound Rpgy < 2°¢ on the number
of queries from a single device, the third one can achieve its claimed security without such a
constraint. We set |V| = capacity. The promised classical security levels stem from corollary 3,
though for XDRBG-256 corollary 1 would suffice to derive exactly the same bound. The quantum
security levels assume the application of Grover’s algorithm. The category refers to the NIST
post-quantum criteria, cf. Appendix D.

capacity | Hinit Hysa logs log, promised security level £
(R) (Rpev) | classi- quantum cate-
cal (Grover) gory

XDRBG-128 256 | 192 128 128 56 128 64 1
XDRBG-192 512 | 240 240 128 56 192 96 3
XDRBG-256 512 | 384 256 128 128 256 128)

These proposals are inspired by existing or drafted standards. In SP 800-90, a DRBG
has a security level, k € {128,192, 256}.13 The min-entropy needed for instantiation
is defined in terms of the security level: Hinit > 3k/2, Hisa > k. l.e., XDRBG-128
and XDRBG-256 match the cases kK = 128 and k = 256, respectively. XDRBG-192 is
inspired by the revised version of AIS 20/31 [Pet23], (still a draft as of this writing),
which defines lower-limits on effective internal state size and entropy provided to
the DRNG!. The current draft of AIS 20/31 requires 240 bits of min-entropy for
instantiation, so Hinit > 240, Hysq > 240. An implementation meant to comply with
both would simply choose the maximum of the two required values. It is always
allowable to incorporate more entropy than required, or to assume/require a smaller
number R of requests. In this way, an implementation can be compatible with both
standards.

7.4 Alternative Proposals Based on the ASCON Permutation

Recently, [Nat23], NIST has announced plans to standardize ASCON [DEMS22], a
lightweight family of authenticated encryption and hashing algorithms based on a
320-bit permutation. We anticipate corresponding standards for ASCON-based XOFs.
A typical constraint for lightweight primitives is the number of input and output
bits — e.g., b = 320 bit for the ASCON permutation, in contrast to 1600 bit for the
SHAKE permutation. As pointed out above, any sponge-based XOF with a capacity of
¢ bit can only provide ¢/2 bit of classical and ¢/3 bit of quantum security. Note that
the rate r = b — ¢ determines the maximum number of input bits to be absorbed
or output bits to be squeezed from each time the permutation is called. I.e., the
performance of a XOF is roughly proportional to the rate.

Table 3 proposes two ASCON-based lightweight variants of the XDRBG. The first
one, XDRBG-1.-128, is a lightweight alternative to XDRBG-128 with the same security
claims. Note that the capacity is ¢ = 256 bit, so the rate is still » = 320 — ¢ = 64 bit.
The second one, XDRBG-L-170 aims at improved security, namely category-2 quantum
security. Performance-wise, the improved security comes at a steep price. Since the
capacity is ¢ = 308 bit, i.e., almost the full permutation size of 320 bit (and can’t be
much smaller, if one wants to claim category-2 security based on the bounds we have
proven), this leaves only r = 12 = 320 — ¢ bits for the rate.

13Currently, SP 800-90 also supports k = 112, but we expect that to be removed from the next version.

1Recall that DRNG is the term used in AIS 20/31 for what we refer to as a DRBG.

John Kelsey, Stefan Lucks and Stephan Miiller

23

Table 3: Two proposals for lightweight DRBG standards and their promised security levels, which
again stem from corollary 3 in the classical case, and from Grover’s algorithm in the quantum
case. The category refers to the NIST post-quantum criteria, cf. Appendix D.

capacity | Hinit Hysa logs log, promised security level £

(R) (Rpey) | classi- quantum cate-

cal (Grover) gory
XDRBG-L-128 256 | 192 128 128 56 128 64 1
XDRBG-L-170 308 | 240 240 128 64 170 85 2

7.5 Limiting the Damage from State Compromise: maxout

XDRBG, like the DRBGs in [BK15], promises backtracking resistance between GENERATE
calls, but not within a GENERATE call. Thus, a state compromise during a very long
GENERATE output could expose previously-generated outputs from the GENERATE
call to compromise. This risk was pointed out in [WS19].

This threat is partly mitigated'® in SP 800-90A DRBGs by defining a limit, maxout, on
the maximum output length from one single GENERATE call. That is, each GENERATE
call must return no more than maxout bits of output. To generate X > maxout bits
of output, one has to call the generate function [X/maxout]| times.

While the choice of maxout has no effect on our security bounds (we promise back-
tracking resistance only between GENERATE calls, and our security definition reflects
this), a not-too-large maxout limit is a low-cost defense against the impact of a state
compromise. Although we cannot offer a rigorous analysis in defense of any particular
choice, we believe a maxout of around 2048 bits for XDRBG provides a reasonable
performance/security tradeoff. However, the precise value of maxout should be tai-
lored to the underlying XOF, to maximize performance. For example, SHAKE128 has
a rate of 1344 bits, and XDRBG uses the first 256 bits as its new DRBG state, so it
would be wasteful to set the maxout of XDRBG-128 to 2048 bits—setting maxout = 2432
gets the full benefit of the bits produced by two permutation calls. Table 4 shows
recommended maxout values for each of our proposed versions of XDRBG. These values
are derived by finding the smallest number of complete permutation calls that give
an output of at least 2048 bits after accounting for the generation of the next DRBG
state. However, we emphasize that the specific choice of maxout is not based on the
results of a rigorous security analysis, and could reasonably be changed when the
requirements of the application using the DRBG require it.

Table 4: Recommended values for maxout for different proposed XDRBG parameters. In each case,
maxout is chosen to be the smallest output length of at least 2048 bits that can be produced from
an integer number of permutation calls, after accounting for the need to generate a new DRBG
state. Note that XDRBG-192 and XDRBG-256 are identical other than the amount of entropy they

require for instantiation and reseeding.

Based on Rate Recommended maxout
XDRBG-128 SHAKE128 1344 2432
XDRBG-192 SHAKE256 1088 2752
XDRBG-256 SHAKE256 1088 2752
XDRBG-L-128 | ASCON_XOF 64 2048
XDRBG-L-170 | ASCON_XOF 12 2052

7.6 Performance and Usefulness

While performance is usually not the most important feature of a DRBG, it still
matters. Table 5 gives a preliminary performance comparison on several different

15In [BKMT22], an additional requirement is imposed: the full GENERATE output must be produced
before any of the output is used.

24 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

platforms, including both low-end and high-end processors across three different
architectures. In our data, XDRBG based on SHAKE256 is always competitive with
HashDRBG or HMAC based on SHA256, and is usually faster.

Table 5: Comparing XDRBG to other hash-based DRBGs on a variety of platforms. All DRBGs
claim 256 bits of classical security. Times given are in seconds required to fill a buffer with 1 GiB
of output from the DRBG (smaller numbers mean better performance). The “Vec. Instr.”” column
shows performance using whatever vector instructions were available on the given platform.

XDRBG-256 XDRBG-256 HashDRBG HMACDRBG
SHAKE256 SHAKE256 SHA256 SHA256

Vec. Instr.
AMD Ryzen 5950X 4.62 5.06 6.63 27.33
Intel 11th Gen i7-1195G7 2.64 5.28 5.81 23.11
Intel 12th Gen i7-1280P 3.96 4.15 4.68 19.97
Apple M2 2.18 2.89 4.88 20.54
ARM Cortex-AT76 rdpl 6.17 6.52 9.59 41.15
ARM Cortex-A72 rOp3 12.26 12.33 18.15 78.20
ARM Cortex-A8 r2p5 62.68 185.45 186.71 784.66
ARM Cortex-A7 rOp5 81.81 249.85 242.79 1015.23
Si Five (RISC-V) 104.73 104.80 72.11 309.03

XDRBG is designed to use the normal XOF interface, rather than having access to any
internal values or state, or making any assumptions about the underlying X0F’s inner
workings other than its security strength. This makes the DRBG somewhat less
efficient, but with the benefit that the DRBG can be implemented pretty efficiently
with normal access to a XOF primitive such as SHAKE256, and will work as well for
future XOFs—even ones not based on a sponge construction.

XDRBG is designed to keep the inputs to the XOF as small as possible, given its security
requirements. Consider the number of permutation calls to handle the different types
of requests:

e Handling a reseed request with a seed of length o and additional input of length
|a| needs to make [(|V|+ o + |a| + |ENCODE|)/r| permutation calls to absorb
its entire input and to emit the first r bits of the new state. If |V| > r, it needs
an additional [|V|/r] — 1 permutation calls to generate the new state in full. In
total, this makes

PV| +o+ |a7\n+ |ENCODE-‘ + {‘:r‘ —1 permutation calls.

o Handling an instantiate request is almost the same as handling a reseed request,
except that the input does not expect a seed of any size. Thus, it requires

[a + |a| + |ENCODE|
T

-‘ + ’Vﬂj-‘ — 1 permutation calls.

e Similarly, handling a generate request for ¢ bits of output takes

V ENCODE VIi+¢
{ [+ ol +| |-‘ + ’V| [+ -‘ — 1 permutation calls.
r r
As a concrete (arguably quite typical) example, consider o = 512, |[ENCODE| = 8
(cf. appendix B) and ¢ = 256. We assume the additional input not to be too long,
say, |a| = 128. The performance of our proposed XDRBG variants is as follows:

e XDRBG-128 has rate r = 1344 and |V| = 256. Regardless of the request, given
our choice of parameters the XDRBG-128 calls the permutation only once.

John Kelsey, Stefan Lucks and Stephan Miiller

25

o XDRBG-192 and XDRBG-256 have rate r = 1088 and |V| = 512. Both XDRBG-192
and XDRBG-256 make two permutation calls for reseed and one call for each of
instantiate and generate.

o The rate and state size of XDRBG-L-128 are r = 64 and |V| = 256. A reseed thus
takes [200E012E128187 4 [2567 1 — 18 calls, instantiate [224284874 [250] 1 =

14 calls, and generate also [250£128487 4 [25642567 _ 1 — 14 calls.

o For XDRBG-L-170 the rate is r = 12 and the state size is |V/| = 308. This implies
101 calls for reseed, 89 calls for instantiate, and 73 calls for generate.

The above comparison is simplistic. E.g., we assumed a constant seed size o = 512.

In practice, o will likely be proportional to the required entropy. I.e., we neglect a
certain benefit for the less secure variants of the XDRBG. Nevertheless, we believe the
above comparison still gives a reasonable idea for typical application scenarios.

8 Alternative Approaches

We considered and rejected a number of design alternatives and alternative security
models for XDRBG.

8.1 Sponge-based vs X0F-based

The first design choice we had was whether to base the DRBG on a sponge function
or a XOF. (Recall that a XOF provides a particular kind of functionality that can be
implemented by sponge function, but might also be implemented in some other way.)
As discussed above, several prior works, have proposed cryptographic PRNGs based
on a sponge construction (specifically using a large ideal permutation), and it would
have been relatively easy to adapt those to the requirements of SP 800-90A. However,
we believe that basing a DRBG on a X0F provides more flexibility. XDRBG can be
based on any XOF, regardless of its underlying structure or assumptions. A future
XOF whose security does not rely on an ideal permutation assumption or even use a
sponge construction will still work with XDRBG.

8.2 Reseed Interval

SP 800-90A defines a reseed interval for its DRBGs. This requires that the DRBG be
reseeded after a certain number of GENERATE calls. A relatively small reseed interval
provides a defense against the impact of a DRBG state compromise. However, a reseed
interval short enough to provide substantial protection from state compromise would
also make the DRBG algorithm unworkable in many environments. For example, SP
800-90C defines the RBG1 construction, which has access to live entropy only for
instantiation; a similar construction is permitted as a DRG.3 under AIS 20/31. If
XDRBG required reseeding every ten or even one hundred GENERATE calls, it would
be unworkable for use in these constructions. On the other hand, the huge reseed
intervals (requiring a RESEED every 2%? or 2*® GENERATE calls) in [BK15] are not
too costly, but their security benefit is negligible. For these reasons, we elected not
to define a reseed interval as part of XDRBG.

However, we recommend that in any application where it is practical, XDRBG (or any
other DRBG) should be reseeded periodically. As described in [KSWH98, CDK " 22a],
a reseed must wait until sufficient entropy is available to avoid the iterative guessing
attack / premature next condition.

A conditional reseed may serve as an easy alternative to a fixed reseed interval without
forcing the application to wait (if the min-entropy of the seed is Hysq then reseed
before continuing else continue without reseeding). Alas, this also introduces a
potential side-channel vulnerability: The attacker might observe if, whenever the
DRBG executes a conditional reseed, the DRBG actually reseeds or not. Thus, each
time a conditional reseed is called, one bit of Shannon entropy may be lost.

26

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

8.3 Stronger Attack Model

A variation of the attack game could allow the attacker to compromise the DRBG
state by overwriting it, or resetting it to a fixed inital state, rather than by just
reading it. The attack game would otherwise be the same, including the role of the
flag corrupt. But now, the attacker could benefit from a multitarget attack, similar
to the attack from section 2.5: Fix a state V™ and repeat the following three-step
sequence as often as possible: (1) set the DRBG to V*, (2) reseed, and (3) generate
some output bits. Eventually try O(Q) times to guess any of the O(R) seeds from
step (2) and generate the output bits to detect a match.

As pointed out above, we doubt the plausibility of an attacker to the DRBG state by
a chosen or known value V*. But for readers who prefer to consider such attacks,
we point out the following: Reseeding is never worse than instantiating, except that
H,sq may be smaller than Hinit. In fact, the combination of setting the DRBG state
to V* and then to reseed with a seed S is equivalent to instantiating the DRBG state
with a seed S* = V* || S. Since V* is known to (or even chosen by) the attacker, the
distributions, which S and S* are drawn from, have exactly the same min-entropy.
Accordingly, we make two recommendations for the stronger attack model: (1) set
Hisa = Hinit, and (2) if the XDRBG is personalized, then personalize both instantiate
and reseed requests. In that context, observe that AIS 20/31 sets Hinit = Hysd.
Regarding the first recommendation, we revisited the proof for our main result. As it
turned out, both proof and result still apply, with a slightly tweaked bound. In fact,
for H = Hinit = Hysa we can replace equation 2 by

A1 1 Q Ao R?
< 22, v
e_Q(ZH—Q+2H—Q+2><2|V|>+2H+2><2V’

which also applies to the attack model where the attacker can set the DRBG state.

9 Conclusions

Drawing on previous work in [BDPV10, CDKT19], we have proposed a new class
of DRBG that can be based on any XOF, and analyzed its security in a model well
adapted for DRBGs as defined in [BK15]. We have kept the specification of XDRBG
general enough to adapt to the different requirements of SP 800-90 and AIS 20/31,
and to work for any XOF. It is possible to make a more efficient DRBG by altering the
internal workings of a sponge-based XOF, but this would result in a less generally-useful
DRBG. We prefer to provide a more generic design.

XDRBG is quite efficient. Assuming reasonable choices for seed length, size of the
additional input and output length, every X0F query made by XDRBG with SHAKE128
or SHAKE256 will result in at most two permutation calls. Even XDRBG-1-170, the
lightweight variant based on a smallish 320-bit permutation, where we squeezed in as
much quantum security as possible, is slow, but not prohibitively so: a typical request
requires about 100 permutation calls. For the lightweight variant with standard
security, namely for XDRBG-L-128, less than 20 permutation calls suffice.

Our hope is that XDRBG will be a useful addition to the set of DRBGs currently in
use, especially in environments in which SHAKE or ASCON is the only cryptographic
primitive available. Our focus in the design and analysis of XDRBG is to provide
a practical DRBG that fits cleanly with the requirements of two widely-followed
standards for cryptographic random bit generation, SP 800-90 and AIS 20/31. We
have provided concrete parameter sets to meet these requirements, in the hopes of
making XDRBG easy to incorporate into applications.

Open Questions. We see at least three interesting directions for future research:

1. Our analysis for quantum security focused on the application of Grover’s algo-

rithm. Also, recall the cautionary note from Footnote 6 regarding the quantum
security of sponge-based X0Fs. Nevertheless, we conjecture that these bounds

John Kelsey, Stefan Lucks and Stephan Miiller

27

actually describe the security of the XDRBG against quantum adversaries very
well. A proof for those quantum bounds, similar to our classical security analysis,
would probably assume the compressed oracle model [Zhal9].

2. Our security proof assumes oracle-independent entropy sources. While this
seems entirely reasonable for the context of random number generation with
trusted entropy sources (as in SP 800-90 or AIS 20/31), it would be interesting
to prove similar security bounds for oracle-dependent sources, using techniques
from [CDKT19].

3. We are not entirely satisfied with the performance of our high-security small-
permutation proposal XDRBG-L-170. To match a given security level by applying
our bounds, we seem to require a largish capacity (because |V| is a lower bound
for the capacity), which implies a low rate for XDRBG-L-170. Is it possible to
prove similar bounds with a significantly smaller |V|?

Acknowledgements. The authors wish to thank Johannes Mittmann, Kerry
McKay, and Meltem Sénmez Turan for many helpful comments on earlier drafts of
this paper. We thank the reviewers for their insights and comments which had been
helpful to improve this paper. Our special thanks go to the reviewer who pointed out
errors in the original version of the security proof.

References

[AMD23] AMD — Advanced Micro Devices. AMD RNG ESV public use doc-
ument, document version 0.4. Technical report, Advanced Micro
Devices(AMS), 2023. https://csrc.nist.gov/CSRC/media/projects/
cryptographic-module-validation-program/documents/entropy/E27_
PublicUse.pdf.

[AMMS16] Sergey Agievich, Vadim Marchuk, Alexander Maslau, and Vlad Semenov.
Bash-f: another Irx sponge function. Cryptology ePrint Archive, Paper
2016/587, 2016. https://eprint.iacr.org/2016/587.

[BDPAO7] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions.
Ecrypt Hash Workshop 2007, 2007.

[BDPV10] Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche.
Sponge-based pseudo-random number generators. In Stefan Mangard and
Frangois-Xavier Standaert, editors, CHES 2010, volume 6225 of LNCS,
pages 33-47, Santa Barbara, CA, USA, August 17-20, 2010. Springer,
Heidelberg, Germany.

[BDPVAO8] Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche.
On the indifferentiability of the sponge construction. In Nigel Smart, editor,
Advances in Cryptology — EUROCRYPT 2008, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[BK15] Elaine Barker and John Kelsey. Recommendation for random number
generation using deterministic random bit generators. Technical report,
National Institute of Standards & Technology, Gaithersburg, MD, United
States, 2015.

[BKL*19] D. J. Bernstein, S. Kélbl, Stefan Lucks, P. Maat Costa Massolino,
F. Mendel, K. Nawaz, T. Schneider, P. Schwabe, F.-X. Standaert, Y. Todo,
and B. Viguier. Gimli. Submission to the NIST Lightweight Cryptogra-
phy Standardization Process, 2019. https://csrc.nist.gov/Projects/
lightweight-cryptography/round-2-candidates.

[BKM*22] Elaine Barker, John Kelsey, Kerry McKay, Allen Roginsky, and
Meltem Sénmez Turan. Recommendation for random bit generator (rbg)
constructions (3rd draft). Technical report, National Institute of Standards
& Technology, Gaithersburg, MD, United States, 2022.

https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/entropy/E27_PublicUse.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/entropy/E27_PublicUse.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/entropy/E27_PublicUse.pdf
https://eprint.iacr.org/2016/587
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates

28

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

[CDK"22a] Sandro Coretti, Yevgeniy Dodis, Harish Karthikeyan, Noah Stephens-
Davidowitz, and Stefano Tessaro. On seedless prngs and premature next.
In Dana Dachman-Soled, editor, 3rd Conference on Information-Theoretic
Cryptography, ITC 2022, July 5-7, 2022, Cambridge, MA, USA, volume
230 of LIPIcs, pages 9:1-9:20. Schloss Dagstuhl - Leibniz-Zentrum fir
Informatik, 2022.

andro Coretti, Yevgeniy Dodis, Haris arthikeyan, Noah Stephens-

CDK*22b] Sandro C i, Y iy Dodis, Harish Karthik Noah Steph
Davidowitz, and Stefano Tessaro. On seedless prngs and premature next.
TACR Cryptol. ePrint Arch., page 558, 2022.

[CDKT19] Sandro Coretti, Yevgeniy Dodis, Harish Karthikeyan, and Stefano Tessaro.
Seedless fruit is the sweetest: Random number generation, revisited. In
Alexandra Boldyreva and Daniele Micciancio, editors, Advances in Cryptol-
ogy - CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I, volume
11692 of Lecture Notes in Computer Science, pages 205—234. Springer,
2019.

[Cza2l] Jan Czajkowski. Quantum indifferentiability of SHA-3. TACR Cryptol.
ePrint Arch., page 192, 2021.

[DEM™20] Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel,
Bart Mennink, Robert Primas, and Thomas Unterluggauer. ISAP v2.0.
TACR Trans. Symm. Cryptol., 2020(S1):390-416, 2020.

[DEMS22] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Mar-
tin Schliffer. Status Update on Ascon v1.2. Update to the NIST
Lightweight Cryptography Standardization Process, 2022. https:
//csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/
documents/finalist-round/status-updates/ascon-update.pdf.

[DGH*04] Yevgeniy Dodis, Rosario Gennaro, Johan Hastad, Hugo Krawczyk, and Tal
Rabin. Randomness extraction and key derivation using the CBC, cascade
and HMAC modes. In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 494-510, Santa Barbara, CA, USA, August 15-19,
2004. Springer, Heidelberg, Germany.

[DVW20] Yevgeniy Dodis, Vinod Vaikuntanathan, and Daniel Wichs. Extracting
randomness from extractor-dependent sources. In Anne Canteaut and Yuval
Ishai, editors, Advances in Cryptology - EUROCRYPT 2020 - 39th Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I, volume
12105 of Lecture Notes in Computer Science, pages 313-342. Springer,
2020.

[Fer19] Niels Ferguson. The Windows 10 random number generation infrastructure.
Technical report, Microsoft, 2019. url = https://aka.ms/winlOrng.

[FS03] Niels Ferguson and Bruce Schneier. Practical cryptography. Wiley, 2003.

[GT16a] Peter Gazi and Stefano Tessaro. Provably robust sponge-based PRNGs
and KDFs. Cryptology ePrint Archive, Report 2016/169, 2016. https:
//eprint.iacr.org/2016/169.

[GT16b] Peter Gazi and Stefano Tessaro. Provably robust sponge-based PRNGs
and KDFs. In Marc Fischlin and Jean-Sébastien Coron, editors, FURO-
CRYPT 2016, Part I, volume 9665 of LNCS, pages 87-116, Vienna, Austria,
May 8-12, 2016. Springer, Heidelberg, Germany.

[Hutl6a] Daniel Hutchinson. A robust and sponge-like prng with improved efficiency.
Cryptology ePrint Archive, Paper 2016/886, 2016. https://eprint.iacr.
org/2016/886.

[Hut16b] Daniel Hutchinson. A robust and sponge-like PRNG with improved effi-
ciency. In Roberto Avanzi and Howard M. Heys, editors, Selected Areas

https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/finalist-round/status-updates/ascon-update.pdf
https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/finalist-round/status-updates/ascon-update.pdf
https://csrc.nist.gov/csrc/media/Projects/lightweight-cryptography/documents/finalist-round/status-updates/ascon-update.pdf
https://eprint.iacr.org/2016/169
https://eprint.iacr.org/2016/169
https://eprint.iacr.org/2016/886
https://eprint.iacr.org/2016/886

John Kelsey, Stefan Lucks and Stephan Miiller 29

in Cryptography - SAC 2016 - 23rd International Conference, St. John’s,
NL, Canada, August 10-12, 2016, Revised Selected Papers, volume 10532
of Lecture Notes in Computer Science, pages 381-398. Springer, 2016.

[KCP16] John Kelsey, Shu-jen Chang, and Ray Perlner. Sha-3 derived functions:
cshake, kmac, tuplehash and parallelhash. Technical report, National
Institute of Standards & Technology, Gaithersburg, MD, United States,
2016.

[Kill1] Killmann, Wolfgang and Schindler, Werner. A proposal for functionality
classes for random number generators. Technical Report AIS20, Bundesamt
fiir Sicherheit in der Informationstechnik (BSI), 2011.

[KLM24] Xdrbg: A proposed deterministic random bit generator based on any xof.
TACR Transactions on Symmetric Cryptology, 2024(1):5-34, Mar. 2024.

[KSF99] John Kelsey, Bruce Schneier, and Niels Ferguson. Yarrow-160: Notes
on the design and analysis of the yarrow cryptographic pseudorandom
number generator. In Howard M. Heys and Carlisle M. Adams, editors, Se-
lected Areas in Cryptography, 6th Annual International Workshop, SAC’99,
Kingston, Ontario, Canada, August 9-10, 1999, Proceedings, volume 1758
of Lecture Notes in Computer Science, pages 13—33. Springer, 1999.

[KSWHO98] John Kelsey, Bruce Schneier, David Wagner, and Chris Hall. Cryptan-
alytic attacks on pseudorandom number generators. In Serge Vaudenay,
editor, FSE’98, volume 1372 of LNCS, pages 168—188, Paris, France,
March 23-25, 1998. Springer, Heidelberg, Germany.

[Mecl18] John P Mechalas. Intel® Digital Random Number Genera-
tor (DRNG) Software Implementation Guide, 2018. https:
//www.intel.com/content/www/us/en/developer/articles/guide/
intel-digital-random-number-generator-drng-software-implementation-guide.
html.

[MMHH23] Stephan Miiller, Sebastian Mayer, Caroline Holz auf der Heide, and
Andreas Hohenegger. Documentation and analysis of the Linux random
number generator. Technical report, Bundesamt fiir Sicherheit in der
Informationstechnik (BSI), 2023.

[Nat01l] National Institute of Standards and Technology. Advanced encryption stan-
dard (AES). Technical Report Federal Information Processing Standards
(FIPS) Publication 197, U.S. Department of Commerce, Washington, D.C.,
2001.

[Nat13] National Institute of Standards and Technology. Digital signature standard
(dss). Technical Report Federal Information Processing Standards (FIPS)
Publication 186-4, U.S. Department of Commerce, Washington, D.C., 2013.

[Nat1l5a] National Institute of Standards and Technology. Secure hash standard
(SHS). (U.S. Department of Commerce, Washington, DC), Federal In-
formation Processing Standards Publication (FIPS) 180-4, August 2015.
https://doi.org/10.6028/NIST.FIPS.180-4.

[Nat15b] National Institute of Standards and Technology. Sha-3 standard:
Permutation-based hash and extendable output functions. Technical Re-
port Federal Information Processing Standards (FIPS) Publication 202,
U.S. Department of Commerce, Washington, D.C., 2015.

[Nat16] National Institute of Standards and Technology. Submission requirements
and evaluation criteria for the post-quantum cryptography standardization
process, 2016. url = https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf.

[Nat23] National Institute of Standards and Technology. Lightweight cryptog-
raphy standardization process: NIST selects Ascon, Feb 2023. url
= https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-
ascon.

https://www.intel.com/content/www/us/en/developer/articles/guide/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://www.intel.com/content/www/us/en/developer/articles/guide/intel-digital-random-number-generator-drng-software-implementation-guide.html
https://doi.org/10.6028/NIST.FIPS.180-4

30

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

[NL18] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols.
RFC 8439, June 2018.

[Pet23] Peter, Matthias and Schindler, Werner. A proposal for functionality classes
for random number generators—version 2.35 draft. Technical Report AIS20,
Bundesamt fiir Sicherheit in der Informationstechnik (BSI), 2023.

[RS16] Ronald L. Rivest and Jacob C. N. Schuldt. Spritz - a spongy rcd4-like
stream cipher and hash function. JACR Cryptol. ePrint Arch., page 856,
2016.

[TBK'18] Meltem Sénmez Turan, Elaine Barker, John Kelsey, Kerry McKay, Mary
Baish, and Mike Boyle. Recommendation for random number generation
using deterministic random bit generators. Technical report, National
Institute of Standards & Technology, Gaithersburg, MD, United States,
2018.

[WS19] Joanne Woodage and Dan Shumow. An analysis of NIST SP 800-90A.
In Yuval Ishai and Vincent Rijmen, editors, FEUROCRYPT 2019, Part II,
volume 11477 of LNCS, pages 151-180, Darmstadt, Germany, May 19-23,
2019. Springer, Heidelberg, Germany.

[Zhal9] Mark Zhandry. How to record quantum queries, and applications to quan-
tum indifferentiability. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology - CRYPTO 2019 - 39th Annual Interna-
tional Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2019, Proceedings, Part II, volume 11693 of Lecture Notes in Computer
Science, pages 239-268. Springer, 2019.

A Unusual Use Cases

Our security analysis above discusses the normal use cases for a DRBG. In this
appendix, we consider less common ways a DRBG may be used and how this might
affect our security bounds.

A.1 Seeding from another DRBG

In some contexts, a DRBG’s seed may come from another DRBG. Since our security
proof assumes access to entropy for seed material, it is natural to consider the security
impact of seeding from a DRBG. We can extend our security bounds to deal with the
situation, by simply incorporating an additional term for violating the security of the
DRBG providing the seed. Informally, if the attacker cannot distinguish the outputs
of the DRBG providing the seed from ideal random outputs, it also cannot gain any
advantage in distinguishing XDRBG outputs seeded from those DRBG outputs.

A.2 Adding Entropy via the Additional Input

XDRBG, like the DRBGs in SP 800-90A, allows for an optional additional input to each
DRBG call. This input may be used in many different ways in practical applications.
For example:

1. Some systems maintain a seed file, to save entropy across device restarts as a
hedge against an entropy source failure. A natural way to incorporate the seed
file into the DRBG state is to put it into the additional input of the instantiate
call.

2. Secret information, such as the hash of a private key, can be incorporated into
the DRBG during instantiation, again to provide a hedge against the failure of
the entropy source.

3. Additional entropy can be drawn from some secondary entropy source, or even
from the primary entropy source, and provided to the DRBG during instantiation
or reseeding.

John Kelsey, Stefan Lucks and Stephan Miiller

31

Intuitively, it is easy to see that entropy provided in the additional input is incorpo-
rated into the DRBG state in the same way as the seed, since the additional input is
simply appended to the seed in instantiate and reseed calls. Thus, an INSTANTIATE
or RESEED in which sufficient entropy is provided in the additional input will end up
in a secure state, even if no entropy is provided in the seed.

Let hi the entropy in the seed, and ha be the entropy in the additional input. By
virtue of our encoding function, and as long as the seed is independent from the
additional input, the string input to the XOF must thus have h1+ho bits of min-entropy.
And even if seed and additional input are statistically dependent, the min-entropy of
the encoded input for the XOF has at least max(h1, h2) bits of min entropy.

B The Function encode

XDRBG requires a function ENCODE : {0,1}* x {0,1}* x {0,1,2} — {0,1}" such that
for all (S,a,n) # (S’,a’,n’) ENCODE(S, a,n) # (S’,a’,n’). (That is, the encoding
function must not introduce any trivial collisions.) There are many suitable encodings
possible, but for concreteness, we define a recommended encoding as follows:

Let |a|/8 € {0,...,84}. Le., the additional input « is a sequence of bytes, and it
is at most 84 bytes long. Then, the following encoding unambiguously encodes the
inputs while adding only a single byte of stretch:

ENCODE(S, o, n) = (S || a || (n * 85 + |a|/8)s),

where (...)s indicates an 8-bit (i.e., single-byte) encoding of a value in {0,255}. Thus,
|[ENCODE| = 8, i.e., the stretch is constantly one byte.

This encoding is efficient and flexible, but does require that the additional input string
is no longer than 84 bytes—a constraint that seems very easy to manage in practice.
For example, IPV6 addresses and GUIDs are 16 bytes long, Ethernet addresses are
12 bytes long, and the most demanding requirement for unique randomly-generated
device identifiers can be met with a 32-byte random value. Thus, we recommend this
encoding for XDRBG.

C HashXOF

Although there are already multiple widely-used DRBGs based on a hash function,
we can construct a XOF suitable for XDRBG from any standard hash function, such as
SHA256. The design is as follows:
1: function HashX0F(z, ¢)
2: t < Hash(z || Og4)
3: Z ¢
4 1+ 1
5: while |Z| < ¢ do
6: Y + Hash(t || i64)
7 14 1+1
8 Z+—Z||Y
9 return(Z truncated to ¢ bits)

Using XDRBG with HashXOF(SHA256) will provide comparable performance to either
HMAC_DRBG(SHA256) or Hash_ DRBG(SHA256).

D NIST Post-Quantum Security Categories

NIST defines five security categories for submissions to the Post-Quantum Cryptog-
raphy process in [Nat16]. These categories are as follows:

32

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

category requirement security

any attack must require computational resources | classical —quantum
comparable to or greater than those required for

1 key search on a block cipher with a 128-bit key 128 64

2 collision search on a 256-bit hash function 128 85

3 key search on a block cipher with a 192-bit key 192 96

4 collision search on a 384-bit hash function 192 128

5 key search on a block cipher with a 256-bit key 256 128

E Pool-Based DRNGs

In this paper, we assume the existence of trusted entropy sources that provide strings
with a known amount of min-entropy on demand. In this, we follow the lead of
NIST and BSI standards—SP 800-90 and AIS 20/31 specify techniques for evaluating
entropy sources, and then assume the availability of entropy sources whose claims of
entropy can be relied upon.

When entropy sources do not reliably provide a known amount of min-entropy, or
when they may even be adversarially controlled, a very different approach is required.
The Fortuna cryptographic PRNG, first described in [FS03], is designed to guarantee
that its PRNG algorithm will eventually be seeded securely, as long as the entropy
sources used are providing some entropy, even without any way to know how much is
being provided. This kind of design is modeled in depth in [CDK*22a].

The Fortuna PRNG considers different entropy pools, which over time receive inputs
from one or more sources of entropy. It is not exactly known how much entropy
the sources provide. From time to time, the entropy gathered in some subset of
these pools is used to update the state. If, after a state compromise, the pools have
gathered a sufficient amount of entropy, then the PRNG recovers from the compromise.
Otherwise, the entropy from those pools is essentially lost, since the attacker can use
his knowledge of the previous state of the RNG and subsequent outputs to guess the
entropy input. (This is referred to as “premature next" in [CDK'22b] and as the
"iterative guessing attack" in [KSWH98].) The goal of Fortuna is to guarantee that
the PRNG will eventually reach a secure state if there is any entropy being provided
to it.

Potentially adversarial entropy sources, as well as “oracle-dependent” entropy sources
(entropy sources whose distributions are not independent of the cryptographic func-
tions used to extract entropy from them) are analyzed in [CDKT19, DVW20]. Since
we assume trusted, already-analyzed entropy sources in this paper (in keeping with
the SP 800-90 and AIS 20/31 standards), we do not consider adversarial or oracle-
dependent sources here.

F Compliance with AIS 20/31

This annex discusses the compliance of the XDRBG specification with the construction
definition specified in BSI AIS 20/31 for deterministic random number generators.
At the time of writing, AIS 20/21 is subject to update which also includes updates to
the definition of deterministic random number generators. Thus, this annex provides
the mapping for both versions of AIS 20/31, i.e. the currently active standard from
2011 [Kil11] as well as the draft [Pet23].

F.1 AIS 20/31 2011

This section maps the XDRBG definition to the BSI requirements documented in [Kil11].
Based on [Kill1] a deterministic random number generator generates random numbers
which depend on the seed (initial internal state) as well as the reseed (update to the
internal state). The 6-tuple (S, I, R, ¢,1,pa) describes the logical structure of the
generator and the seed selection process. The following list enumerates the 6-tuple:

John Kelsey, Stefan Lucks and Stephan Miiller

33

. S denotes the (finite) set of possible internal states of the random number
generator. S is defined by the XDRBG state variable V' of size |V| presented in
chapter 3. In addition, a reseed counter is required to track the reseed threshold.
Thus, S is defined as

S ={0,1}IV! x {1,..., maxout}

. I denotes the input alphabet. The input values are defined by the seed value
which is allowed to have an arbitrary size. However, as outlined in section 2.1,
the seed value must contain either Hini¢ (initial seeding) or Hysq (reseed) bits of
entropy. This implies that the input alphabet must be

1=1{0,1}" x [J{0,13"

n>0

with seedlen > Hini¢ for the initial seeding and seedlen > H,sq for reseeding,
and n > 0 referring to the size of the optional additional input.

. R denotes the set of possible output values (random numbers). The output value
of the XDRBG is the data generated by the XOF operation with the maximum
output size of maxout. Thus, the output alphabet is defined as

maxout

R= U {0, 1}0utsize

outsize=1

. ¢ denotes the state transition function (S — S). The state transition is the
(re)calculation of the state V as defined with Algorithm 2 during instantiate,
reseed, and generate. This algorithm specifies that V is the first |V| bits
generated by the XOF function from the input:

o Instantiate: ENCODE(seed, c,0)
o Reseed: ENCODE((V' || seed), a, 1)
o Generate: ENCODE(V', o, 2)

with V' denoting the internal state before the reseed operation commences.

. % denotes the output function (S — R). The output function is defined with
the generate function specified with Algorithm 2 where ¥ is the generated
output. This algorithm specifies that the output 3 are the £ last bits of the XOF
function from the input ENCODE(V’, «, 2). This output operation is specific to
the used XOF. The following list provides the output function specification for
allowed XOFs that are expected to be commonly used with XDRBG.

o SHAKE128 / SHAKE256: The Keccak sponge squeeze operation updates the
internal request state as specified in [Nat15b], algorithm 8 steps 7 though
9.

o CSHAKE128 / cSHAKE256: cSHAKE uses the Keccak sponge squeeze opera-
tion and thus the internal request state update as outlined for SHAKE.

. pa denotes the probability distribution which describes the random distribution
of the initial internal state is derived from the seed. The initial state is obtained
by obtaining seedlen bits that has a minimum length of Hinit. Chapter 5
mandates that |V| > Hinie, which implies that the internal state is capable of
storing at least Hinit bits of entropy. The seedlen bits shall have at a minimum
Hipit bits of entropy which is defined to be 3/2 of the security strength of the
chosen XOF as outlined in section 7.1. The user of the XDRBG shall provide the
analysis that the seedlen bits of seed data contains at least Hinit bits of entropy.

The instantiate function generates internal states with an initial distribution pa
depending on the input which is defined to have at least Hinitbits of entropy.

34 XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

F.2 AIS 20/31 2022

This section maps the XDRBG definition to the BSI requirements documented in [Pet23].
Based on [Pet23] a deterministic random number generator deterministically generates
random numbers which depend on the seed (initial internal state) as well as the reseed
(update to the internal state). The 9-tuple (S, Sreql, A, R, @, Preq, 0, %) describes the
logical structure of the generator and the seed selection process. The following list
enumerates the 9-tuple:

1. S denotes the set of admissible internal states. S is defined by the of state
variable V of size |V| presented in section 3.1. In addition, a reseed counter is
required to track the reseed threshold. Thus, S is defined as

S ={0,1}IV! x {1,..., maxout}

2. Sieq denotes the set of admissible (temporary) internal request states. For the
XDRBG, this denotes the temporary state of the XOF state. This temporary
internal state depends on the chosen XOF and is always guaranteed to be:

|Sreal = [V]

For example, when choosing a Keccak-based XOF (e.g. SHAKE, ¢SHAKE,
KMAC), the temporary internal request state equals to the width of the used
Keccak function - 1600 bits.

3. R denotes the set of admissible output values (internal random numbers). The
output value of the XDRBG is the data generated by the XOF operation with the
maximum output size of maxout. Thus, the output alphabet is defined as

maxout

R _ U {0’ 1}outsize
outsize=1
4. A denotes the set of admissible additional input. For the XDRBG specification, the
additional input is defined as optional. Thus, the following definition applies:

A= J{o,1}"
n>0
5. I denotes set of admissible request lengths, counted in bits. The XDRBG defines
the maximum request length with the maxout parameter as defined in section
7.1. Thus, the following applies:

I ={1,.., maxout}

6. ¢ denotes the state transition function (S x A x I — S). The state transition
refers to the (re)calculation of the state V as defined with Algorithm 2 during
instantiate, reseed, and generate. This algorithm specifies that V is the first
|V'| bits generated by the XOF function from the input:

ENCODE(V', @, 2)
with V’ denoting the internal state before the operation commences.

7. @req denotes the generation operation of the internal request state (SxX A — Sieq)-
The XDRBG allows the use of unspecified XOF functions. Thus, this internal state
generation function cannot be defined for XDRBG as a whole. Yet, the following
bullet list enumerates XOF functions that are most likely to be used for the
XDRBG and defines the associated internal request state generation function. The
data inserted into the internal request state defined with the preceding bullet.
In any case, the computation of a generate-request must be performed in an
atomic manner which implies that a any operation on XDRBG state can only be
performed once the current generate-request completes.

John Kelsey, Stefan Lucks and Stephan Miiller

o SHAKE128 / SHAKE256: The Keccak sponge absorb operation creates the
internal request state for SHAKE128 / SHAKE256. This absorb operation is
defined in [Nat15b], algorithm 8 step 6.

o CSHAKE128 / cSHAKE256: cSHAKE uses the Keccak absorb operation as
outlined before. This absorb operation is used to insert the data as outlined
in [KCP16] section 3.3 where:

— N is a static string that is defined by the implementation of the
cSHAKE-based XOF where the length of the string is 0 or larger up
to the maximum supported size defined in [KCP16],

— X is the inserted data of seed material and « with the encoding outlined
above, and

— S is the current state V'.

8. o denotes the request state transition function (Sreq X A — Sreq). As mentioned
before, XDRBG allows the use of unspecified XOF functions. Thus, this internal
state generation function cannot be defined for XDRBG as a whole. Yet, the
following bullet list enumerates XOF functions that are most likely to be used for
the XDRBG and defines the associated internal request state generation function.
The data inserted into the internal request state defined with the preceding
bullet.

o SHAKE128 / SHAKE256: The Keccak sponge squeeze operation updates the
internal request state as specified in [Nat15b], algorithm 8 step 10.

o CSHAKE128 / cSHAKE256: cSHAKE uses the Keccak sponge squeeze opera-
tion and thus the internal request state update as outlined for SHAKE.

9. 1 denotes the output function (Sieq — R). The output function is defined
with the generate function specified with Algorithm 2 where ¥ is the generated
output. This algorithm specifies that the output 3 are the £ last bits of the XOF
function from the input ENCODE(V’, o, 2). This output operation is specific to
the used XOF. The following list provides the specific output functions.

o SHAKE128 / SHAKE256: The Keccak sponge squeeze operation updates the
internal request state as specified in [Nat15b], algorithm 8 steps 7 though
9.

o CSHAKE128 / cSHAKE256: cSHAKE uses the Keccak sponge squeeze opera-
tion and thus the internal request state update as outlined for SHAKE.

The discussed 9-tuple specifies the internal operation of the XDRBG. In addition,
[Pet23] specifies a 4-tuple which defines the seeding process. The 4-tuple is defined
with (SM, PS, S, ¢seed) which are applied to the XDRBG in the following list.

1. SM defines the set of admissible values of the seed material. The seed material
provided to the XDRBGis allowed to have an arbitrary size with the minimum
size allowing to transport at least the required amount of entropy. Thus, SM is
defined as

SM ={0,1}"

2. PS defines the set of personalization strings. For the XDRBG, the personalization
string is allowed to have any size including zero. Therefore, PS is defined as:

PS=a={0,1}"

3. S denotes the set of admissible internal states. The internal state derived from
the seed equals to the general internal state of the XDRBG and is thus equivalent
to S specified as part of the 9-tuple.

4. ¢seea denotes the seeding procedure (SM x PS — S). For the XDRBG specification,
the additional input is defined as optional. Algorithm 2 specifies that during
instantiation V' is the |V| bits generated by the XOF function from the input

36

XDRBG: A Proposed Deterministic Random Bit Generator Based on Any XOF

ENCODE(SM, «,0)

where SM refers to the set of admissible values of the seed material defined
above.

5. The reseeding process ¢reseed is very similar to the initial seeding process. Based
on algorithm 2, the updated state value V is the |V/| bits generated by the XOF
function from the input

ENCODE((V' || SM), a, 1)

with V' denoting the internal state before the operation commences, and SM
referring to the set of admissible values of the seed material defined above.

G Specification of cSHAKE And KMAC Examples

The XDRBG specification explains in Algorithm 2 the use of an XOF function to generate
random numbers using an input seed. The documented X0F is SHAKE, but other X0Fs
are allowed to be used. This appendix provides example specifications how other XOF
functions can be used in compliance with the Algorithm 2.

G.1 CcSHAKE-based XDRBG

The reference of cSHAKE denotes the cSHAKE-256 function as defined in [KCP16]. The
cSHAKE algorithm has 4 arguments: the main input bit string X, the requested output
length L in bits, a function-name bit string N, and an optional customization bit
string S.

Algorithm 5 XDRBG Algorithm using cSHAKE

10:
11:

1
2
3
4
5:
6
7
8
9

: function INSTANTIATE(seed, «)

V < cSHAKE(N = "cSHAKE seed”, X = ENCODE(seed, a,0), L = V], S = 0)
return(V)

: function RESEED(V’, seed, «)
V <« cSHAKE(N = "cSHAKE reseed”, X = ENCODE(seed, a, 1), L = [V|,S = V")

return(V)

: function GENERATE(V', ¢, «)

T < cSHAKE(N ="¢SHAKE gen”, X = ENCODE(,2),L =¢+ |V|,S =V")
V < first |V| bits of T

Y < last £ bits of T’

return(V, %)

The string specified for the variable N can be an arbitrary string which is intended
to be different for the different operations to provide a domain separation between
those operations. Yet, it is permissible to also use either a NULL string or even an
identical string for all functions if such domain separation is not intended.

The parameter X is used to provide the seed data and optionally a personalization
string processed with the ENCODE function.

The parameter L denotes the length of the data to be generated from the cSHAKE
algorithm. This value is equal to the size |V| as defined for the XDRBG algorithm.
The parameter S is used to provide the previous state V' in case of reseed. For the
instantiation operation, S denotes a bit array of the size of V filled with zeros.

John Kelsey, Stefan Lucks and Stephan Miiller 37

G.2 KMAC-based XDRBG

The reference of KMAC denotes the KMACXOF256 function as defined in [KCP16]. The
KMAC algorithm has 4 arguments: the key K, the main input bit string X, the
requested output length L in bits, and an optional customization bit string S.

Algorithm 6 XDRBG Algorithm using KMAC

1: function INSTANTIATE(seed, «)

2: V <+ KMAC(K = (), X = ENCODE(seed, o, 0), L = |V|,S = "KM AC seed”)
3: return(V)

4: function RESEED(V’, seed, «)

5: V <« KMAC(K = V', X = ENCODE(seed, o, 1), L = |V|,S = "KM AC reseed”)
6: return(V)

7: function GENERATE(V', ¢,)

8: T + KMAC(K = V', X = ENCODE(w,2),L =(+ |V|,S ="KMAC gen”)
9: V < first |V| bits of T
10: 3 < last £ bits of T'
11: return(V,Y)

The parameter K is used to provide the previous state V' in case of reseed. For the
instantiation operation, K denotes a bit array of the size of V filled with zeros.
The parameter X is used to provide the seed data and optionally a personalization
string processed with the ENCODE function.

The parameter L denotes the length of the data to be generated from the KMAC
algorithm. This value is equal to the size |V| as defined for the XDRBG algorithm.
The string specified for the variable S can be an arbitrary string which is intended
to be different for the different operations to provide a domain separation between
those operations. Yet, it is permissible to also use either a NULL string or even an
identical string for all functions if such domain separation is not intended.

	Introduction
	Preliminaries
	Entropy
	Interface for DRBG
	Security Level
	Forward and Backward Security
	Multitarget Attack on Instantiate
	Extendable Output Functions (XOFs)

	XDRBG Definition
	The DRBG Security Game
	Intuition for the Game
	Game Definition and Rationale

	Security Analysis
	The Main Result and some Corollaries
	The Proof of the Main Result

	Matching Attacks
	Classical Attacks
	Quantum Security: Applying Grover's Algorithm

	Concrete Proposals
	Numerical Examples
	Recommendation on Personalization of XDRBG Instances
	Proposed XDRBG Parameters Based on SHAKE128 and SHAKE256
	Alternative Proposals Based on the ASCON Permutation
	Limiting the Damage from State Compromise: maxout
	Performance and Usefulness

	Alternative Approaches
	Sponge-based vs XOF-based
	Reseed Interval
	Stronger Attack Model

	Conclusions
	Unusual Use Cases
	Seeding from another DRBG
	Adding Entropy via the Additional Input

	The Function encode
	HashXOF
	NIST Post-Quantum Security Categories
	Pool-Based DRNGs
	Compliance with AIS 20/31
	AIS 20/31 2011
	AIS 20/31 2022

	Specification of cSHAKE And KMAC Examples
	cSHAKE-based XDRBG
	KMAC-based XDRBG

