Struct alloc::boxed::Box 1.0.0[−][src]
A pointer type for heap allocation.
See the module-level documentation for more.
Implementations
impl<T> Box<T>[src]
impl<T> Box<T>[src]pub fn new(x: T) -> Self[src]
Allocates memory on the heap and then places x into it.
This doesn’t actually allocate if T is zero-sized.
Examples
let five = Box::new(5);Run
pub fn new_uninit() -> Box<MaybeUninit<T>>ⓘ[src]
Constructs a new box with uninitialized contents.
Examples
#![feature(new_uninit)] let mut five = Box::<u32>::new_uninit(); let five = unsafe { // Deferred initialization: five.as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5)Run
pub fn new_zeroed() -> Box<MaybeUninit<T>>ⓘ[src]
Constructs a new Box with uninitialized contents, with the memory
being filled with 0 bytes.
See MaybeUninit::zeroed for examples of correct and incorrect usage
of this method.
Examples
#![feature(new_uninit)] let zero = Box::<u32>::new_zeroed(); let zero = unsafe { zero.assume_init() }; assert_eq!(*zero, 0)Run
pub fn pin(x: T) -> Pin<Box<T>>1.33.0[src]
Constructs a new Pin<Box<T>>. If T does not implement Unpin, then
x will be pinned in memory and unable to be moved.
pub fn try_new(x: T) -> Result<Self, AllocError>[src]
Allocates memory on the heap then places x into it,
returning an error if the allocation fails
This doesn’t actually allocate if T is zero-sized.
Examples
#![feature(allocator_api)] let five = Box::try_new(5)?;Run
pub fn try_new_uninit() -> Result<Box<MaybeUninit<T>>, AllocError>[src]
Constructs a new box with uninitialized contents on the heap, returning an error if the allocation fails
Examples
#![feature(allocator_api, new_uninit)] let mut five = Box::<u32>::try_new_uninit()?; let five = unsafe { // Deferred initialization: five.as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5);Run
pub fn try_new_zeroed() -> Result<Box<MaybeUninit<T>>, AllocError>[src]
Constructs a new Box with uninitialized contents, with the memory
being filled with 0 bytes on the heap
See MaybeUninit::zeroed for examples of correct and incorrect usage
of this method.
Examples
#![feature(allocator_api, new_uninit)] let zero = Box::<u32>::try_new_zeroed()?; let zero = unsafe { zero.assume_init() }; assert_eq!(*zero, 0);Run
impl<T, A: Allocator> Box<T, A>[src]
impl<T, A: Allocator> Box<T, A>[src]pub fn new_in(x: T, alloc: A) -> Self[src]
Allocates memory in the given allocator then places x into it.
This doesn’t actually allocate if T is zero-sized.
Examples
#![feature(allocator_api)] use std::alloc::System; let five = Box::new_in(5, System);Run
pub fn try_new_in(x: T, alloc: A) -> Result<Self, AllocError>[src]
Allocates memory in the given allocator then places x into it,
returning an error if the allocation fails
This doesn’t actually allocate if T is zero-sized.
Examples
#![feature(allocator_api)] use std::alloc::System; let five = Box::try_new_in(5, System)?;Run
pub fn new_uninit_in(alloc: A) -> Box<MaybeUninit<T>, A>ⓘ[src]
Constructs a new box with uninitialized contents in the provided allocator.
Examples
#![feature(allocator_api, new_uninit)] use std::alloc::System; let mut five = Box::<u32, _>::new_uninit_in(System); let five = unsafe { // Deferred initialization: five.as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5)Run
pub fn try_new_uninit_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocError>[src]
Constructs a new box with uninitialized contents in the provided allocator, returning an error if the allocation fails
Examples
#![feature(allocator_api, new_uninit)] use std::alloc::System; let mut five = Box::<u32, _>::try_new_uninit_in(System)?; let five = unsafe { // Deferred initialization: five.as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5);Run
pub fn new_zeroed_in(alloc: A) -> Box<MaybeUninit<T>, A>ⓘ[src]
Constructs a new Box with uninitialized contents, with the memory
being filled with 0 bytes in the provided allocator.
See MaybeUninit::zeroed for examples of correct and incorrect usage
of this method.
Examples
#![feature(allocator_api, new_uninit)] use std::alloc::System; let zero = Box::<u32, _>::new_zeroed_in(System); let zero = unsafe { zero.assume_init() }; assert_eq!(*zero, 0)Run
pub fn try_new_zeroed_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocError>[src]
Constructs a new Box with uninitialized contents, with the memory
being filled with 0 bytes in the provided allocator,
returning an error if the allocation fails,
See MaybeUninit::zeroed for examples of correct and incorrect usage
of this method.
Examples
#![feature(allocator_api, new_uninit)] use std::alloc::System; let zero = Box::<u32, _>::try_new_zeroed_in(System)?; let zero = unsafe { zero.assume_init() }; assert_eq!(*zero, 0);Run
pub fn pin_in(x: T, alloc: A) -> Pin<Self> where
A: 'static, [src]
A: 'static,
Constructs a new Pin<Box<T, A>>. If T does not implement Unpin, then
x will be pinned in memory and unable to be moved.
pub fn into_boxed_slice(boxed: Self) -> Box<[T], A>ⓘ[src]
Converts a Box<T> into a Box<[T]>
This conversion does not allocate on the heap and happens in place.
pub fn into_inner(boxed: Self) -> T[src]
impl<T> Box<[T]>[src]
impl<T> Box<[T]>[src]pub fn new_uninit_slice(len: usize) -> Box<[MaybeUninit<T>]>ⓘ[src]
Constructs a new boxed slice with uninitialized contents.
Examples
#![feature(new_uninit)] let mut values = Box::<[u32]>::new_uninit_slice(3); let values = unsafe { // Deferred initialization: values[0].as_mut_ptr().write(1); values[1].as_mut_ptr().write(2); values[2].as_mut_ptr().write(3); values.assume_init() }; assert_eq!(*values, [1, 2, 3])Run
pub fn new_zeroed_slice(len: usize) -> Box<[MaybeUninit<T>]>ⓘ[src]
Constructs a new boxed slice with uninitialized contents, with the memory
being filled with 0 bytes.
See MaybeUninit::zeroed for examples of correct and incorrect usage
of this method.
Examples
#![feature(new_uninit)] let values = Box::<[u32]>::new_zeroed_slice(3); let values = unsafe { values.assume_init() }; assert_eq!(*values, [0, 0, 0])Run
impl<T, A: Allocator> Box<[T], A>[src]
impl<T, A: Allocator> Box<[T], A>[src]pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[MaybeUninit<T>], A>ⓘ[src]
Constructs a new boxed slice with uninitialized contents in the provided allocator.
Examples
#![feature(allocator_api, new_uninit)] use std::alloc::System; let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System); let values = unsafe { // Deferred initialization: values[0].as_mut_ptr().write(1); values[1].as_mut_ptr().write(2); values[2].as_mut_ptr().write(3); values.assume_init() }; assert_eq!(*values, [1, 2, 3])Run
pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[MaybeUninit<T>], A>ⓘ[src]
Constructs a new boxed slice with uninitialized contents in the provided allocator,
with the memory being filled with 0 bytes.
See MaybeUninit::zeroed for examples of correct and incorrect usage
of this method.
Examples
#![feature(allocator_api, new_uninit)] use std::alloc::System; let values = Box::<[u32], _>::new_zeroed_slice_in(3, System); let values = unsafe { values.assume_init() }; assert_eq!(*values, [0, 0, 0])Run
impl<T, A: Allocator> Box<MaybeUninit<T>, A>[src]
impl<T, A: Allocator> Box<MaybeUninit<T>, A>[src]pub unsafe fn assume_init(self) -> Box<T, A>ⓘ[src]
Converts to Box<T, A>.
Safety
As with MaybeUninit::assume_init,
it is up to the caller to guarantee that the value
really is in an initialized state.
Calling this when the content is not yet fully initialized
causes immediate undefined behavior.
Examples
#![feature(new_uninit)] let mut five = Box::<u32>::new_uninit(); let five: Box<u32> = unsafe { // Deferred initialization: five.as_mut_ptr().write(5); five.assume_init() }; assert_eq!(*five, 5)Run
impl<T, A: Allocator> Box<[MaybeUninit<T>], A>[src]
impl<T, A: Allocator> Box<[MaybeUninit<T>], A>[src]pub unsafe fn assume_init(self) -> Box<[T], A>ⓘ[src]
Converts to Box<[T], A>.
Safety
As with MaybeUninit::assume_init,
it is up to the caller to guarantee that the values
really are in an initialized state.
Calling this when the content is not yet fully initialized
causes immediate undefined behavior.
Examples
#![feature(new_uninit)] let mut values = Box::<[u32]>::new_uninit_slice(3); let values = unsafe { // Deferred initialization: values[0].as_mut_ptr().write(1); values[1].as_mut_ptr().write(2); values[2].as_mut_ptr().write(3); values.assume_init() }; assert_eq!(*values, [1, 2, 3])Run
impl<T: ?Sized> Box<T>[src]
impl<T: ?Sized> Box<T>[src]pub unsafe fn from_raw(raw: *mut T) -> Self1.4.0[src]
Constructs a box from a raw pointer.
After calling this function, the raw pointer is owned by the
resulting Box. Specifically, the Box destructor will call
the destructor of T and free the allocated memory. For this
to be safe, the memory must have been allocated in accordance
with the memory layout used by Box .
Safety
This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.
The safety conditions are described in the memory layout section.
Examples
Recreate a Box which was previously converted to a raw pointer
using Box::into_raw:
let x = Box::new(5); let ptr = Box::into_raw(x); let x = unsafe { Box::from_raw(ptr) };Run
Manually create a Box from scratch by using the global allocator:
use std::alloc::{alloc, Layout}; unsafe { let ptr = alloc(Layout::new::<i32>()) as *mut i32; // In general .write is required to avoid attempting to destruct // the (uninitialized) previous contents of `ptr`, though for this // simple example `*ptr = 5` would have worked as well. ptr.write(5); let x = Box::from_raw(ptr); }Run
impl<T: ?Sized, A: Allocator> Box<T, A>[src]
impl<T: ?Sized, A: Allocator> Box<T, A>[src]pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Self[src]
Constructs a box from a raw pointer in the given allocator.
After calling this function, the raw pointer is owned by the
resulting Box. Specifically, the Box destructor will call
the destructor of T and free the allocated memory. For this
to be safe, the memory must have been allocated in accordance
with the memory layout used by Box .
Safety
This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.
Examples
Recreate a Box which was previously converted to a raw pointer
using Box::into_raw_with_allocator:
#![feature(allocator_api)] use std::alloc::System; let x = Box::new_in(5, System); let (ptr, alloc) = Box::into_raw_with_allocator(x); let x = unsafe { Box::from_raw_in(ptr, alloc) };Run
Manually create a Box from scratch by using the system allocator:
#![feature(allocator_api, slice_ptr_get)] use std::alloc::{Allocator, Layout, System}; unsafe { let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32; // In general .write is required to avoid attempting to destruct // the (uninitialized) previous contents of `ptr`, though for this // simple example `*ptr = 5` would have worked as well. ptr.write(5); let x = Box::from_raw_in(ptr, System); }Run
pub fn into_raw(b: Self) -> *mut T1.4.0[src]
Consumes the Box, returning a wrapped raw pointer.
The pointer will be properly aligned and non-null.
After calling this function, the caller is responsible for the
memory previously managed by the Box. In particular, the
caller should properly destroy T and release the memory, taking
into account the memory layout used by Box. The easiest way to
do this is to convert the raw pointer back into a Box with the
Box::from_raw function, allowing the Box destructor to perform
the cleanup.
Note: this is an associated function, which means that you have
to call it as Box::into_raw(b) instead of b.into_raw(). This
is so that there is no conflict with a method on the inner type.
Examples
Converting the raw pointer back into a Box with Box::from_raw
for automatic cleanup:
let x = Box::new(String::from("Hello")); let ptr = Box::into_raw(x); let x = unsafe { Box::from_raw(ptr) };Run
Manual cleanup by explicitly running the destructor and deallocating the memory:
use std::alloc::{dealloc, Layout}; use std::ptr; let x = Box::new(String::from("Hello")); let p = Box::into_raw(x); unsafe { ptr::drop_in_place(p); dealloc(p as *mut u8, Layout::new::<String>()); }Run
pub fn into_raw_with_allocator(b: Self) -> (*mut T, A)[src]
Consumes the Box, returning a wrapped raw pointer and the allocator.
The pointer will be properly aligned and non-null.
After calling this function, the caller is responsible for the
memory previously managed by the Box. In particular, the
caller should properly destroy T and release the memory, taking
into account the memory layout used by Box. The easiest way to
do this is to convert the raw pointer back into a Box with the
Box::from_raw_in function, allowing the Box destructor to perform
the cleanup.
Note: this is an associated function, which means that you have
to call it as Box::into_raw_with_allocator(b) instead of b.into_raw_with_allocator(). This
is so that there is no conflict with a method on the inner type.
Examples
Converting the raw pointer back into a Box with Box::from_raw_in
for automatic cleanup:
#![feature(allocator_api)] use std::alloc::System; let x = Box::new_in(String::from("Hello"), System); let (ptr, alloc) = Box::into_raw_with_allocator(x); let x = unsafe { Box::from_raw_in(ptr, alloc) };Run
Manual cleanup by explicitly running the destructor and deallocating the memory:
#![feature(allocator_api)] use std::alloc::{Allocator, Layout, System}; use std::ptr::{self, NonNull}; let x = Box::new_in(String::from("Hello"), System); let (ptr, alloc) = Box::into_raw_with_allocator(x); unsafe { ptr::drop_in_place(ptr); let non_null = NonNull::new_unchecked(ptr); alloc.deallocate(non_null.cast(), Layout::new::<String>()); }Run
pub fn allocator(b: &Self) -> &A[src]
Returns a reference to the underlying allocator.
Note: this is an associated function, which means that you have
to call it as Box::allocator(&b) instead of b.allocator(). This
is so that there is no conflict with a method on the inner type.
pub fn leak<'a>(b: Self) -> &'a mut T where
A: 'a, 1.26.0[src]
A: 'a,
Consumes and leaks the Box, returning a mutable reference,
&'a mut T. Note that the type T must outlive the chosen lifetime
'a. If the type has only static references, or none at all, then this
may be chosen to be 'static.
This function is mainly useful for data that lives for the remainder of
the program’s life. Dropping the returned reference will cause a memory
leak. If this is not acceptable, the reference should first be wrapped
with the Box::from_raw function producing a Box. This Box can
then be dropped which will properly destroy T and release the
allocated memory.
Note: this is an associated function, which means that you have
to call it as Box::leak(b) instead of b.leak(). This
is so that there is no conflict with a method on the inner type.
Examples
Simple usage:
let x = Box::new(41); let static_ref: &'static mut usize = Box::leak(x); *static_ref += 1; assert_eq!(*static_ref, 42);Run
Unsized data:
let x = vec![1, 2, 3].into_boxed_slice(); let static_ref = Box::leak(x); static_ref[0] = 4; assert_eq!(*static_ref, [4, 2, 3]);Run
pub fn into_pin(boxed: Self) -> Pin<Self> where
A: 'static, [src]
A: 'static,
Converts a Box<T> into a Pin<Box<T>>
This conversion does not allocate on the heap and happens in place.
This is also available via From.
impl<A: Allocator> Box<dyn Any, A>[src]
impl<A: Allocator> Box<dyn Any, A>[src]pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self>[src]
Attempt to downcast the box to a concrete type.
Examples
use std::any::Any; fn print_if_string(value: Box<dyn Any>) { if let Ok(string) = value.downcast::<String>() { println!("String ({}): {}", string.len(), string); } } let my_string = "Hello World".to_string(); print_if_string(Box::new(my_string)); print_if_string(Box::new(0i8));Run
impl<A: Allocator> Box<dyn Any + Send, A>[src]
impl<A: Allocator> Box<dyn Any + Send, A>[src]pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self>[src]
Attempt to downcast the box to a concrete type.
Examples
use std::any::Any; fn print_if_string(value: Box<dyn Any + Send>) { if let Ok(string) = value.downcast::<String>() { println!("String ({}): {}", string.len(), string); } } let my_string = "Hello World".to_string(); print_if_string(Box::new(my_string)); print_if_string(Box::new(0i8));Run
impl<A: Allocator> Box<dyn Any + Send + Sync, A>[src]
impl<A: Allocator> Box<dyn Any + Send + Sync, A>[src]pub fn downcast<T: Any>(self) -> Result<Box<T, A>, Self>1.51.0[src]
Attempt to downcast the box to a concrete type.
Examples
use std::any::Any; fn print_if_string(value: Box<dyn Any + Send + Sync>) { if let Ok(string) = value.downcast::<String>() { println!("String ({}): {}", string.len(), string); } } let my_string = "Hello World".to_string(); print_if_string(Box::new(my_string)); print_if_string(Box::new(0i8));Run
Trait Implementations
impl<T: ?Sized, A: Allocator> BorrowMut<T> for Box<T, A>1.1.0[src]
impl<T: ?Sized, A: Allocator> BorrowMut<T> for Box<T, A>1.1.0[src]fn borrow_mut(&mut self) -> &mut T[src]
impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A>[src]
impl<T: Clone, A: Allocator + Clone> Clone for Box<T, A>[src]fn clone(&self) -> Self[src]
Returns a new box with a clone() of this box’s contents.
Examples
let x = Box::new(5); let y = x.clone(); // The value is the same assert_eq!(x, y); // But they are unique objects assert_ne!(&*x as *const i32, &*y as *const i32);Run
fn clone_from(&mut self, source: &Self)[src]
impl Clone for Box<str>1.3.0[src]
impl Clone for Box<str>1.3.0[src]fn clone(&self) -> Self[src]
pub fn clone_from(&mut self, source: &Self)[src]
impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A>1.3.0[src]
impl<T: Clone, A: Allocator + Clone> Clone for Box<[T], A>1.3.0[src]fn clone(&self) -> Self[src]
fn clone_from(&mut self, other: &Self)[src]
impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A>[src]
impl<I: DoubleEndedIterator + ?Sized, A: Allocator> DoubleEndedIterator for Box<I, A>[src]fn next_back(&mut self) -> Option<I::Item>[src]
fn nth_back(&mut self, n: usize) -> Option<I::Item>[src]
pub fn advance_back_by(&mut self, n: usize) -> Result<(), usize>[src]
pub fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R where
F: FnMut(B, Self::Item) -> R,
R: Try<Ok = B>, 1.27.0[src]
F: FnMut(B, Self::Item) -> R,
R: Try<Ok = B>,
pub fn rfold<B, F>(self, init: B, f: F) -> B where
F: FnMut(B, Self::Item) -> B, 1.27.0[src]
F: FnMut(B, Self::Item) -> B,
pub fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item> where
P: FnMut(&Self::Item) -> bool, 1.27.0[src]
P: FnMut(&Self::Item) -> bool,
impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A>[src]
impl<I: ExactSizeIterator + ?Sized, A: Allocator> ExactSizeIterator for Box<I, A>[src]impl Extend<Box<str, Global>> for String1.45.0[src]
impl Extend<Box<str, Global>> for String1.45.0[src]fn extend<I: IntoIterator<Item = Box<str>>>(&mut self, iter: I)[src]
pub fn extend_one(&mut self, item: A)[src]
pub fn extend_reserve(&mut self, additional: usize)[src]
impl<T, const N: usize> From<[T; N]> for Box<[T]>1.45.0[src]
impl<T, const N: usize> From<[T; N]> for Box<[T]>1.45.0[src]impl<A: Allocator> From<Box<str, A>> for Box<[u8], A>1.19.0[src]
impl<A: Allocator> From<Box<str, A>> for Box<[u8], A>1.19.0[src]fn from(s: Box<str, A>) -> Self[src]
Converts a Box<str> into a Box<[u8]>
This conversion does not allocate on the heap and happens in place.
Examples
// create a Box<str> which will be used to create a Box<[u8]> let boxed: Box<str> = Box::from("hello"); let boxed_str: Box<[u8]> = Box::from(boxed); // create a &[u8] which will be used to create a Box<[u8]> let slice: &[u8] = &[104, 101, 108, 108, 111]; let boxed_slice = Box::from(slice); assert_eq!(boxed_slice, boxed_str);Run
impl FromIterator<Box<str, Global>> for String1.45.0[src]
impl FromIterator<Box<str, Global>> for String1.45.0[src]fn from_iter<I: IntoIterator<Item = Box<str>>>(iter: I) -> String[src]
impl<I> FromIterator<I> for Box<[I]>1.32.0[src]
impl<I> FromIterator<I> for Box<[I]>1.32.0[src]fn from_iter<T: IntoIterator<Item = I>>(iter: T) -> Self[src]
impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A> where
A: 'static, [src]
impl<G: ?Sized + Generator<R> + Unpin, R, A: Allocator> Generator<R> for Box<G, A> where
A: 'static, [src]impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A>1.22.0[src]
impl<T: ?Sized + Hasher, A: Allocator> Hasher for Box<T, A>1.22.0[src]fn finish(&self) -> u64[src]
fn write(&mut self, bytes: &[u8])[src]
fn write_u8(&mut self, i: u8)[src]
fn write_u16(&mut self, i: u16)[src]
fn write_u32(&mut self, i: u32)[src]
fn write_u64(&mut self, i: u64)[src]
fn write_u128(&mut self, i: u128)[src]
fn write_usize(&mut self, i: usize)[src]
fn write_i8(&mut self, i: i8)[src]
fn write_i16(&mut self, i: i16)[src]
fn write_i32(&mut self, i: i32)[src]
fn write_i64(&mut self, i: i64)[src]
fn write_i128(&mut self, i: i128)[src]
fn write_isize(&mut self, i: isize)[src]
impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A>[src]
impl<I: Iterator + ?Sized, A: Allocator> Iterator for Box<I, A>[src]type Item = I::Item
The type of the elements being iterated over.
fn next(&mut self) -> Option<I::Item>[src]
fn size_hint(&self) -> (usize, Option<usize>)[src]
fn nth(&mut self, n: usize) -> Option<I::Item>[src]
fn last(self) -> Option<I::Item>[src]
pub fn count(self) -> usize[src]
pub fn advance_by(&mut self, n: usize) -> Result<(), usize>[src]
pub fn step_by(self, step: usize) -> StepBy<Self>1.28.0[src]
pub fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter> where
U: IntoIterator<Item = Self::Item>, [src]
U: IntoIterator<Item = Self::Item>,
pub fn zip<U>(self, other: U) -> Zip<Self, <U as IntoIterator>::IntoIter> where
U: IntoIterator, [src]
U: IntoIterator,
pub fn intersperse(self, separator: Self::Item) -> Intersperse<Self> where
Self::Item: Clone, [src]
Self::Item: Clone,
pub fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G> where
G: FnMut() -> Self::Item, [src]
G: FnMut() -> Self::Item,
pub fn map<B, F>(self, f: F) -> Map<Self, F> where
F: FnMut(Self::Item) -> B, [src]
F: FnMut(Self::Item) -> B,
pub fn for_each<F>(self, f: F) where
F: FnMut(Self::Item), 1.21.0[src]
F: FnMut(Self::Item),
pub fn filter<P>(self, predicate: P) -> Filter<Self, P> where
P: FnMut(&Self::Item) -> bool, [src]
P: FnMut(&Self::Item) -> bool,
pub fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F> where
F: FnMut(Self::Item) -> Option<B>, [src]
F: FnMut(Self::Item) -> Option<B>,
pub fn enumerate(self) -> Enumerate<Self>[src]
pub fn peekable(self) -> Peekable<Self>[src]
pub fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P> where
P: FnMut(&Self::Item) -> bool, [src]
P: FnMut(&Self::Item) -> bool,
pub fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P> where
P: FnMut(&Self::Item) -> bool, [src]
P: FnMut(&Self::Item) -> bool,
pub fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P> where
P: FnMut(Self::Item) -> Option<B>, [src]
P: FnMut(Self::Item) -> Option<B>,
pub fn skip(self, n: usize) -> Skip<Self>[src]
pub fn take(self, n: usize) -> Take<Self>[src]
pub fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F> where
F: FnMut(&mut St, Self::Item) -> Option<B>, [src]
F: FnMut(&mut St, Self::Item) -> Option<B>,
pub fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F> where
F: FnMut(Self::Item) -> U,
U: IntoIterator, [src]
F: FnMut(Self::Item) -> U,
U: IntoIterator,
pub fn flatten(self) -> Flatten<Self> where
Self::Item: IntoIterator, 1.29.0[src]
Self::Item: IntoIterator,
pub fn fuse(self) -> Fuse<Self>[src]
pub fn inspect<F>(self, f: F) -> Inspect<Self, F> where
F: FnMut(&Self::Item), [src]
F: FnMut(&Self::Item),
pub fn by_ref(&mut self) -> &mut Self[src]
#[must_use = "if you really need to exhaust the iterator, consider `.for_each(drop)` instead"]pub fn collect<B>(self) -> B where
B: FromIterator<Self::Item>, [src]
B: FromIterator<Self::Item>,
pub fn partition<B, F>(self, f: F) -> (B, B) where
F: FnMut(&Self::Item) -> bool,
B: Default + Extend<Self::Item>, [src]
F: FnMut(&Self::Item) -> bool,
B: Default + Extend<Self::Item>,
pub fn partition_in_place<'a, T, P>(self, predicate: P) -> usize where
Self: DoubleEndedIterator<Item = &'a mut T>,
T: 'a,
P: FnMut(&T) -> bool, [src]
Self: DoubleEndedIterator<Item = &'a mut T>,
T: 'a,
P: FnMut(&T) -> bool,
pub fn is_partitioned<P>(self, predicate: P) -> bool where
P: FnMut(Self::Item) -> bool, [src]
P: FnMut(Self::Item) -> bool,
pub fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R where
F: FnMut(B, Self::Item) -> R,
R: Try<Ok = B>, 1.27.0[src]
F: FnMut(B, Self::Item) -> R,
R: Try<Ok = B>,
pub fn try_for_each<F, R>(&mut self, f: F) -> R where
F: FnMut(Self::Item) -> R,
R: Try<Ok = ()>, 1.27.0[src]
F: FnMut(Self::Item) -> R,
R: Try<Ok = ()>,
pub fn fold<B, F>(self, init: B, f: F) -> B where
F: FnMut(B, Self::Item) -> B, [src]
F: FnMut(B, Self::Item) -> B,
pub fn reduce<F>(self, f: F) -> Option<Self::Item> where
F: FnMut(Self::Item, Self::Item) -> Self::Item, 1.51.0[src]
F: FnMut(Self::Item, Self::Item) -> Self::Item,
pub fn all<F>(&mut self, f: F) -> bool where
F: FnMut(Self::Item) -> bool, [src]
F: FnMut(Self::Item) -> bool,
pub fn any<F>(&mut self, f: F) -> bool where
F: FnMut(Self::Item) -> bool, [src]
F: FnMut(Self::Item) -> bool,
pub fn find<P>(&mut self, predicate: P) -> Option<Self::Item> where
P: FnMut(&Self::Item) -> bool, [src]
P: FnMut(&Self::Item) -> bool,
pub fn find_map<B, F>(&mut self, f: F) -> Option<B> where
F: FnMut(Self::Item) -> Option<B>, 1.30.0[src]
F: FnMut(Self::Item) -> Option<B>,
pub fn try_find<F, R>(
&mut self,
f: F
) -> Result<Option<Self::Item>, <R as Try>::Error> where
F: FnMut(&Self::Item) -> R,
R: Try<Ok = bool>, [src]
&mut self,
f: F
) -> Result<Option<Self::Item>, <R as Try>::Error> where
F: FnMut(&Self::Item) -> R,
R: Try<Ok = bool>,
pub fn position<P>(&mut self, predicate: P) -> Option<usize> where
P: FnMut(Self::Item) -> bool, [src]
P: FnMut(Self::Item) -> bool,
pub fn rposition<P>(&mut self, predicate: P) -> Option<usize> where
Self: ExactSizeIterator + DoubleEndedIterator,
P: FnMut(Self::Item) -> bool, [src]
Self: ExactSizeIterator + DoubleEndedIterator,
P: FnMut(Self::Item) -> bool,
pub fn max(self) -> Option<Self::Item> where
Self::Item: Ord, [src]
Self::Item: Ord,
pub fn min(self) -> Option<Self::Item> where
Self::Item: Ord, [src]
Self::Item: Ord,
pub fn max_by_key<B, F>(self, f: F) -> Option<Self::Item> where
F: FnMut(&Self::Item) -> B,
B: Ord, 1.6.0[src]
F: FnMut(&Self::Item) -> B,
B: Ord,
pub fn max_by<F>(self, compare: F) -> Option<Self::Item> where
F: FnMut(&Self::Item, &Self::Item) -> Ordering, 1.15.0[src]
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
pub fn min_by_key<B, F>(self, f: F) -> Option<Self::Item> where
F: FnMut(&Self::Item) -> B,
B: Ord, 1.6.0[src]
F: FnMut(&Self::Item) -> B,
B: Ord,
pub fn min_by<F>(self, compare: F) -> Option<Self::Item> where
F: FnMut(&Self::Item, &Self::Item) -> Ordering, 1.15.0[src]
F: FnMut(&Self::Item, &Self::Item) -> Ordering,
pub fn rev(self) -> Rev<Self> where
Self: DoubleEndedIterator, [src]
Self: DoubleEndedIterator,
pub fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) where
Self: Iterator<Item = (A, B)>,
FromA: Default + Extend<A>,
FromB: Default + Extend<B>, [src]
Self: Iterator<Item = (A, B)>,
FromA: Default + Extend<A>,
FromB: Default + Extend<B>,
pub fn copied<'a, T>(self) -> Copied<Self> where
Self: Iterator<Item = &'a T>,
T: 'a + Copy, 1.36.0[src]
Self: Iterator<Item = &'a T>,
T: 'a + Copy,
pub fn cloned<'a, T>(self) -> Cloned<Self> where
Self: Iterator<Item = &'a T>,
T: 'a + Clone, [src]
Self: Iterator<Item = &'a T>,
T: 'a + Clone,
pub fn cycle(self) -> Cycle<Self> where
Self: Clone, [src]
Self: Clone,
pub fn sum<S>(self) -> S where
S: Sum<Self::Item>, 1.11.0[src]
S: Sum<Self::Item>,
pub fn product<P>(self) -> P where
P: Product<Self::Item>, 1.11.0[src]
P: Product<Self::Item>,
pub fn cmp<I>(self, other: I) -> Ordering where
I: IntoIterator<Item = Self::Item>,
Self::Item: Ord, 1.5.0[src]
I: IntoIterator<Item = Self::Item>,
Self::Item: Ord,
pub fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering where
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Ordering, [src]
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Ordering,
pub fn partial_cmp<I>(self, other: I) -> Option<Ordering> where
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,
pub fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering> where
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>, [src]
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>,
pub fn eq<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>,
pub fn eq_by<I, F>(self, other: I, eq: F) -> bool where
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> bool, [src]
I: IntoIterator,
F: FnMut(Self::Item, <I as IntoIterator>::Item) -> bool,
pub fn ne<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialEq<<I as IntoIterator>::Item>,
pub fn lt<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,
pub fn le<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,
pub fn gt<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,
pub fn ge<I>(self, other: I) -> bool where
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>, 1.5.0[src]
I: IntoIterator,
Self::Item: PartialOrd<<I as IntoIterator>::Item>,
pub fn is_sorted(self) -> bool where
Self::Item: PartialOrd<Self::Item>, [src]
Self::Item: PartialOrd<Self::Item>,
pub fn is_sorted_by<F>(self, compare: F) -> bool where
F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>, [src]
F: FnMut(&Self::Item, &Self::Item) -> Option<Ordering>,
pub fn is_sorted_by_key<F, K>(self, f: F) -> bool where
F: FnMut(Self::Item) -> K,
K: PartialOrd<K>, [src]
F: FnMut(Self::Item) -> K,
K: PartialOrd<K>,
impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd<Box<T, A>> for Box<T, A>[src]
impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd<Box<T, A>> for Box<T, A>[src]impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Box<U, A>> for Box<T, A>[src]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Box<U, Global>> for Box<T, Global>[src]
impl<T: ?Sized + Eq, A: Allocator> Eq for Box<T, A>[src]
impl<I: FusedIterator + ?Sized, A: Allocator> FusedIterator for Box<I, A>1.26.0[src]
impl<T: ?Sized, A: Allocator> Receiver for Box<T, A>[src]
impl<T: ?Sized, A: Allocator> Unpin for Box<T, A> where
A: 'static, 1.33.0[src]
A: 'static,
Auto Trait Implementations
impl<T: ?Sized, A> Send for Box<T, A> where
A: Send,
T: Send,
A: Send,
T: Send,
impl<T: ?Sized, A> Sync for Box<T, A> where
A: Sync,
T: Sync,
A: Sync,
T: Sync,
Blanket Implementations
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]
impl<T> BorrowMut<T> for T where
T: ?Sized, [src]pub fn borrow_mut(&mut self) -> &mut T[src]
impl<F> IntoFuture for F where
F: Future, [src]
impl<F> IntoFuture for F where
F: Future, [src]type Output = <F as Future>::Output
The output that the future will produce on completion.
type Future = F
Which kind of future are we turning this into?
pub fn into_future(self) -> <F as IntoFuture>::Future[src]
impl<I> IntoIterator for I where
I: Iterator, [src]
impl<I> IntoIterator for I where
I: Iterator, [src]impl<'a, F> Pattern<'a> for F where
F: FnMut(char) -> bool, [src]
impl<'a, F> Pattern<'a> for F where
F: FnMut(char) -> bool, [src]type Searcher = CharPredicateSearcher<'a, F>
🔬 This is a nightly-only experimental API. (pattern #27721)
API not fully fleshed out and ready to be stabilized
Associated searcher for this pattern
pub fn into_searcher(self, haystack: &'a str) -> CharPredicateSearcher<'a, F>[src]
pub fn is_contained_in(self, haystack: &'a str) -> bool[src]
pub fn is_prefix_of(self, haystack: &'a str) -> bool[src]
pub fn strip_prefix_of(self, haystack: &'a str) -> Option<&'a str>[src]
pub fn is_suffix_of(self, haystack: &'a str) -> bool where
CharPredicateSearcher<'a, F>: ReverseSearcher<'a>, [src]
CharPredicateSearcher<'a, F>: ReverseSearcher<'a>,
pub fn strip_suffix_of(self, haystack: &'a str) -> Option<&'a str> where
CharPredicateSearcher<'a, F>: ReverseSearcher<'a>, [src]
CharPredicateSearcher<'a, F>: ReverseSearcher<'a>,
impl<T> ToOwned for T where
T: Clone, [src]
impl<T> ToOwned for T where
T: Clone, [src]type Owned = T
The resulting type after obtaining ownership.