
SuperLU Users’ Guide∗

Xiaoye S. Li† James W. Demmel‡ John R. Gilbert§ Laura Grigori¶

Piyush Sao‖ Meiyue Shao∗∗ Ichitaro Yamazaki††

September 1999

Last update: March 2016

∗The work was supported by Director, Office of Science, Office of Advanced Scientic Computing Research
of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Additional support was
provided by the U.S. Dept. of Energy (DOE), Office of Science, Advanced Scientific Computing Research
(and Basic Energy Sciences/Biological and Environmental Research/High Energy Physics/Fusion Energy
Sciences/Nuclear Physics), through the Scientific Discovery through Advanced Computing (SciDAC) pro-
gram.
†Lawrence Berkeley National Laboratory, MS 50F-1650, 1 Cyclotron Rd, Berkeley, CA 94720.

(xsli@lbl.gov).
‡Computer Science Division, University of California, Berkeley, CA 94720. (demmel@cs.berkeley.edu).

The research of Demmel and Li was supported in part by NSF grant ASC–9313958, DOE grant DE–FG03–
94ER25219, UT Subcontract No. ORA4466 from ARPA Contract No. DAAL03–91–C0047, DOE grant DE–
FG03–94ER25206, and NSF Infrastructure grants CDA–8722788 and CDA–9401156.
§Department of Computer Science, University of California, Santa Barbara, CA 93106.

(gilbert@cs.ucsb.edu). The research of this author was supported in part by the Institute for Mathematics
and Its Applications at the University of Minnesota and in part by DARPA Contract No. DABT63-95-C0087.
Copyright c© 1994-1997 by Xerox Corporation. All rights reserved.
¶INRIA Saclay-Ile de France, Laboratoire de Recherche en Informatique, Universite Paris-Sud 11.

(laura.grigori@inria.fr)
‖Computational Science and Engineering Division, Georgia Institute of Technology, Atlanta.

(piyush3@gatech.edu). The research of this author was supported in part by the National Science Founda-
tion CAREER award number 0953100 and DOE X-Stack 1.0 under DE-FC02-10ER26006/DE-SC0004915
(PI: Richard Vuduc).
∗∗Computational Research Division, Lawrence Berkeley National Laboratory, MS 50F-1650, 1 Cyclotron

Rd, Berkeley, CA 94720. (myshao@lbl.gov).
††Innovative Computing Laboratory, Department of Electrical Engineering and Computer Science, The

University of Tennessee. (ic.yamazaki@gmail.com). The research of this author was supported in part by
the Director, Office of Advanced Scientific Computing Research of the U.S. Department of Energy under
Contract No. D-AC02-05CH11231.

Contents

1 Introduction 4
1.1 Purpose of SuperLU . 4
1.2 Overall Algorithm . 5
1.3 What the three libraries have in common . 6

1.3.1 Input and Output Data Formats . 6
1.3.2 Tuning Parameters for BLAS . 7
1.3.3 Performance Statistics . 7
1.3.4 Error Handling . 7
1.3.5 Ordering the Columns of A for Sparse Factors 8
1.3.6 Iterative Refinement . 9
1.3.7 Error Bounds . 9
1.3.8 Solving a Sequence of Related Linear Systems 10
1.3.9 Interfacing to other languages . 10

1.4 How the three libraries differ . 11
1.4.1 Input and Output Data Formats . 11
1.4.2 Parallelism . 11
1.4.3 Pivoting Strategies for Stability . 11
1.4.4 Memory Management . 12
1.4.5 Interfacing to other languages . 12

1.5 Performance . 12
1.6 Software Status and Availability . 13
1.7 Acknowledgement . 14

2 Sequential SuperLU (Version 4.2) 16
2.1 About SuperLU . 16
2.2 How to call a SuperLU routine . 17
2.3 Matrix data structures . 19
2.4 Options argument . 22
2.5 Permutations . 26

2.5.1 Ordering for sparsity . 26
2.5.2 Partial pivoting with threshold . 27

2.6 Symmetric Mode . 27
2.7 Incomplete LU factorization (ILU) preconditioner . 27
2.8 Memory management for L and U . 28
2.9 User-callable routines . 28

1

2.9.1 Driver routines . 29
2.9.2 Computational routines . 29
2.9.3 Utility routines . 30

2.10 Matlab interface . 31
2.11 Installation . 33

2.11.1 File structure . 33
2.11.2 Testing . 34
2.11.3 Performance-tuning parameters . 36

2.12 Example programs . 36
2.13 Calling from Fortran . 37

3 Multithreaded SuperLU (Version 2.0) 43
3.1 About SuperLU MT . 43
3.2 Storage types for L and U . 43
3.3 Options argument . 44
3.4 User-callable routines . 45

3.4.1 Driver routines . 45
3.4.2 Computational routines . 46

3.5 Installation . 47
3.5.1 File structure . 47
3.5.2 Performance issues . 47

3.6 Example programs . 50
3.7 Porting to other platforms . 50

3.7.1 Creating multiple threads . 51
3.7.2 Use of mutexes . 51

4 Distributed-memory SuperLU on manycore nodes (Version 4.0) 52
4.1 About SuperLU DIST . 52
4.2 Formats of the input matrices A and B . 52

4.2.1 Global input . 52
4.2.2 Distributed input . 52

4.3 Distributed data structures for L and U . 53
4.4 Process grid and MPI communicator . 54

4.4.1 2D process grid . 54
4.4.2 Arbitrary grouping of processes . 55

4.5 Algorithmic background . 56
4.5.1 Multicore and GPU enhancements . 57

4.6 Options argument . 58
4.7 Basic steps to solve a linear system . 60
4.8 User-callable routines . 64

4.8.1 Driver routines . 64
4.8.2 Computational routines . 65
4.8.3 Utility routines . 65

4.9 Installation . 66
4.9.1 File structure and complilation . 66
4.9.2 Performance-tuning parameters . 68

2

4.10 Example programs . 69
4.11 Fortran 90 Interface . 69

4.11.1 Callable functions in the Fortran 90 module file spuerlu mod.f90 74
4.11.2 C wrapper functions callable by Fortran in file spuerlu c2f wrap.c 75

3

Chapter 1

Introduction

1.1 Purpose of SuperLU

This document describes a collection of three related ANSI C subroutine libraries for solving sparse
linear systems of equations AX = B. Here A is a square, nonsingular, n × n sparse matrix,
and X and B are dense n × nrhs matrices, where nrhs is the number of right-hand sides and
solution vectors. The LU factorization routines can handle non-square matrices. Matrix A need
not be symmetric or definite; indeed, SuperLU is particularly appropriate for matrices with very
unsymmetric structure. All three libraries use variations of Gaussian elimination optimized to
take advantage of both sparsity and the computer architecture, in particular memory hierarchies
(caches) and parallelism.

In this introduction we refer to all three libraries collectively as SuperLU. The three libraries
within SuperLU are as follows. Detailed references are also given (see also [21]).

• Sequential SuperLU is designed for sequential processors with one or more layers of memory
hierarchy (caches) [5].

• Multithreaded SuperLU (SuperLU MT) is designed for shared memory multiprocessors
(SMPs), and can effectively use up to 16 or 32 parallel processors on sufficiently large matrices
in order to speed up the computation [6].

• Distributed SuperLU (SuperLU DIST) is designed for distributed memory parallel pro-
cessors, using MPI [27] for interprocess communication. It can effectively use hundreds of
parallel processors on sufficiently large matrices [23, 24].

Table 1.1 summarizes the current status of the software. All the routines are implemented in
C, with parallel extensions using Pthreads or OpenMP for shared-memory programming, or MPI
for distributed-memory programming. We provide Fortran interface for all three libraries.

The rest of the Introduction is organized as follows. Section 1.2 describes the high-level algo-
rithm used by all three libraries, pointing out some common features and differences. Section 1.3
describes the detailed algorithms, data structures, and interface issues common to all three routines.
Section 1.4 describes how the three routines differ, emphasizing the differences that most affect the
user. Section 1.6 describes the software status, including planned developments, bug reporting, and
licensing.

4

Sequential SuperLU SuperLU MT SuperLU DIST

Platform serial shared-memory distributed-memory

Language C C + Pthreads C + MPI
(with Fortran interface) (or OpenMP)

Data type real/complex real/complex real/complex
single/double single/double double

Table 1.1: SuperLU software status.

1.2 Overall Algorithm

A simple description of the algorithm for solving linear equations by sparse Gaussian elimination
is as follows:

1. Compute a triangular factorization PrDrADcPc = LU . Here Dr and Dc are diagonal matrices
to equilibrate the system, Pr and Pc are permutation matrices. Premultiplying A by Pr

reorders the rows of A, and postmultiplying A by Pc reorders the columns of A. Pr and
Pc are chosen to enhance sparsity, numerical stability, and parallelism. L is a unit lower
triangular matrix (Lii = 1) and U is an upper triangular matrix. The factorization can also
be applied to non-square matrices.

2. SolveAX = B by evaluatingX = A−1B = (D−1r P−1r LUP−1c D−1c)−1B = Dc(Pc(U
−1(L−1(Pr(DrB))))).

This is done efficiently by multiplying from right to left in the last expression: Scale the rows
of B by Dr. Multiplying PrB means permuting the rows of DrB. Multiplying L−1(PrDrB)
means solving nrhs triangular systems of equations with matrix L by substitution. Similarly,
multiplying U−1(L−1(PrDrB)) means solving triangular systems with U .

In addition to complete factorization, we also have limited support for incomplete factorization
(ILU) preconditioner.

The simplest implementation, used by the “simple driver” routines in SuperLU and SuperLU MT,
is as follows:

Simple Driver Algorithm

1. Choose Pc to order the columns of A to increase the sparsity of the computed L and U factors,
and hopefully increase parallelism (for SuperLU MT).

2. Compute the LU factorization of APc. SuperLU and SuperLU MT can perform dynamic
pivoting with row interchanges for numerical stability, computing Pr, L and U at the same
time.

3. Solve the system using Pr, Pc, L and U as described above. (Dr = Dc = I)

The simple driver subroutines for double precision real data are called dgssv and pdgssv for
SuperLU and SuperLU MT, respectively. The letter d in the subroutine names means double
precision real; other options are s for single precision real, c for single precision complex, and z for
double precision complex. The subroutine naming scheme is analogous to the one used in LAPACK
[1]. SuperLU DIST does not include this simple driver.

5

There is also an “expert driver” routine that can provide more accurate solutions, compute
error bounds, and solve a sequence of related linear systems more economically. It is available in
all three libraries.

Expert Driver Algorithm

1. Equilibrate the matrix A, i.e. compute diagonal matrices Dr and Dc so that Â = DrADc is
“better conditioned” than A, i.e. Â−1 is less sensitive to perturbations in Â than A−1 is to
perturbations in A.

2. Preorder the rows of Â (SuperLU DIST only), i.e. replace Â by PrÂ where Pr is a permutation
matrix. We call this step “static pivoting”, and it is only done in the distributed-mmemory
algorithm.

3. Order the columns of Â to increase the sparsity of the computed L and U factors, and
hopefully increase parallelism (for SuperLU MT and SuperLU DIST). In other words, replace
Â by ÂP T

c in SuperLU and SuperLU MT, or replace Â by PcÂP
T
c in SuperLU DIST, where

Pc is a permutation matrix.

4. Compute the LU factorization of Â. SuperLU and SuperLU MT can perform dynamic pivot-
ing with row interchanges for numerical stability. In contrast, SuperLU DIST uses the order
computed by the preordering step but replaces tiny pivots by larger values for stability.

5. Solve the system using the computed triangular factors.

6. Iteratively refine the solution, again using the computed triangular factors. This is equivalent
to Newton’s method.

7. Compute error bounds. Both forward and backward error bounds are computed, as described
below.

The expert driver subroutines for double precision real data are called dgssvx, pdgssvx and
pdgssvx for SuperLU, SuperLU MT and SuperLU DIST, respectively. The driver routines are
composed of several lower level computational routines for computing permutations, computing LU
factorization, solving triangular systems, and so on. For large matrices, the LU factorization steps
takes most of the time, although choosing Pc to order the columns can also be time-consuming.

1.3 What the three libraries have in common

1.3.1 Input and Output Data Formats

Sequential SuperLU and SuperLU MT accept A and B as single precision real, double precision
real, and both single and double precision complex. SuperLU DIST accepts double precision real or
complex.

A is stored in a sparse data structure according to the struct SuperMatrix, which is described
in section 3.2. In particular, A may be supplied in either column-compressed format (“Harwell-
Boeing format”), or row-compressed format (i.e. AT stored in column-compressed format). B,
which is overwritten by the solution X, is stored as a dense matrix in column-major order. In
SuperLU DIST, A and B can be either replicated or distributed across all processes.

(The storage of L and U differs among the three libraries, as discussed in section 1.4.)

6

1.3.2 Tuning Parameters for BLAS

All three libraries depend on having high performance BLAS (Basic Linear Algebra Subroutine)
libraries [20, 8, 7] in order to get high performance. In particular, they depend on matrix-vector
multiplication or matrix-matrix multiplication of relatively small dense matrices. The sizes of these
small dense matrices can be tuned to match the “sweet spot” of the BLAS by setting certain
tuning parameters described in section 2.11.3 for SuperLU, in section 3.5.2 for SuperLU MT, and
in section 4.9.2 for SuperLU DIST.

(In addition, SuperLU MT and SuperLU DIST let one control the number of parallel processes
to be used, as described in section 1.4.)

1.3.3 Performance Statistics

Most of the computational routines use a struct to record certain kinds of performance data, namely
the time and number of floating point operations in each phase of the computation, and data about
the sizes of the matrices L and U . These statistics are collected during the computation. A statistic
variable is declared with the following type:

typedef struct {

int *panel_histo; /* histogram of panel size distribution */

double *utime; /* time spent in various phases */

float *ops; /* floating-point operations at various phases */

int TinyPivots; /* number of tiny pivots */

int RefineSteps; /* number of iterative refinement steps */

} SuperLUStat_t;

For both SuperLU and SuperLU MT, there is only one copy of these statistics variable. But
for SuperLU DIST, each process keeps a local copy of this variable, and records its local statistics.
We need to use MPI reduction routines to find any global information, such as the sum of the
floating-point operation count on all processes.

Before the computation, routine StatInit() should be called to malloc storage and perform
initialization for the fields panel histo, utime, and ops. The algorithmic phases are defined by the
enumeration type PhaseType in SRC/util.h. In the end, routine StatFree() should be called to
free storage of the above statistics fields. After deallocation, the statistics are no longer accessible.
Therefore, users should extract the information they need before calling StatFree(), which can be
accomplished by calling (P)StatPrint().

An inquiry function dQuerySpace() is provided to compute memory usage statistics. This
routine should be called after the LU factorization. It calculates the storage requirement based on
the size of the L and U data structures and working arrays.

1.3.4 Error Handling

Invalid arguments and (P)XERBLA

Similar to LAPACK, for all the SuperLU routines, we check the validity of the input arguments
to each routine. If an illegal value is supplied to one of the input arguments, the error handler
XERBLA is called, and a message is written to the standard output, indicating which argument

7

has an illegal value. The program returns immediately from the routine, with a negative value of
INFO.

Computational failures with INFO > 0

A positive value of INFO on return from a routine indicates a failure in the course of the computa-
tion, such as a matrix being singular, or the amount of memory (in bytes) already allocated when
malloc fails.

ABORT on unrecoverable errors

A macro ABORT is defined in SRC/util.h to handle unrecoverable errors that occur in the middle
of the computation, such as malloc failure. The default action of ABORT is to call

superlu abort and exit(char *msg)

which prints an error message, the line number and the file name at which the error occurs, and
calls the exit function to terminate the program.

If this type of termination is not appropriate in some environment, users can alter the behavior
of the abort function. When compiling the SuperLU library, users may choose the C preprocessor
definition

-DUSER ABORT = my abort

At the same time, users would supply the following my abort function
my abort(char *msg)

which overrides the behavior of superlu abort and exit.

1.3.5 Ordering the Columns of A for Sparse Factors

There is a choice of orderings for the columns of A both in the simple or expert driver, in section 1.2:

• Natural ordering,

• Multiple Minimum Degree (MMD) [26] applied to the structure of ATA,

• Multiple Minimum Degree (MMD) [26] applied to the structure of AT +A,

• Column Approximate Minimum Degree (COLAMD) [4], and

• Use a Pc supplied by the user as input.

COLAMD is designed particularly for unsymmetric matrices when partial pivoting is needed,
and does not require explicit formation of ATA. It usually gives comparable orderings as MMD on
ATA, and is faster.

The orderings based on graph partitioning heuristics are also popular, as exemplified in the
MeTiS package [18]. The user can simply input this ordering in the permutation vector for Pc. Note
that many graph partitioning algorithms are designed for symmetric matrices. The user may still
apply them to the structures of ATA or AT + A. Our routines getata() and at plus a() in the
file get perm c.c can be used to form ATA or AT +A.

8

1.3.6 Iterative Refinement

Step 6 of the expert driver algorithm, iterative refinement, serves to increase accuracy of the
computed solution. Given the initial approximate solution x from step 5, the algorithm for step 6
is as follows (where x and b are single columns of X and B, respectively):

Compute residual r = Ax− b
While residual too large

Solve Ad = r for correction d
Update solution x = x− d
Update residual r = Ax− b

end while

If r and then d were computed exactly, the updated solution x− d would be the exact solution.
Roundoff prevents immediate convergence.

The criterion “residual too large” in the iterative refinement algorithm above is essentially that

BERR ≡ max
i
|ri|/si (1.1)

exceeds the machine roundoff level, or is continuing to decrease quickly enough. Here si is the scale
factor

si = (|A| · |x|+ |b|)i =
∑
j

|Aij | · |xj |+ |bi|

In this expression |A| is the n-by-n matrix with entries |A|ij = |Aij |, |b| and |x| are similarly
column vectors of absolute entries of b and x, respectively, and |A| · |x| is conventional matrix-
vector multiplication.

The purpose of this stopping criterion is explained in the next section.

1.3.7 Error Bounds

Step 7 of the expert driver algorithm computes error bounds.
It is shown in [2, 28] that BERR defined in Equation (1.1) measures the componentwise relative

backward error of the computed solution. This means that the computed x satisfies a slightly
perturbed linear system of equations (A + E)x = b + f , where |Eij | ≤ BERR · |Aij | and |fi| ≤
BERR · |bi| for all i and j. It is shown in [2, 33] that one step of iterative refinement usually
reduces BERR to near machine epsilon. For example, if BERR is 4 times machine epsilon, then
the computed solution x is identical to the solution one would get by changing each nonzero entry
of A and b by at most 4 units in their last places, and then solving this perturbed system exactly.
If the nonzero entries of A and b are uncertain in their bottom 2 bits, then one should generally not
expect a more accurate solution. Thus BERR is a measure of backward error specifically suited
to solving sparse linear systems of equations. Despite roundoff, BERR itself is always computed
to within about ±n times machine epsilon (and usually much more accurately) and so BERR is
quite accurate.

In addition to backward error, the expert driver computes a forward error bound

FERR ≥ ‖xtrue − x‖∞/‖x‖∞

9

Here ‖x‖∞ ≡ maxi |xi|. Thus, if FERR = 10−6 then each component of x has an error bounded
by about 10−6 times the largest component of x. The algorithm used to compute FERR is an
approximation; see [2, 17] for a discussion. Generally FERR is accurate to within a factor of 10
or better, which is adequate to say how many digits of the large entries of x are correct.

(SuperLU DIST’s algorithm for FERR is slightly less reliable [24].)

1.3.8 Solving a Sequence of Related Linear Systems

It is very common to solve a sequence of related linear systems A(1)X(1) = B(1), A(2)X(2) = B(2), ...
rather than just one. When A(1) and A(2) are similar enough in sparsity pattern and/or numerical
entries, it is possible to save some of the work done when solving with A(1) to solve with A(2).
This can result in significant savings. Here are the options, in increasing order of “reuse of prior
information”:

1. Factor from scratch. No previous information is used. If one were solving just one linear
system, or a sequence of unrelated linear systems, this is the option to use.

2. Reuse Pc, the column permutation. The user may save the column permutation and reuse
it. This is most useful when A(2) has the same sparsity structure as A(1), but not necessarily
the same (or similar) numerical entries. Reusing Pc saves the sometimes quite expensive
operation of computing it.

3. Reuse Pc, Pr and data structures allocated for L and U . If Pr and Pc do not change, then
the work of building the data structures associated with L and U (including the elimination
tree [14]) can be avoided. This is most useful when A(2) has the same sparsity structure and
similar numerical entries as A(1). When the numerical entries are not similar, one can still use
this option, but at a higher risk of numerical instability (BERR will always report whether or
not the solution was computed stably, so one cannot get an unstable answer without warning).

4. Reuse Pc, Pr, L and U . In other words, we reuse essentially everything. This is most
commonly used when A(2) = A(1), but B(2) 6= B(1), i.e. when only the right-hand sides differ.
It could also be used when A(2) and A(1) differed just slightly in numerical values, in the
hopes that iterative refinement converges (using A(2) to compute residuals but the triangular
factorization of A(1) to solve).

Because of the different ways L and U are computed and stored in the three libraries, these 4
options are specified slightly differently; see Chapters 2 through 4 for details.

1.3.9 Interfacing to other languages

It is possible to call all the drivers and the computational routines from Fortran. However, currently
the Fortran wrapper functions are not complete. The users are expected to look at the Fortran
example programs in the FORTRAN/ directory, together with the C “bridge” routine, and learn
how to call SuperLU from a Fortran program. The users can modify the C bridge routine to fit
their needs.

10

1.4 How the three libraries differ

1.4.1 Input and Output Data Formats

All Sequential SuperLU and SuperLU MT routines are available in single and double precision (real
or complex), but SuperLU DIST routines are available only in double precision (real or complex).

L and U are stored in different formats in the three libraries:

• L and U in Sequential SuperLU. L is a “column-supernodal” matrix, in storage type SCformat.
This means it is stored sparsely, with supernodes (consecutive columns with identical struc-
tures) stored as dense blocks. U is stored in column-compressed format NCformat. See
section 2.3 for details.

• L and U in SuperLU MT. Because of parallelism, the columns of L and U may not be
computed in consecutive order, so they may be allocated and stored out of order. This means
we use the “column-supernodal-permuted” format SCPformat for L and “column-permuted”
format NCPformat for U . See section 3.2 for details.

• L and U in SuperLU DIST. Now L and U are distributed across multiple processors. As
described in detail in Sections 4.3 and 4.4, we use a 2D block-cyclic format, which has been
used for dense matrices in libraries like ScaLAPACK [3]. But for sparse matrices, the blocks
are no longer identical in size, and vary depending on the sparsity structure of L and U . The
detailed storage format is discussed in section 4.3 and illustrated in Figure 4.1.

1.4.2 Parallelism

Sequential SuperLU has no explicit parallelism. Some parallelism may still be exploited on an
SMP by using a multithreaded BLAS library if available. But it is likely to be more effective to
use SuperLU MT on an SMP, described next.

SuperLU MT lets the user choose the number of parallel threads to use. The mechanism varies
from platform to platform and is described in section 3.7.

SuperLU DIST not only lets the user specify the number of processors, but how they are
arranged into a 2D grid. Furthermore, MPI permits any subset of the processors allocated to the
user may be used for SuperLU DIST, not just consecutively numbered processors (say 0 through
P-1). See section 4.4 for details.

1.4.3 Pivoting Strategies for Stability

Sequential SuperLU and SuperLU MT use the same pivoting strategy, called threshold pivoting, to
determine the row permutation Pr. Suppose we have factored the first i− 1 columns of A, and are
seeking the pivot for column i. Let ami be a largest entry in magnitude on or below the diagonal
of the partially factored A: |ami| = maxj≥i |aji|. Depending on a threshold 0 < u ≤ 1 input by the
user, the code will use the diagonal entry aii as the pivot in column i as long as |aii| ≥ u · |ami|, and
otherwise use ami. So if the user sets u = 1, ami (or an equally large entry) will be selected as the
pivot; this corresponds to the classical partial pivoting strategy. If the user has ordered the matrix
so that choosing diagonal pivots is particularly good for sparsity or parallelism, then smaller values
of u will tend to choose those diagonal pivots, at the risk of less numerical stability. Using u = 0

11

guarantees that the pivots on the diagonal will be chosen, unless they are zero. The error bound
BERR measure how much stability is actually lost.

Threshold pivoting turns out to be hard to parallelize on distributed memory machines, because
of the fine-grain communication and dynamic data structures required. So SuperLU DIST uses a
new scheme called static pivoting instead. In static pivoting the pivot order (Pr) is chosen before
numerical factorization, using a weighted perfect matching algorithm [9], and kept fixed during
factorization. Since both row and column orders (Pr and Pc) are fixed before numerical factoriza-
tion, we can extensively optimize the data layout, load balance, and communication schedule. The
price is a higher risk of numeric instability, which is mitigated by diagonal scaling, setting very
tiny pivots to larger values, and iterative refinement [24]. Again, error bound BERR measure how
much stability is actually lost.

1.4.4 Memory Management

Because of fill-in of entries during Gaussian elimination, L and U typically have many more nonzero
entries than A. If Pr and Pc are not already known, we cannot determine the number and locations
of these nonzeros before performing the numerical factorization. This means that some kind of
dynamic memory allocation is needed.

Sequential SuperLU lets the user either supply a preallocated space work[] of length lwork, or
depend on malloc/free. The variable FILL can be used to help the code predict the amount of fill,
which can reduce both fragmentation and the number of calls to malloc/free. If the initial estimate
of the size of L and U from FILL is too small, the routine allocates more space and copies the
current L and U factors to the new space and frees the old space. If the routine cannot allocate
enough space, it calls a user-specifiable routine ABORT. See sections 1.3.4 for details.

SuperLU MT is similar, except that the current alpha version cannot reallocate more space for
L and U if the initial size estimate from FILL is too small. Instead, the program calls ABORT and
the user must start over with a larger value of FILL. See section 3.5.2.

SuperLU DIST actually has a simpler memory management chore, because once Pr and Pc are
determined, the structures of L and U can be determined efficiently and just the right amount of
memory allocated using malloc and later free. So it will call ABORT only if there is really not
enough memory available to solve the problem.

1.4.5 Interfacing to other languages

Sequential SuperLU has a Matlab interface to the driver via a MEX file. See section 2.10 for details.

1.5 Performance

SuperLU library incorporates a number of novel algorithmic ideas developed recently. These al-
gorithms also exploit the features of modern computer architectures, in particular, the multi-level
cache organization and parallelism. We have conducted extensive experiments on various plat-
forms, with a large collection of test matrices. The Sequential SuperLU achieved up to 40% of the
theoretical floating-point rate on a number of processors, see [5, 21]. The megaflop rate usually
increases with increasing ratio of floating-point operations count over the number of nonzeros in the
L and U factors. The parallel LU factorization in SuperLU MT demonstrated 5–10 fold speedups
on a range of commercially popular SMPs, and up to 2.5 Gigaflops factorization rate, see [6, 21].

12

The parallel LU factorization in SuperLU DIST achieved up to 100 fold speedup on a 512-processor
Cray T3E, and 10.2 Gigaflops factorization rate, see [23].

1.6 Software Status and Availability

All three libraries are freely available for all uses, commercial or noncommercial, subject to the
following caveats. No warranty is expressed or implied by the authors, although we will gladly
answer questions and try to fix all reported bugs. We ask that proper credit be given to the
authors and that a notice be included if any modifications are made.

The following Copyright applies to the whole SuperLU software.

Copyright (c) 2003, The Regents of the University of California, through Lawrence
Berkeley National Laboratory (subject to receipt of any required approvals from U.S.
Dept. of Energy)

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer. (2) Redistributions in binary form must
reproduce the above copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the distribution. (3) Neither
the name of Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the
names of its contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS ”AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LI-
ABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

Some routines carry the additional notices as follows.

1. Some subroutines carry the following notice:

Copyright (c) 1994 by Xerox Corporation. All rights reserved.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

13

Permission is hereby granted to use or copy this program for any purpose, provided
the above notices are retained on all copies. Permission to modify the code and to
distribute modified code is granted, provided the above notices are retained, and a
notice that the code was modified is included with the above copyright notice.

2. The MC64 routine (only used in SuperLU DIST) carries the following notice:

COPYRIGHT (c) 1999 Council for the Central Laboratory of the Research Coun-
cils. All rights reserved. PACKAGE MC64A/AD AUTHORS Iain Duff (i.duff@rl.ac.uk)
and Jacko Koster (jak@ii.uib.no) LAST UPDATE 20/09/99

*** Conditions on external use ***

The user shall acknowledge the contribution of this package in any publication of
material dependent upon the use of the package. The user shall use reasonable
endeavours to notify the authors of the package of this publication.

The user can modify this code but, at no time shall the right or title to all or any
part of this package pass to the user. The user shall make available free of charge
to the authors for any purpose all information relating to any alteration or addition
made to this package for the purposes of extending the capabilities or enhancing
the performance of this package.

The user shall not pass this code directly to a third party without the express prior
consent of the authors. Users wanting to licence their own copy of these routines
should send email to hsl@aeat.co.uk

None of the comments from the Copyright notice up to and including this one shall
be removed or altered in any way.

All three libraries can be obtained from the following URLs:

http://crd.lbl.gov/~xiaoye/SuperLU/

http://www.netlib.org/scalapack/prototype/

In the future, we will add more functionality in the software, such as sequential and parallel in-
complete LU factorizations, as well as parallel symbolic and ordering algorithms for SuperLU DIST;
these latter routines would replace MC64 and have no restrictions on external use.

All bugs reports and queries can be e-mailed to xsli@lbl.gov and demmel@cs.berkeley.edu.

1.7 Acknowledgement

With great gratitude, we acknowledge Stan Eisenstat and Joesph Liu for their significant contri-
butions to the development of Sequential SuperLU. Meiyue Shao helped the development of the
incomplete factorization ILU routines in sequential SuperLU.

We would like to thank Jinqchong Teo for helping generate the code in Sequential SuperLU to
work with four floating-point data types, and Daniel Schreiber for doing this with SuperLU MT.

Yu Wang and William F. Mitchell developed the Fortran 90 interface for SuperLU DIST. Laura
Grigori developed the parallel symbolic factorization code for SuperLU DIST.

We thank Tim Davis for his contribution of some subroutines related to column ordering and
suggestions on improving the routines’ interfaces. We thank Ed Rothberg of Silicon Graphics for

14

discussions and providing us access to the SGI Power Challenge during the SuperLU MT develop-
ment.

We acknowledge the following organizations that provided the computer resources during our
code development: NERSC at Lawrence Berkeley National Laboratory, Livermore Computing at
Lawrence Livermore National Laboratory, NCSA at University of Illinois at Urbana-Champaign,
Silicon Graphics, and Xerox Palo Alto Research Center. We thank UC Berkeley and NSF Infras-
tructure grant CDA-9401156 for providing Berkeley NOW.

15

Chapter 2

Sequential SuperLU (Version 4.2)

2.1 About SuperLU

In this chapter, SuperLU will always mean Sequential SuperLU. SuperLU package contains a set of
subroutines to solve sparse linear systems AX = B. Here A is a square, nonsingular, n× n sparse
matrix, and X and B are dense n× nrhs matrices, where nrhs is the number of right-hand sides
and solution vectors. Matrix A need not be symmetric or definite; indeed, SuperLU is particularly
appropriate for matrices with very unsymmetric structure.

The package uses LU decomposition with partial (or threshold) pivoting, and forward/back
substitutions. The columns of A may be preordered before factorization (either by the user or by
SuperLU); this preordering for sparsity is completely separate from the factorization. To improve
backward stability, we provide working precision iterative refinement subroutines [2]. Routines
are also available to equilibrate the system, estimate the condition number, calculate the relative
backward error, and estimate error bounds for the refined solutions. We also include a Matlab
MEX-file interface, so that our factor and solve routines can be called as alternatives to those built
into Matlab. The LU factorization routines can handle non-square matrices, but the triangular
solves are performed only for square matrices.

Starting from Version 4.0, we provide the incomplete factorization (ILU) routines which can be
used as preconditioners for iterative solvers [25].

The factorization algorithm uses a graph reduction technique to reduce graph traversal time in
the symbolic analysis. We exploit dense submatrices in the numerical kernel, and organize compu-
tational loops in a way that reduces data movement between levels of the memory hierarchy. The
resulting algorithm is highly efficient on modern architectures. The performance gains are particu-
larly evident for large problems. There are “tuning parameters” to optimize the peak performance
as a function of cache size. For a detailed description of the algorithm, see reference [5].

SuperLU is implemented in ANSI C, and must be compiled with a standard ANSI C compiler.
It includes versions for both real and complex matrices, in both single and double precision. The
file names for the single-precision real version start with letter “s” (such as sgstrf.c); the file
names for the double-precision real version start with letter “d” (such as dgstrf.c); the file names
for the single-precision complex version start with letter “c” (such as cgstrf.c); the file names for
the double-precision complex version start with letter “z” (such as zgstrf.c).

16


s u u
l u
l p

e u
l l r




19.00 21.00 21.00
0.63 21.00 −13.26 −13.26

0.57 23.58 7.58
5.00 21.00

0.63 0.57 −0.24 −0.77 34.20


Original matrix A Factors F = L+ U − I

s = 19, u = 21, p = 16, e = 5, r = 18, l = 12

Figure 2.1: A 5× 5 matrix and its L and U factors.

2.2 How to call a SuperLU routine

As a simple example, let us consider how to solve a 5×5 sparse linear system AX = B, by calling a
driver routine dgssv(). Figure 2.1 shows matrix A, and its L and U factors. This sample program
is located in SuperLU/EXAMPLE/superlu.c.

The program first initializes the three arrays, a[], asub[] and xa[], which store the nonzero
coefficients of matrix A, their row indices, and the indices indicating the beginning of each column in
the coefficient and row index arrays. This storage format is called compressed column format, also
known as Harwell-Boeing format [10]. Next, the two utility routines dCreate CompCol Matrix()

and dCreate Dense Matrix() are called to set up the matrix structures for A and B, respectively.
The routine set default options() sets the default values to the input options argument. This
controls how the matrix will be factorized and how the system will be solved. After calling the
SuperLU routine dgssv(), the B matrix is overwritten by the solution matrix X. In the end, all
the dynamically allocated data structures are de-allocated by calling various utility routines.

SuperLU can perform more general tasks, which will be explained later.

#include "slu_ddefs.h"

main(int argc, char *argv[])

{

/*

* Purpose

* =======

*

* This is the small 5x5 example used in the Sections 2 and 3 of the

* Users’ Guide to illustrate how to call a SuperLU routine, and the

* matrix data structures used by SuperLU.

*

*/

SuperMatrix A, L, U, B;

double *a, *rhs;

double s, u, p, e, r, l;

int *asub, *xa;

int *perm_r; /* row permutations from partial pivoting */

17

int *perm_c; /* column permutation vector */

int nrhs, info, i, m, n, nnz, permc_spec;

superlu_options_t options;

SuperLUStat_t stat;

/* Initialize matrix A. */

m = n = 5;

nnz = 12;

if (!(a = doubleMalloc(nnz))) ABORT("Malloc fails for a[].");

if (!(asub = intMalloc(nnz))) ABORT("Malloc fails for asub[].");

if (!(xa = intMalloc(n+1))) ABORT("Malloc fails for xa[].");

s = 19.0; u = 21.0; p = 16.0; e = 5.0; r = 18.0; l = 12.0;

a[0] = s; a[1] = l; a[2] = l; a[3] = u; a[4] = l; a[5] = l;

a[6] = u; a[7] = p; a[8] = u; a[9] = e; a[10]= u; a[11]= r;

asub[0] = 0; asub[1] = 1; asub[2] = 4; asub[3] = 1;

asub[4] = 2; asub[5] = 4; asub[6] = 0; asub[7] = 2;

asub[8] = 0; asub[9] = 3; asub[10]= 3; asub[11]= 4;

xa[0] = 0; xa[1] = 3; xa[2] = 6; xa[3] = 8; xa[4] = 10; xa[5] = 12;

/* Create matrix A in the format expected by SuperLU. */

dCreate_CompCol_Matrix(&A, m, n, nnz, a, asub, xa, SLU_NC, SLU_D, SLU_GE);

/* Create right-hand side matrix B. */

nrhs = 1;

if (!(rhs = doubleMalloc(m * nrhs))) ABORT("Malloc fails for rhs[].");

for (i = 0; i < m; ++i) rhs[i] = 1.0;

dCreate_Dense_Matrix(&B, m, nrhs, rhs, m, SLU_DN, SLU_D, SLU_GE);

if (!(perm_r = intMalloc(m))) ABORT("Malloc fails for perm_r[].");

if (!(perm_c = intMalloc(n))) ABORT("Malloc fails for perm_c[].");

/* Set the default input options. */

set_default_options(&options);

options.ColPerm = NATURAL;

/* Initialize the statistics variables. */

StatInit(&stat);

/* Solve the linear system. */

dgssv(&options, &A, perm_c, perm_r, &L, &U, &B, &stat, &info);

dPrint_CompCol_Matrix("A", &A);

dPrint_CompCol_Matrix("U", &U);

dPrint_SuperNode_Matrix("L", &L);

print_int_vec("\nperm_r", m, perm_r);

18

/* De-allocate storage */

SUPERLU_FREE (rhs);

SUPERLU_FREE (perm_r);

SUPERLU_FREE (perm_c);

Destroy_CompCol_Matrix(&A);

Destroy_SuperMatrix_Store(&B);

Destroy_SuperNode_Matrix(&L);

Destroy_CompCol_Matrix(&U);

StatFree(&stat);

}

2.3 Matrix data structures

SuperLU uses a principal data structure SuperMatrix (defined in SRC/supermatrix.h) to represent
a general matrix, sparse or dense. Figure 2.2 gives the specification of the SuperMatrix structure.
The SuperMatrix structure contains two levels of fields. The first level defines all the properties
of a matrix which are independent of how it is stored in memory. In particular, it specifies the
following three orthogonal properties: storage type (Stype) indicates the type of the storage scheme
in *Store; data type (Dtype) encodes the four precisions; mathematical type (Mtype) specifies some
mathematical properties. The second level (*Store) points to the actual storage used to store the
matrix. We associate with each Stype XX a storage format called XXformat, such as NCformat,
SCformat, etc.

The SuperMatrix type so defined can accommodate various types of matrix structures and
appropriate operations to be applied on them, although currently SuperLU implements only a
subset of this collection. Specifically, matrices A, L, U , B, and X can have the following types:

A L U B X

Stype SLU NC or SLU NR SLU SC SLU NC SLU DN SLU DN

Dtype1 any any any any any
Mtype SLU GE SLU TRLU SLU TRU SLU GE SLU GE

In what follows, we illustrate the storage schemes defined by Stype. Following C’s convention,
all array indices and locations below are zero-based.

• A may have storage type SLU NC or SLU NR. The SLU NC format is the same as the Harwell-
Boeing sparse matrix format [10], that is, the compressed column storage.

typedef struct {

int nnz; /* number of nonzeros in the matrix */

void *nzval; /* array of nonzero values packed by column */

int *rowind; /* array of row indices of the nonzeros */

int *colptr; /* colptr[j] stores the location in nzval[] and rowind[]

which starts column j. It has ncol+1 entries,

1Dtype can be one of SLU S, SLU D, SLU C or SLU Z.

19

typedef struct {

Stype_t Stype; /* Storage type: indicates the storage format of *Store. */

Dtype_t Dtype; /* Data type. */

Mtype_t Mtype; /* Mathematical type */

int nrow; /* number of rows */

int ncol; /* number of columns */

void *Store; /* pointer to the actual storage of the matrix */

} SuperMatrix;

typedef enum {

SLU_NC, /* column-wise, not supernodal */

SLU_NR, /* row-wise, not supernodal */

SLU_SC, /* column-wise, supernodal */

SLU_SR, /* row-wise, supernodal */

SLU_NCP, /* column-wise, not supernodal, permuted by columns

(After column permutation, the consecutive columns of

nonzeros may not be stored contiguously. */

SLU_DN, /* Fortran style column-wise storage for dense matrix */

SLU_NR_loc /* distributed compressed row format */

} Stype_t;

typedef enum {

SLU_S, /* single */

SLU_D, /* double */

SLU_C, /* single-complex */

SLU_Z /* double-complex */

} Dtype_t;

typedef enum {

SLU_GE, /* general */

SLU_TRLU, /* lower triangular, unit diagonal */

SLU_TRUU, /* upper triangular, unit diagonal */

SLU_TRL, /* lower triangular */

SLU_TRU, /* upper triangular */

SLU_SYL, /* symmetric, store lower half */

SLU_SYU, /* symmetric, store upper half */

SLU_HEL, /* Hermitian, store lower half */

SLU_HEU /* Hermitian, store upper half */

} Mtype_t;

Figure 2.2: SuperMatrix data structure.

20

and colptr[ncol] = nnz. */

} NCformat;

The SLU NR format is the compressed row storage defined below.

typedef struct {

int nnz; /* number of nonzeros in the matrix */

void *nzval; /* array of nonzero values packed by row */

int *colind; /* array of column indices of the nonzeros */

int *rowptr; /* rowptr[j] stores the location in nzval[] and colind[]

which starts row j. It has nrow+1 entries,

and rowptr[nrow] = nnz. */

} NRformat;

The factorization and solve routines in SuperLU are designed to handle column-wise storage
only. If the input matrix A is in row-oriented storage, i.e., in SLU NR format, then the driver
routines (dgssv() and dgssvx()) actually perform the LU decomposition on AT , which is
column-wise, and solve the system using the LT and UT factors. The data structures holding
L and U on output are different (swapped) from the data structures you get from column-wise
input. For more detailed descriptions about this process, please refer to the leading comments
of the routines dgssv() and dgssvx().

Alternatively, the users may call a utility routine dCompRow to CompCol() to convert the
input matrix in SLU NR format to another matrix in SLU NC format, before calling SuperLU.
The definition of this routine is

void dCompRow_to_CompCol(int m, int n, int nnz,

double *a, int *colind, int *rowptr,

double **at, int **rowind, int **colptr);

This conversion takes time proportional to the number of nonzeros in A. However, it requires
storage for a separate copy of matrix A.

• L is a supernodal matrix with the storage type SLU SC. Due to the supernodal structure, L
is in fact stored as a sparse block lower triangular matrix [5].

typedef struct {

int nnz; /* number of nonzeros in the matrix */

int nsuper; /* index of the last supernode */

void *nzval; /* array of nonzero values packed by column */

int *nzval_colptr; /* nzval_colptr[j] stores the location in

nzval[] which starts column j */

int *rowind; /* array of compressed row indices of

rectangular supernodes */

int *rowind_colptr;/* rowind_colptr[j] stores the location in

rowind[] which starts column j */

int *col_to_sup; /* col_to_sup[j] is the supernode number to

21

which column j belongs */

int *sup_to_col; /* sup_to_col[s] points to the starting column

of the s-th supernode */

} SCformat;

• Both B and X are stored as conventional two-dimensional arrays in column-major order, with
the storage type SLU DN.

typedef struct {

int lda; /* leading dimension */

void *nzval; /* array of size lda-by-ncol to represent

a dense matrix */

} DNformat;

Figure 2.3 shows the data structures for the example matrices in Figure 2.1.
For a description of NCPformat, see section 2.5.1.

2.4 Options argument

The options argument is the input argument to control the behaviour of the library. The user
can tell the solver how the linear systems should be solved based on some known characteristics of
the system. For example, for diagonally dominant matrices, choosing the diagonal pivots ensures
stability; there is no need for numerical pivoting (i.e., Pr can be an Identity matrix). In another
situation where a sequence of matrices with the same sparsity pattern need be factorized, the
column permutation Pc (and also the row permutation Pr, if the numerical values are similar) need
be computed only once, and reused thereafter. In these cases, the solvers’ performance can be much
improved over using the default settings. Options is implemented as a C structure containing the
following fields:

• Fact

Specifies whether or not the factored form of the matrix A is supplied on entry, and if not,
how the matrix A will be factorized base on the previous history, such as factor from scratch,
reuse Pc and/or Pr, or reuse the data structures of L and U . fact can be one of:

– DOFACT: the matrix A will be factorized from scratch.

– SamePattern: the matrix A will be factorized assuming that a factorization of a ma-
trix with the same sparsity pattern was performed prior to this one. Therefore, this
factorization will reuse column permutation vector perm c.

– SampPattern SameRowPerm: the matrix A will be factorized assuming that a factoriza-
tion of a matrix with the same sparsity pattern and similar numerical values was per-
formed prior to this one. Therefore, this factorization will reuse both row and column
permutation vectors perm r and perm c, both row and column scaling factors Dr and
Dc, and the distributed data structure set up from the previous symbolic factorization.

– FACTORED: the factored form of A is input.

22

• A = { Stype = SLU_NC; Dtype = SLU_D; Mtype = SLU_GE; nrow = 5; ncol = 5;

*Store = { nnz = 12;

nzval = [19.00, 12.00, 12.00, 21.00, 12.00, 12.00, 21.00,

16.00, 21.00, 5.00, 21.00, 18.00];

rowind = [0, 1, 4, 1, 2, 4, 0, 2, 0, 3, 3, 4];

colptr = [0, 3, 6, 8, 10, 12];

}

}

• U = { Stype = SLU_NC; Dtype = SLU_D; Mtype = SLU_TRU; nrow = 5; ncol = 5;

*Store = { nnz = 11;

nzval = [21.00, -13.26, 7.58, 21.00];

rowind = [0, 1, 2, 0];

colptr = [0, 0, 0, 1, 4, 4];

}

}

• L = { Stype = SLU_SC; Dtype = SLU_D; Mtype = SLU_TRLU; nrow = 5; ncol = 5;

*Store = { nnz = 11;

nsuper = 2;

nzval = [19.00, 0.63, 0.63, 21.00, 0.57, 0.57, -13.26,

23.58, -0.24, 5.00, -0.77, 21.00, 34.20];

nzval_colptr = [0 3, 6, 9, 11, 13];

rowind = [0, 1, 4, 1, 2, 4, 3, 4];

rowind_colptr = [0, 3, 6, 6, 8, 8];

col_to_sup = [0, 1, 1, 2, 2];

sup_to_col = [0, 1, 3, 5];

}

}

Figure 2.3: The data structures for a 5 × 5 matrix and its LU factors, as represented in the
SuperMatrix data structure. Zero-based indexing is used.

23

• Equil { YES | NO }
Specifies whether to equilibrate the system (scale A’s rows and columns to have unit norm).

• ColPerm

Specifies how to permute the columns of the matrix for sparsity preservation.

– NATURAL: natural ordering.

– MMD ATA: minimum degree ordering on the structure of ATA.

– MMD AT PLUS A: minimum degree ordering on the structure of AT +A.

– COLAMD: approximate minimum degree column ordering

– MY PERMC: use the ordering given in perm c input by the user.

• Trans { NOTRANS | TRANS | CONJ }
Specifies whether to solve the transposed system.

• IterRefine

Specifies whether to perform iterative refinement, and in what precision to compute the
residual.

– NO: no iterative refinement

– SINGLE: perform iterative refinement in single precision

– DOUBLE: perform iterative refinement in double precision

– EXTRA: perform iterative refinement in extra precision

• DiagPivotThresh [0.0, 1.0]
Specifies the threshold used for a diagonal entry to be an acceptable pivot.

• SymmetricMode { YES | NO }
Specifies whether to use the symmetric mode. Symmetric mode gives preference to diagonal
pivots, and uses an (AT +A)-based column permutation algorithm.

• PivotGrowth { YES | NO }
Specifies whether to compute the reciprocal pivot growth.

• ConditionNumber { YES | NO }
Specifies whether to compute the reciprocal condition number.

• RowPerm (only for ILU or SuperLU DIST)
Specifies whether to permute the rows of the original matrix.

– NO: not to permute the rows

– LargeDiag: make the diagonal large relative to the off-diagonal

– MY PERMR: use the permutation given by the user

• ILU DropRule

Specifies the dropping rule for ILU: (Default: DROP BASIC | DROP AREA)

– DROP BASIC: Basic dropping rule, supernodal based ILUTP(τ).

24

– DROP PROWS: Supernodal based ILUTP(p, τ), p = γ · nnz(A)/n.

– DROP COLUMN: Variant of ILUTP(p, τ), for j-th column, p = γ · nnz(A(:, j)).

– DROP AREA: Variation of ILUTP, for j-th column, use nnz(F (:, 1 : j))/nnz(A(:, 1 : j)) to
control memory.

– DROP DYNAMIC: Dynamically adjust the threshold τ during factorizaion:
If nnz(L(:, 1 : j))/nnz(A(:, 1 : j)) > γ, τL(j) := min(τ0, τL(j−1) ·2); Otherwise τL(j) :=
max(τ0, τL(j − 1)/2). τU (j) uses the similar rule.

– DROP INTERP: Compute the second dropping threshold by interpolation instead of quick
select (default). In this case, the actual fill ratio is not guaranteed to be smaller than
gamma.

• ILU DropTol [0.0, 1.0]
Specifies the numerical dropping threshold for ILU.

• ILU FillFactor (≥ 1.0)
Specifies the expected fill ratio upper bound, γ, for ILU.

• ILU MILU { SILU | SMILU 1 | SMILU 2 | SMILU 3 }
Specifies which version of modified ILU to use.

• PrintStat { YES | NO }
Specifies whether to print the solver’s statistics.

The routine set default options() sets the following default values:

Fact = DOFACT /* factor from scratch */

Equil = YES

ColPerm = COLAMD

Trans = NOTRANS

IterRefine = NOREFINE

DiagPivotThresh = 1.0 /* partial pivoting */

SymmetricMode = NO

PivotGrowth = NO;

ConditionNumber = NO;

PrintStat = YES

To use the ILU routines, such as dgsitrf(), the user should call ilu set default options() to
set the default values (set default options() is first called in this routine prior to the following):

DiagPivotThresh = 0.1 /* partial pivoting */

RowPerm = LargeDiag

ILU_DropRule = DROP_BASIC | DROP_AREA;

ILU_DropTol = 1e-4;

ILU_FillFactor = 10.0;

ILU_Norm = INF_NORM;

ILU_MILU = SILU; /* not to use MILU */

ILU_FillTol = 1e-2;

The other possible values for each field are documented in the source code SRC/slu util.h.
The users can reset each default value according to their needs.

25

2.5 Permutations

Two permutation matrices are involved in the solution process. In fact, the actual factorization we
perform is PrAP

T
c = LU , where Pr is determined from partial pivoting (with a threshold pivoting

option), and Pc is a column permutation chosen either by the user or SuperLU, usually to make the
L and U factors as sparse as possible. Pr and Pc are represented by two integer vectors perm r[]

and perm c[], which are the permutations of the integers (0 : m− 1) and (0 : n− 1), respectively.

2.5.1 Ordering for sparsity

Column reordering for sparsity is completely separate from the LU factorization. The column
permutation Pc should be applied before calling the factorization routine dgstrf(). In principle,
any ordering heuristic used for symmetric matrices can be applied to ATA (or A+AT if the matrix
is nearly structurally symmetric) to obtain Pc. Currently, we provide the following ordering options
through options argument. The options.ColPerm field can take the following values:

• NATURAL: use natural ordefring (i.e., Pc = I).

• MMD AT PLUS A: use minimum degree ordering on the structure of AT +A.

• MMD ATA: use minimum degree ordering on the structure of ATA.

• COLAMD: use approximate minimum degree column ordering.

• MY PERMC: use the ordering given in the permutation vector perm c[], which is input by the
user.

If options.ColPerm is set to the last value, the library will use the permutation vector perm c[]

as an input, which may be obtained from any other ordering algorithm. For example, the nested-
dissection type of ordering codes include Metis [18], Chaco [16] and Scotch [29].

Alternatively, the users can provide their own column permutation vector. For example, it
may be an ordering suitable for the underlying physical problem. Both driver routines dgssv and
dgssvx take perm c[] as an input argument.

After permutation Pc is applied to A, we use SLU NCP format to represent the permuted matrix
AP T

c , in which the consecutive columns of nonzeros may not be stored contiguously in memory.
Therefore, we need two separate arrays of pointers, colbeg[] and colend[], to indicate the be-
ginning and end of each column in nzval[] and rowind[].

typedef struct {

int nnz; /* number of nonzeros in the matrix */

void *nzval; /* array of nonzero values, packed by column */

int *rowind; /* array of row indices of the nonzeros */

int *colbeg; /* colbeg[j] points to the location in nzval[] and rowind[]

which starts column j */

int *colend; /* colend[j] points to one past the location in nzval[]

and rowind[] which ends column j */

} NCPformat;

26

2.5.2 Partial pivoting with threshold

We have included a threshold pivoting parameter u ∈ [0, 1] to control numerical stability. The
user can choose to use a row permutation obtained from a previous factorization. (The argu-
ment options.Fact = SamePattern SameRowPerm should be passed to the factorization routine
dgstrf().) The pivoting subroutine dpivotL() checks whether this choice of pivot satisfies the
threshold; if not, it will try the diagonal element. If neither of the above satisfies the threshold,
the maximum magnitude element in the column will be used as the pivot. The pseudo-code of the
pivoting policy for column j is given below.

(1) compute thresh = u |amj |, where |amj | = maxi≥j |aij |;

(2) if user specifies pivot row k and |akj | ≥ thresh and akj 6= 0 then
pivot row = k;

else if |ajj | ≥ thresh and ajj 6= 0 then
pivot row = j;

else
pivot row = m;

endif;

Two special values of u result in the following two strategies:

• u = 0.0: either use user-specified pivot order if available, or else use diagonal pivot;

• u = 1.0: classical partial pivoting.

2.6 Symmetric Mode

In many applications, matrix A may be diagonally dominant or nearly so. In this case, pivoting on
the diagonal is sufficient for stability and is preferable for sparsity to off-diagonal pivoting. To do
this, the user can set a small (less-than-one) diagonal pivot threshold (e.g., 0.0, 0.01) and choose
an (AT + A)–based column permutation algorithm. We call this setting symmetric mode. In this
case, the options.SymmetricMode = YES must be set.

Note that, when a diagonal entry is smaller than the threshold, the code will still choose an
off-diagonal pivot. That is, the row permutation Pr may not be Identity. Please refer to [22] for
more discussion on the symmetric mode.

2.7 Incomplete LU factorization (ILU) preconditioner

Starting from SuperLU version 4.0, we provide the ILU routines to be used as preconditioners
for iterative solvers. Our ILU method can be considered to be a variant of the ILUTP method
originally proposed by Saad [31], which combines a dual dropping strategy with numerical pivoting
(“T” stands for threshold, and “P” stands for pivoting). We adapted the classic dropping strategies
of ILUTP in order to incorporate supernode structures and to accommodate dynamic supernodes
due to partial pivoting. For the secondary dropping strategy, we proposed an area-based fill control
method, which is more flexible and numerically robust than the traditional column-based scheme.

27

Furthermore, we incorporated several heuristics for adaptively modifying various threshold param-
eters as the factorization proceeds, which improves the robustness of the algorithm. The details
can be found in [25].

2.8 Memory management for L and U

In the sparse LU algorithm, the amount of space needed to hold the data structures of L and U
cannot be accurately predicted prior to the factorization. The dynamically growing arrays include
those for the nonzero values (nzval[]) and the compressed row indices (rowind[]) of L, and for
the nonzero values (nzval[]) and the row indices (rowind[]) of U .

Two alternative memory models are presented to the user:

• system-level – based on C’s dynamic allocation capability (malloc/free);

• user-level – based on a user-supplied work[] array of size lwork (in bytes). This is similar
to Fortran-style handling of work space. Work[] is organized as a two-ended stack, one end
holding the L and U data structures, the other end holding the auxiliary arrays of known
size.

Except for the different ways to allocate/deallocate space, the logical view of the memory
organization is the same for both schemes. Now we describe the policies in the memory module.

At the outset of the factorization, we guess there will be FILL*nnz(A) fills in the factors and
allocate corresponding storage for the above four arrays, where nnz(A) is the number of nonzeros in
original matrixA, and FILL is an integer, say 20. (The value of FILL can be set in an inquiry function
sp ienv(), see section 2.11.3.) If this initial request exceeds the physical memory constraint, the
FILL factor is repeatedly reduced, and attempts are made to allocate smaller arrays, until the initial
allocation succeeds.

During the factorization, if any array size exceeds the allocated bound, we expand it as follows.
We first allocate a chunk of new memory of size EXPAND times the old size, then copy the existing
data into the new memory, and then free the old storage. The extra copying is necessary, because the
factorization algorithm requires that each of the aforementioned four data structures be contiguous
in memory. The values of FILL and EXPAND are normally set to 20 and 1.5, respectively. See
xmemory.c for details.

After factorization, we do not garbage-collect the extra space that may have been allocated.
Thus, there will be external fragmentation in the L and U data structures. The settings of FILL and
EXPAND should take into account the trade-off between the number of expansions and the amount
of fragmentation.

Arrays of known size, such as various column pointers and working arrays, are allocated just
once. All dynamically-allocated working arrays are freed after factorization.

2.9 User-callable routines

The naming conventions, calling sequences and functionality of these routines mimic the corre-
sponding LAPACK software [1]. In the routine names, such as dgstrf, we use the two letters GS to
denote general sparse matrices. The leading letterx stands for S, D, C, or Z, specifying the data
type.

28

2.9.1 Driver routines

We provide two types of driver routines for solving systems of linear equations. The driver routines
can handle both column- and row-oriented storage schemes.

• A simple driver dgssv(), which solves the system AX = B by factorizing A and overwriting
B with the solution X.

• An expert driver dgssvx(), which, in addition to the above, also performs the following
functions (some of them optionally):

– solve ATX = B;

– equilibrate the system (scale A’s rows and columns to have unit norm) if A is poorly
scaled;

– estimate the condition number of A, check for near-singularity, and check for pivot
growth;

– refine the solution and compute forward and backward error bounds.

• An expert driver dgsisx(), which gives the approximate solutions of linear equations AX = B
or ATX = B, using the ILU factorization from dgsitrf(). An estimation of the condition
number is provide, and the pivot growth is computed.

These driver routines cover all the functionality of the computational routines. We expect that
most users can simply use these driver routines to fulfill their tasks with no need to bother with
the computational routines.

2.9.2 Computational routines

The users can invoke the following computational routines, instead of the driver routines, to directly
control the behavior of SuperLU. The computational routines can only handle column-oriented
storage.

• dgstrf(): Factorize.

This implements the first-time factorization, or later re-factorization with the same nonzero
pattern. In re-factorizations, the code has the ability to use the same column permutation Pc

and row permutation Pr obtained from a previous factorization. The input argument options
contains several scalar arguments to control how the LU decomposition and the numerical
pivoting should be performed. dgstrf() can handle non-square matrices.

• dgsitrf(): ILU.

This implements the incomplete LU factorization The input argument options contains sev-
eral scalar arguments to control how the incomplete facotirzation and the numerical pivoting
should be performed.

• dgstrs(): Triangular solve.

This takes the L and U triangular factors, the row and column permutation vectors, and the
right-hand side to compute a solution matrix X of AX = B or ATX = B.

29

• dgscon(): Estimate condition number.

Given the matrix A and its factors L and U , this estimates the condition number in the
one-norm or infinity-norm. The algorithm is due to Hager and Higham [17], and is the same
as CONDEST in sparse Matlab.

• dgsequ()/dlaqgs(): Equilibrate.

dgsequ first computes the row and column scalings Dr and Dc which would make each row
and each column of the scaled matrix DrADc have equal norm. dlaqgs then applies them to
the original matrix A if it is indeed badly scaled. The equilibrated A overwrites the original
A.

• dgsrfs(): Refine solution.

Given A, its factors L and U , and an initial solution X, this does iterative refinement, using
the same precision as the input data. It also computes forward and backward error bounds
for the refined solution.

2.9.3 Utility routines

The utility routines can help users create and destroy the SuperLU matrices easily. These routines
reside in two places: SRC/util.c contains the routines that are precision-independent;
SRC/{s,d,c,z}util.c contains the routines dependent on precision. Here, we list the prototypes
of these routines.

/* Create a supermatrix in compressed column format. A is the output. */

dCreate_CompCol_Matrix(SuperMatrix *A, int m, int n, int nnz,

double *nzval, int *rowind, int *colptr,

Stype_t stype, Dtype_t dtype, Mtype_t mtype);

/* Create a supermatrix in compressed row format. A is the output. */

dCreate_CompRow_Matrix(SuperMatrix *A, int m, int n, int nnz,

double *nzval, int *colind, int *rowptr,

Stype_t stype, Dtype_t dtype, Mtype_t mtype);

/* Copy matrix A into matrix B, both in compressed column format. */

dCopy_CompCol_Matrix(SuperMatrix *A, SuperMatrix *B);

/* Create a supermatrix in dense format. X is the output.*/

dCreate_Dense_Matrix(SuperMatrix *X, int m, int n, double *x, int ldx,

Stype_t stype, Dtype_t dtype, Mtype_t mtype);

/* Create a supermatrix in supernodal format. L is the output. */

dCreate_SuperNode_Matrix(SuperMatrix *L, int m, int n, int nnz,

double *nzval, int *nzval_colptr, int *rowind,

int *rowind_colptr, int *col_to_sup, int *sup_to_col,

Stype_t stype, Dtype_t dtype, Mtype_t mtype);

30

/* Convert the compressed row fromat to the compressed column format. */

dCompRow_to_CompCol(int m, int n, int nnz,

double *a, int *colind, int *rowptr,

double **at, int **rowind, int **colptr);

/* Print a supermatrix in compressed column format. */

dPrint_CompCol_Matrix(char *what, SuperMatrix *A);

/* Print a supermatrix in supernodal format. */

dPrint_SuperNode_Matrix(char *what, SuperMatrix *A);

/* Print a supermatrix in dense format. */

dPrint_Dense_Matrix(char *what, SuperMatrix *A);

/* Deallocate the storage structure *Store. */

Destroy_SuperMatrix_Store(SuperMatrix *A);

/* Deallocate the supermatrix structure in compressed column format. */

Destroy_CompCol_Matrix(SuperMatrix *A)

/* Deallocate the supermatrix structure in supernodal format. */

Destroy_SuperNode_Matrix(SuperMatrix *A)

/* Deallocate the supermatrix structure in permuted compressed column format. */

Destroy_CompCol_Permuted(SuperMatrix *A)

/* Deallocate the supermatrix structure in dense format. */

Destroy_Dense_Matrix(SuperMatrix *A)

2.10 Matlab interface

In the SuperLU/MATLAB subdirectory, we have developed a set of MEX-files interface to Matlab.
Typing make in this directory produces executables to be invoked in Matlab. The current Makefile
is set up so that the MEX-files are compatible with Matlab Version 5. The user should edit Makefile
for Matlab Version 4 compatibility. Right now, only the factor routine dgstrf() and the simple
driver routine dgssv() are callable by invoking superlu and lusolve in Matlab, respectively.
Superlu and lusolve correspond to the two Matlab built-in functions lu and \ . In Matlab, when
you type

help superlu

you will find the following description about superlu’s functionality and how to use it.

SUPERLU : Supernodal LU factorization

Executive summary:

[L,U,p] = superlu(A) is like [L,U,P] = lu(A), but faster.

31

[L,U,prow,pcol] = superlu(A) preorders the columns of A by min degree,

yielding A(prow,pcol) = L*U.

Details and options:

With one input and two or three outputs, SUPERLU has the same effect as LU,

except that the pivoting permutation is returned as a vector, not a matrix:

[L,U,p] = superlu(A) returns unit lower triangular L, upper triangular U,

and permutation vector p with A(p,:) = L*U.

[L,U] = superlu(A) returns permuted triangular L and upper triangular U

with A = L*U.

With a second input, the columns of A are permuted before factoring:

[L,U,prow] = superlu(A,psparse) returns triangular L and U and permutation

prow with A(prow,psparse) = L*U.

[L,U] = superlu(A,psparse) returns permuted triangular L and triangular U

with A(:,psparse) = L*U.

Here psparse will normally be a user-supplied permutation matrix or vector

to be applied to the columns of A for sparsity. COLMMD is one way to get

such a permutation; see below to make SUPERLU compute it automatically.

(If psparse is a permutation matrix, the matrix factored is A*psparse’.)

With a fourth output, a column permutation is computed and applied:

[L,U,prow,pcol] = superlu(A,psparse) returns triangular L and U and

permutations prow and pcol with A(prow,pcol) = L*U.

Here psparse is a user-supplied column permutation for sparsity,

and the matrix factored is A(:,psparse) (or A*psparse’ if the

input is a permutation matrix). Output pcol is a permutation

that first performs psparse, then postorders the etree of the

column intersection graph of A. The postorder does not affect

sparsity, but makes supernodes in L consecutive.

[L,U,prow,pcol] = superlu(A,0) is the same as ... = superlu(A,I); it does

not permute for sparsity but it does postorder the etree.

[L,U,prow,pcol] = superlu(A) is the same as ... = superlu(A,colmmd(A));

it uses column minimum degree to permute columns for sparsity,

then postorders the etree and factors.

For a description about lusolve’s functionality and how to use it, you can type
help lusolve

LUSOLVE : Solve linear systems by supernodal LU factorization.

x = lusolve(A, b) returns the solution to the linear system A*x = b,

32

using a supernodal LU factorization that is faster than Matlab’s

builtin LU. This m-file just calls a mex routine to do the work.

By default, A is preordered by column minimum degree before factorization.

Optionally, the user can supply a desired column ordering:

x = lusolve(A, b, pcol) uses pcol as a column permutation.

It still returns x = A\b, but it factors A(:,pcol) (if pcol is a

permutation vector) or A*Pcol (if Pcol is a permutation matrix).

x = lusolve(A, b, 0) suppresses the default minimum degree ordering;

that is, it forces the identity permutation on columns.

Two M-files trysuperlu.m and trylusolve.m are written to test the correctness of superlu
and lusolve. In addition to testing the residual norms, they also test the function invocations
with various number of input/output arguments.

2.11 Installation

2.11.1 File structure

The top level SuperLU/ directory is structured as follows:

SuperLU/README instructions on installation

SuperLU/CBLAS/ needed BLAS routines in C, not necessarily fast

SuperLU/EXAMPLE/ example programs

SuperLU/INSTALL/ test machine dependent parameters; this Users’ Guide

SuperLU/MAKE_INC/ sample machine-specific make.inc files

SuperLU/MATLAB/ Matlab mex-file interface

SuperLU/SRC/ C source code, to be compiled into the superlu.a library

SuperLU/TESTING/ driver routines to test correctness

SuperLU/Makefile top level Makefile that does installation and testing

SuperLU/make.inc compiler, compile flags, library definitions and C

preprocessor definitions, included in all Makefiles

Before installing the package, you may need to edit SuperLU/make.inc for your system. This
make include file is referenced inside each of the Makefiles in the various subdirectories. As a
result, there is no need to edit the Makefiles in the subdirectories. All information that is machine
specific has been defined in make.inc.

Sample machine-specific make.inc are provided in the MAKE INC/ subdirectory for several sys-
tems, including IBM RS/6000, DEC Alpha, SunOS 4.x, SunOS 5.x (Solaris), HP-PA and SGI Iris
4.x. When you have selected the machine on which you wish to install SuperLU, you may copy the
appropriate sample include file (if one is present) into make.inc. For example, if you wish to run
SuperLU on an IBM RS/6000, you can do:

cp MAKE INC/make.rs6k make.inc

For systems other than those listed above, slight modifications to the make.inc file will need
to be made. In particular, the following three items should be examined:

33

1. The BLAS library.
If there is a BLAS library available on your machine, you may define the following in make.inc:

BLASDEF = -DUSE VENDOR BLAS
BLASLIB = <BLAS library you wish to link with>

The CBLAS/ subdirectory contains the part of the C BLAS needed by the SuperLU package.
However, these codes are intended for use only if there is no faster implementation of the
BLAS already available on your machine. In this case, you should do the following:

1) In make.inc, undefine (comment out) BLASDEF, define:

BLASLIB = ../blas$(PLAT).a

2) In the SuperLU/ directory, type:

make blaslib

to make the BLAS library from the routines in the CBLAS/ subdirectory.

2. C preprocessor definition CDEFS.
In the header file SRC/Cnames.h, we use macros to determine how C routines should be named
so that they are callable by Fortran.2 The possible options for CDEFS are:

• -DAdd : Fortran expects a C routine to have an underscore postfixed to the name;

• -DNoChange: Fortran expects a C routine name to be identical to that compiled by C;

• -DUpCase: Fortran expects a C routine name to be all uppercase.

3. The Matlab MEX-file interface.
The MATLAB/ subdirectory includes Matlab C MEX-files, so that our factor and solve routines
can be called as alternatives to those built into Matlab. In the file SuperLU/make.inc, define
MATLAB to be the directory in which Matlab is installed on your system, for example:

MATLAB = /usr/local/matlab

At the SuperLU/ directory, type:

make matlabmex

to build the MEX-file interface. After you have built the interface, you may go to the MATLAB/
subdirectory to test the correctness by typing (in Matlab):

trysuperlu

trylusolve

A Makefile is provided in each subdirectory. The installation can be done completely auto-
matically by simply typing make at the top level.

2.11.2 Testing

The test programs in SuperLU/INSTALL subdirectory test two routines:

2Some vendor-supplied BLAS libraries do not have C interfaces. So the re-naming is needed in order for the
SuperLU BLAS calls (in C) to interface with the Fortran-style BLAS.

34

Matrix type Description

0 sparse matrix g10

1 diagonal
2 upper triangular
3 lower triangular
4 random, κ = 2
5 first column zero
6 last column zero
7 last n/2 columns zero
8 random, κ =

√
0.1/ε

9 random, κ = 0.1/ε
10 scaled near underflow
11 scaled near overflow

Table 2.1: Properties of the test matrices. ε is
the machine epsilon and κ is the condition num-
ber of matrix A. Matrix types with one or more
columns set to zero are used to test the error
return codes.

Test Type Test ratio Routines

0 ||LU −A||/(n||A||ε) dgstrf

1 ||b−Ax||/(||A|| ||x||ε) dgssv, dgssvx
2 ||x− x∗||/(||x∗||κε) dgssvx

3 ||x− x∗||/(||x∗|| FERR) dgssvx

4 BERR/ε dgssvx

Table 2.2: Types of tests. x∗ is the true solution,
FERR is the error bound, and BERR is the
backward error.

• slamch()/dlamch() determines properties of the floating-point arithmetic at run-time (both
single and double precision), such as the machine epsilon, underflow threshold, overflow
threshold, and related parameters;

• SuperLU timer () returns the time in seconds used by the process. This function may need
to be modified to run on your machine.

The test programs in the SuperLU/TESTING subdirectory are designed to test all the functions of
the driver routines, especially the expert drivers. The Unix shell script files xtest.csh are used to
invoke tests with varying parameter settings. The input matrices include an actual sparse matrix
SuperLU/EXAMPLE/g10 of dimension 100 × 100,3 and numerous matrices with special properties
from the LAPACK test suite. Table 2.1 describes the properties of the test matrices.

For each command line option specified in dtest.csh, the test program ddrive reads in or
generates an appropriate matrix, calls the driver routines, and computes a number of test ratios
to verify that each operation has performed correctly. If the test ratio is smaller than a preset
threshold, the operation is considered to be correct. Each test matrix is subject to the tests listed
in Table 2.2.

Let r be the residual r = b − Ax, and let mi be the number of nonzeros in row i of A. Then
the componentwise backward error BERR and forward error FERR [1] are calculated by:

BERR = max
i

|r|i
(|A| |x|+ |b|)i

.

3Matrix g10 is first generated with the structure of the 10-by-10 five-point grid, and random numerical values.
The columns are then permuted by COLMMD ordering from Matlab.

35

FERR =
|| |A−1| f ||∞
||x||∞

.

Here, f is a nonnegative vector whose components are computed as fi = |r|i +mi ε (|A| |x|+ |b|)i,
and the norm in the numerator is estimated using the same subroutine used for estimating the
condition number. BERR measures the smallest relative perturbation one can make to each entry
of A and of b so that the computed solution is an exact solution of the perturbed problem. FERR
is an estimated bound on the error ‖x∗ − x‖∞/‖x‖∞, where x∗ is the true solution. For further
details on error analysis and error bounds estimation, see [1, Chapter 4] and [2].

2.11.3 Performance-tuning parameters

SuperLU chooses such machine-dependent parameters as block size by calling an inquiry function
sp ienv(), which may be set to return different values on different machines. The declaration of
this function is

int sp ienv(int ispec);

Ispec specifies the parameter to be returned, (See reference [5] for their definitions.)

ispec = 1: the panel size (w)
= 2: the relaxation parameter to control supernode amalgamation (relax)
= 3: the maximum allowable size for a supernode (maxsup)
= 4: the minimum row dimension for 2D blocking to be used (rowblk)
= 5: the minimum column dimension for 2D blocking to be used (colblk)
= 6: the estimated fills factor for L and U, compared with A

Users are encouraged to modify this subroutine to set the tuning parameters for their own local
environment. The optimal values depend mainly on the cache size and the BLAS speed. If your
system has a very small cache, or if you want to efficiently utilize the closest cache in a multilevel
cache organization, you should pay special attention to these parameter settings. In our technical
paper [5], we described a detailed methodology for setting these parameters for high performance.

The relax parameter is usually set between 4 and 8. The other parameter values which give
good performance on several machines are listed in Table 2.3. In a supernode-panel update, if the
updating supernode is too large to fit in cache, then a 2D block partitioning of the supernode is
used, in which rowblk and colblk determine that a block of size rowblk × colblk is used to update
current panel.

If colblk is set greater than maxsup, then the program will never use 2D blocking. For example,
for the Cray J90 (which does not have cache), w = 1 and 1D blocking give good performance; more
levels of blocking only increase overhead.

2.12 Example programs

In the SuperLU/EXAMPLE/ subdirectory, we present a few sample programs to illustrate how to
use various functions provded in SuperLU. The users can modify these examples to suit their
applications. Here are the brief descriptions of the double precision version of the examples:

• dlinsol: use simple driver dgssv() to solve a linear system one time.

36

On-chip External
Machine Cache Cache w maxsup rowblk colblk

RS/6000-590 256 KB – 8 100 200 40
MIPS R8000 16 KB 4 MB 20 100 800 100
Alpha 21064 8 KB 512 KB 8 100 400 40
Alpha 21164 8 KB-L1 4 MB 16 50 100 40

96 KB-L2
Sparc 20 16 KB 1 MB 8 100 400 50
UltraSparc-I 16 KB 512 KB 8 100 400 40
Cray J90 – – 1 100 1000 100

Table 2.3: Typical blocking parameter values for several machines.

• dlinsol1: use simple driver dgssv() in the symmetric mode.

• dlinsolx: use dgssvx() with the full (default) set of options to solve a linear system.

• dlinsolx1: use dgssvx() to factorize A first, then solve the system later.

• dlinsolx2: use dgssvx() to solve systems repeatedly with the same sparsity pattern of
matrix A.

• superlu: the small 5x5 sample program in Section 2.2.

In this directory, a Makefile is provided to generate the executables, and a README file describes
how to run these examples.

2.13 Calling from Fortran

The SuperLU/FORTRAN/ subdirectory contains an example of using SuperLU from a Fortran pro-
gram. The General rules for mixing Fortran and C programs are as follows.

• Arguments in C are passed by value, while in Fortran are passed by reference. So we always
pass the address (as a pointer) in the C calling routine. (You cannot make a call with numbers
directly in the parameters.)

• Fortran uses 1-based array addressing, while C uses 0-based. Therefore, the row indices
(rowind[]) and the integer pointers to arrays (colptr[]) should be adjusted before they are
passed into a C routine.

Because of the above language differences, in order to embed SuperLU in a Fortran environment,
users are required to use “wrapper” routines (in C) for all the SuperLU routines that will be called
from Fortran programs. The example c fortran dgssv.c in the FORTRAN/ directory shows how a
wrapper program should be written. This program is listed below.

#include "dsp_defs.h"

#define HANDLE_SIZE 8

37

typedef struct {

SuperMatrix *L;

SuperMatrix *U;

int *perm_c;

int *perm_r;

} factors_t;

int

c_fortran_dgssv_(int *iopt, int *n, int *nnz, int *nrhs, double *values,

int *rowind, int *colptr, double *b, int *ldb,

int factors[HANDLE_SIZE], /* a handle containing the pointer

to the factored matrices */

int *info)

{

/*

* This routine can be called from Fortran.

*

* iopt (input) int

* Specifies the operation:

* = 1, performs LU decomposition for the first time

* = 2, performs triangular solve

* = 3, free all the storage in the end

*

* factors (input/output) integer array of size 8

* If iopt == 1, it is an output and contains the pointer pointing to

* the structure of the factored matrices.

* Otherwise, it it an input.

*

*/

SuperMatrix A, AC, B;

SuperMatrix *L, *U;

int *perm_r; /* row permutations from partial pivoting */

int *perm_c; /* column permutation vector */

int *etree; /* column elimination tree */

SCformat *Lstore;

NCformat *Ustore;

int i, panel_size, permc_spec, relax;

trans_t trans;

double drop_tol = 0.0;

mem_usage_t mem_usage;

superlu_options_t options;

SuperLUStat_t stat;

factors_t *LUfactors;

38

trans = NOTRANS;

if (*iopt == 1) { /* LU decomposition */

/* Set the default input options. */

set_default_options(&options);

/* Initialize the statistics variables. */

StatInit(&stat);

/* Adjust to 0-based indexing */

for (i = 0; i < *nnz; ++i) --rowind[i];

for (i = 0; i <= *n; ++i) --colptr[i];

dCreate_CompCol_Matrix(&A, *n, *n, *nnz, values, rowind, colptr,

SLU_NC, SLU_D, SLU_GE);

L = (SuperMatrix *) SUPERLU_MALLOC(sizeof(SuperMatrix));

U = (SuperMatrix *) SUPERLU_MALLOC(sizeof(SuperMatrix));

if (!(perm_r = intMalloc(*n))) ABORT("Malloc fails for perm_r[].");

if (!(perm_c = intMalloc(*n))) ABORT("Malloc fails for perm_c[].");

if (!(etree = intMalloc(*n))) ABORT("Malloc fails for etree[].");

/*

* Get column permutation vector perm_c[], according to permc_spec:

* permc_spec = 0: natural ordering

* permc_spec = 1: minimum degree on structure of A’*A

* permc_spec = 2: minimum degree on structure of A’+A

* permc_spec = 3: approximate minimum degree for unsymmetric matrices

*/

permc_spec = 3;

get_perm_c(permc_spec, &A, perm_c);

sp_preorder(&options, &A, perm_c, etree, &AC);

panel_size = sp_ienv(1);

relax = sp_ienv(2);

dgstrf(&options, &AC, drop_tol, relax, panel_size,

etree, NULL, 0, perm_c, perm_r, L, U, &stat, info);

if (*info == 0) {

Lstore = (SCformat *) L->Store;

Ustore = (NCformat *) U->Store;

printf("No of nonzeros in factor L = %d\n", Lstore->nnz);

printf("No of nonzeros in factor U = %d\n", Ustore->nnz);

39

printf("No of nonzeros in L+U = %d\n", Lstore->nnz + Ustore->nnz);

dQuerySpace(L, U, &mem_usage);

printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",

mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,

mem_usage.expansions);

} else {

printf("dgstrf() error returns INFO= %d\n", *info);

if (*info <= *n) { /* factorization completes */

dQuerySpace(L, U, &mem_usage);

printf("L\\U MB %.3f\ttotal MB needed %.3f\texpansions %d\n",

mem_usage.for_lu/1e6, mem_usage.total_needed/1e6,

mem_usage.expansions);

}

}

/* Restore to 1-based indexing */

for (i = 0; i < *nnz; ++i) ++rowind[i];

for (i = 0; i <= *n; ++i) ++colptr[i];

/* Save the LU factors in the factors handle */

LUfactors = (factors_t*) SUPERLU_MALLOC(sizeof(factors_t));

LUfactors->L = L;

LUfactors->U = U;

LUfactors->perm_c = perm_c;

LUfactors->perm_r = perm_r;

factors[0] = (int) LUfactors;

/* Free un-wanted storage */

SUPERLU_FREE(etree);

Destroy_SuperMatrix_Store(&A);

Destroy_CompCol_Permuted(&AC);

StatFree(&stat);

} else if (*iopt == 2) { /* Triangular solve */

/* Initialize the statistics variables. */

StatInit(&stat);

/* Extract the LU factors in the factors handle */

LUfactors = (factors_t*) factors[0];

L = LUfactors->L;

U = LUfactors->U;

perm_c = LUfactors->perm_c;

perm_r = LUfactors->perm_r;

dCreate_Dense_Matrix(&B, *n, *nrhs, b, *ldb, SLU_DN, SLU_D, SLU_GE);

40

/* Solve the system A*X=B, overwriting B with X. */

dgstrs (trans, L, U, perm_c, perm_r, &B, &stat, info);

Destroy_SuperMatrix_Store(&B);

StatFree(&stat);

} else if (*iopt == 3) { /* Free storage */

/* Free the LU factors in the factors handle */

LUfactors = (factors_t*) factors[0];

SUPERLU_FREE (LUfactors->perm_r);

SUPERLU_FREE (LUfactors->perm_c);

Destroy_SuperNode_Matrix(LUfactors->L);

Destroy_CompCol_Matrix(LUfactors->U);

SUPERLU_FREE (LUfactors->L);

SUPERLU_FREE (LUfactors->U);

SUPERLU_FREE (LUfactors);

} else {

fprintf(stderr, "Invalid iopt=%d passed to c_fortran_dgssv()\n");

exit(-1);

}

}

Since the matrix structures in C cannot be directly returned to Fortran, we use a handle named
factors to access those structures. The handle is essentially an integer pointer pointing to the
factored matrices obtained from SuperLU. So the factored matrices are opaque objects to the Fortran
program, but can only be manipulated from the C wrapper program.

The Fortran program FORTRAN/f77 main.f shows how a Fortran program may call
c fortran dgssv(), and is listed below. A README file in this directory describes how to compile
and run this program.

program f77_main

integer maxn, maxnz

parameter (maxn = 10000, maxnz = 100000)

integer rowind(maxnz), colptr(maxn)

real*8 values(maxnz), b(maxn)

integer n, nnz, nrhs, ldb, info

integer factors(8), iopt

*

* Read the matrix file in Harwell-Boeing format

call hbcode1(n, n, nnz, values, rowind, colptr)

*

nrhs = 1

ldb = n

do i = 1, n

b(i) = 1

41

enddo

*

* First, factorize the matrix. The factors are stored in factor() handle.

iopt = 1

call c_fortran_dgssv(iopt, n, nnz, nrhs, values, rowind, colptr,

$ b, ldb, factors, info)

*

if (info .eq. 0) then

write (*,*) ’Factorization succeeded’

else

write(*,*) ’INFO from factorization = ’, info

endif

*

* Second, solve the system using the existing factors.

iopt = 2

call c_fortran_dgssv(iopt, n, nnz, nrhs, values, rowind, colptr,

$ b, ldb, factors, info)

*

if (info .eq. 0) then

write (*,*) ’Solve succeeded’

write (*,*) (b(i), i=1, 10)

else

write(*,*) ’INFO from triangular solve = ’, info

endif

* Last, free the storage allocated inside SuperLU

iopt = 3

call c_fortran_dgssv(iopt, n, nnz, nrhs, values, rowind, colptr,

$ b, ldb, factors, info)

*

stop

end

42

Chapter 3

Multithreaded SuperLU (Version 2.0)

3.1 About SuperLU MT

Among the various steps of the solution process in the sequential SuperLU, the LU factorization
dominates the computation; it usually takes more than 95% of the sequential runtime for large
sparse linear systems. We have designed and implemented an algorithm to perform the factorization
in parallel on machines with a shared address space and multithreading. The parallel algorithm
is based on the efficient sequential algorithm implemented in SuperLU. Although we attempted
to minimize the amount of changes to the sequential code, there are still a number of non-trivial
modifications to the serial SuperLU, mostly related to the matrix data structures and memory
organization. All these changes are summarized in Table 3.1 and their impacts on performance are
studied thoroughly in [6, 21]. In this part of the Users’ Guide, we describe only the changes that
the user should be aware of. Other than these differences, most of the material in chapter 2 is still
applicable.

Construct Parallel algorithm

panel restricted so it does not contain branchings in the elimination tree
supernode restricted to be a fundamental supernode in the elimination tree
supernode storage use either static or dynamic upper bound (section 3.5.2)
pruning & DFS use both G(LT) and pruned G(LT) to avoid locking

Table 3.1: The differences between the parallel and the sequential algorithms.

3.2 Storage types for L and U

As in the sequential code, the type for the factored matrices L and U is SuperMatrix (Figure 2.2),
however, their storage formats (stored in *Store) are changed. In the parallel algorithm, the
adjacent panels of the columns may be assigned to different processes, and they may be finished
and put in global memory out of order. That is, the consecutive columns or supernodes may not be
stored contiguously in memory. Thus, in addition to the pointers to the beginning of each column
or supernode, we need pointers to the end of the column or supernode. In particular, the storage
type for L is SCP (Supernode, Column-wise and Permuted), defined as:

43

typedef struct {

int nnz; /* number of nonzeros in the matrix */

int nsuper; /* number of supernodes */

void *nzval; /* pointer to array of nonzero values,

packed by column */

int *nzval_colbeg; /* nzval_colbeg[j] points to beginning of column j

in nzval[] */

int *nzval_colend; /* nzval_colend[j] points to one past the last

element of column j in nzval[] */

int *rowind; /* pointer to array of compressed row indices of

the supernodes */

int *rowind_colbeg;/* rowind_colbeg[j] points to beginning of column j

in rowind[] */

int *rowind_colend;/* rowind_colend[j] points to one past the last

element of column j in rowind[] */

int *col_to_sup; /* col_to_sup[j] is the supernode number to which

column j belongs */

int *sup_to_colbeg;/* sup_to_colbeg[s] points to the first column

of the s-th supernode /

int *sup_to_colend;/* sup_to_colend[s] points to one past the last

column of the s-th supernode */

} SCPformat;

The storage type for U is NCP, defined as:

typedef struct {

int nnz; /* number of nonzeros in the matrix */

void *nzval; /* pointer to array of nonzero values, packed by column */

int *rowind; /* pointer to array of row indices of the nonzeros */

int *colbeg; /* colbeg[j] points to the location in nzval[] and rowind[]

which starts column j */

int *colend; /* colend[j] points to one past the location in nzval[]

and rowind[] which ends column j */

} NCPformat;

The table below summarizes the data and storage types of all the matrices involved in the
parallel routines:

A L U B X

Stype SLU NC or SLU NR SLU SCP SLU NCP SLU DN SLU DN

Dtype any any any any any
Mtype SLU GE SLU TRLU SLU TRU SLU GE SLU GE

3.3 Options argument

The options argument is the input argument to control the behaviour of the libraries. Options is
implemented as a C structure containing the following fields:

44

• nprocs

Specifies the number of threads to be spawned.

• Fact

Specifies whether or not the factored form of the matrix A is supplied on entry, and if not,
how the matrix A will be factorized base on the previous history, such as factor from scratch,
reuse Pc and/or Pr, or reuse the data structures of L and U . fact can be one of:

– DOFACT: the matrix A will be factorized from scratch.

– EQUILIBRATE: the matrix A will be equilibrated, then factored into L and U.

– FACTORED: the factored form of A is input.

• Trans { NOTRANS | TRANS | CONJ }
Specifies whether to solve the transposed system.

• panel size

Specifies the number of consecutive columns to be treated as a unit of task.

• relax

Specifies the number of columns to be grouped as a relaxed supernode.

• refact { YES | NO }
Specifies whether this is first time or subsequent factorization.

• diag pivot thresh [0.0, 1.0]
Specifies the threshold used for a diagonal entry to be an acceptable pivot.

• SymmetricMode { YES | NO }
Specifies whether to use the symmetric mode.

• PrintStat { YES | NO }
Specifies whether to print the solver’s statistics.

3.4 User-callable routines

As in the sequential SuperLU, we provide both computational routines and driver routines. To
name those routines that involve parallelization in the call-graph, we prepend a letter p to the
names of their sequential counterparts, for example pdgstrf. For the purely sequential routines,
we use the same names as before. Here, we only list the routines that are different from the
sequential ones.

3.4.1 Driver routines

We provide two types of driver routines for solving systems of linear equations. The driver routines
can handle both column- and row-oriented storage schemes.

• A simple driver pdgssv, which solves the system AX = B by factorizing A and overwriting
B with the solution X.

45

• An expert driver pdgssvx, which, in addition to the above, also performs the following func-
tions (some of them optionally):

– solve ATX = B;

– equilibrate the system (scale A’s rows and columns to have unit norm) if A is poorly
scaled;

– estimate the condition number of A, check for near-singularity, and check for pivot
growth;

– refine the solution and compute forward and backward error bounds.

3.4.2 Computational routines

The user can invoke the following computational routines to directly control the behavior of Su-
perLU. The computational routines can only handle column-oriented storage. Except for the par-
allel factorization routine pdgstrf, all the other routines are identical to those appeared in the
sequential superlu.

• pdgstrf: Factorize (in parallel).

This implements the first-time factorization, or later re-factorization with the same nonzero
pattern. In re-factorizations, the code has the ability to use the same column permutation
Pc and row permutation Pr obtained from a previous factorization. Several scalar arguments
control how the LU decomposition and the numerical pivoting should be performed. pdgstrf
can handle non-square matrices.

• dgstrs: Triangular solve.

This takes the L and U triangular factors, the row and column permutation vectors, and the
right-hand side to compute a solution matrix X of AX = B or ATX = B.

• dgscon: Estimate condition number.

Given the matrix A and its factors L and U , this estimates the condition number in the
one-norm or infinity-norm. The algorithm is due to Hager and Higham [17], and is the same
as condest in sparse Matlab.

• dgsequ/dlaqgs: Equilibrate.

dgsequ first computes the row and column scalings Dr and Dc which would make each row
and each column of the scaled matrix DrADc have equal norm. dlaqgs then applies them to
the original matrix A if it is indeed badly scaled. The equilibrated A overwrites the original
A.

• dgsrfs: Refine solution.

Given A, its factors L and U , and an initial solution X, this does iterative refinement, using
the same precision as the input data. It also computes forward and backward error bounds
for the refined solution.

46

3.5 Installation

3.5.1 File structure

The top level SuperLU MT/ directory is structured as follows:

SuperLU_MT_2.0/README instructions on installation

SuperLU_MT_2.0/CBLAS/ BLAS routines in C, functional but not fast

SuperLU_MT_2.0/DOC/ Users’ Guide

SuperLU_MT_2.0/EXAMPLE/ example programs

SuperLU_MT_2.0/INSTALL/ test machine dependent parameters

SuperLU_MT_2.0/SRC/ C source code, to be compiled into libsuperlu_mt.a

SuperLU_MT_2.0/TESTING/ driver routines to test correctness

SuperLU_MT_2.0/lib/ SuperLU_MT library archive libsuperlu_mt.a

SuperLU_MT_2.0/Makefile top level Makefile that does installation and testing

SuperLU_MT_2.0/MAKE_INC sample machine-specific make.inc files

SuperLU_MT_2.0/make.inc compiler, compiler flags, library definitions and C

preprocessor definitions, included in all Makefiles.

(You may need to edit it to suit for your system

before compiling the whole package.)

We have ported the parallel programs to a number of platforms, which are reflected in the
make include files provided in the top level directory, for example, make.pthreads, make.openmp,

make.ibm, make.sun, make.sgi, make.cray. If you are using one of these machines, such as an
IBM, you can simply copy make.sun into make.inc before compiling. If you are not using any of the
machines to which we have ported, you will need to read section 3.7 about the porting instructions.

The rest of the installation and testing procedure is similar to that described in section 2.11 for
the serial SuperLU. Then, you can type make at the top level directory to finish installation. In
the SuperLU MT/TESTING subdirectory, you can type pdtest.csh to perform testings.

3.5.2 Performance issues

Memory management for L and U

In the sequential SuperLU, four data arrays associated with the L and U factors can be expanded
dynamically, as described in section 2.8. In the parallel code, the expansion is hard and costly to
implement, because when a process detects that an array bound is exceeded, it has to send a signal
to and suspend the execution of the other processes. Then the detecting process can proceed with
the array expansion. After the expansion, this process must wake up all the suspended processes.

In this release of the parallel code, we have not yet implemented the above expansion mechanism.
For now, the user must pre-determine an estimated size for each of the four arrays through the
inquiry function sp ienv(). There are two interpretations for each integer value FILL returned
by calling this function with ispec = 6, 7, or 8. A negative number is interpreted as the fills
growth factor, that is, the program will allocate (-FILL)*nnz(A) elements for the corresponding
array. A positive number is interpreted as the true amount the user wants to allocate, that is, the
program will allocate FILL elements for the corresponding array. In both cases, if the initial request

47

exceeds the physical memory constraint, the sizes of the arrays are repeatedly reduced until the
initial allocation succeeds.

int sp ienv(int ispec);

Ispec specifies the parameter to be returned:

ispec = . . .
= 6: size of the array to store the values of the L supernodes (nzval)
= 7: size of the array to store the columns in U (nzval/rowind)
= 8: size of the array to store the subscripts of the L supernodes (rowind);

If the actual fill exceeds any array size, the program will abort with a message showing the
current column when failure occurs, and indicating how many elements are needed up to the
current column. The user may reset a larger fill parameter for this array and then restart the
program.

To make the storage allocation more efficient for the supernodes in L, we devised a special
storage scheme. The need for this special treatment and how we implement it are fully explained
and studied in [6, 21]. Here, we only sketch the main idea. Recall that the parallel algorithm assigns
one panel of columns to one process. Two consecutive panels may be assigned to two different
processes, even though they may belong to the same supernode discovered later. Moreover, a third
panel may be finished by a third process and put in memory between these two panels, resulting
in the columns of a supernode being noncontiguous in memory. This is undesirable, because then
we cannot directly call BLAS routines using this supernode unless we pay the cost of copying the
columns into contiguous memory first. To overcome this problem, we exploited the observation that
the nonzero structure for L is contained in that of the Householder matrix H from the Householder
sparse QR transformation [11, 12]. Furthermore, it can be shown that a fundamental supernode of
L is always contained in a fundamental supernode of H. This containment property is true for any
row permutation Pr in PrA = LU . Therefore, we can pre-allocate storage for the L supernodes
based on the size of H supernodes. Fortunately, there exists a fast algorithm (almost linear in the
number of nonzeros of A) to compute the size of H and the supernodes partition in H [13].

In practice, the above static prediction is fairly tight for most problems. However, for some
others, the number of nonzeros in H greatly exceeds the number of nonzeros in L. To handle
this situation, we implemented an algorithm that still uses the supernodes partition in H, but
dynamically searches the supernodal graph of L to obtain a much tighter bound for the storage.
Table 6 in [6] demonstrates the storage efficiency achieved by both static and dynamic approach.

In summary, our program tries to use the static prediction first for the L supernodes. In this
case, we ignore the integer value given in the function sp ienv(6), and simply use the nonzero
count of H. If the user finds that the size of H is too large, he can invoke the dynamic algorithm
at runtime by setting the following Linux shell environment variable:

setenv SuperLU DYNAMIC SNODE STORE 1

The dynamic algorithm incurs runtime overhead. For example, this overhead is usually between
2% and 15% on a single processor RS/6000-590 for a range of test matrices.

48

Symmetric structure pruning

In both serial and parallel algorithms, we have implemented Eisenstat and Liu’s symmetric pruning
idea of representing the graph G(LT) by a reduced graph G′, and thereby reducing the DFS traversal
time. A subtle difficulty arises in the parallel implementation.

When the owning process of a panel starts DFS (depth-first search) on G′ built so far, it
only sees the partial graph, because the part of G′ corresponding to the busy panels down the
elimination tree is not yet complete. So the structural prediction at this stage can miss some
nonzeros. After performing the updates from the finished supernodes, the process will wait for
all the busy descendant panels to finish and perform more updates from them. Now, we make
a conservative assumption that all these busy panels will update the current panel so that their
nonzero structures are included in the current panel.

This approximate scheme works fine for most problems. However, we found that this conser-
vatism may sometimes cause a large number of structural zeros (they are related to the supernode
amalgamation performed at the bottom of the elimination tree) to be included and they in turn
are propagated through the rest of the factorization.

We have implemented an exact structural prediction scheme to overcome this problem. In this
scheme, when each numerical nonzero is scattered into the sparse accumulator array, we set the
occupied flag as well. Later when we accumulate the updates from the busy descendant panels, we
check the occupied flags to determine the exact nonzero structure. This scheme avoids unnecessary
zero propagation at the expense of runtime overhead, because setting the occupied flags must be
done in the inner loop of the numeric updates.

We recommend that the user use the approximate scheme (by default) first. If the user finds
that the amount of fill from the parallel factorization is substantially greater than that from the
sequential factorization, he can then use the accurate scheme. To invoke the second scheme, the
user should recompile the code by defining the macro:

-D SCATTER FOUND

for the C preprocessor.

The inquiry function sp ienv()

For some user controllable constants, such as the blocking parameters and the size of the global
storage for L and U , SuperLU MT calls the inquiry function sp ienv() to retrieve their values.
The declaration of this function is

int sp ienv(int ispec).

The full meanings of the returned values are as follows:

ispec = 1: the panel size w
= 2: the relaxation parameter to control supernode amalgamation (relax)
= 3: the maximum allowable size for a supernode (maxsup)
= 4: the minimum row dimension for 2D blocking to be used (rowblk)
= 5: the minimum column dimension for 2D blocking to be used (colblk)
= 6: size of the array to store the values of the L supernodes (nzval)
= 7: size of the array to store the columns in U (nzval/rowind)
= 8: size of the array to store the subscripts of the L supernodes (rowind)

49

Programming Environment
make.inc Platforms Model Variable

make.pthreads Machines with POSIX threads pthreads
make.openmp Machines with OpenMP OpenMP OMP NUM THREADS

make.alpha DEC Alpha Servers DECthreads
make.cray Cray C90/J90 microtasking NCPUS

make.ibm IBM Power series pthreads
make.origin SGI/Cray Origin2000 parallel C MP SET NUMTHREADS

make.sgi SGI Power Challenge parallel C MPC NUM THREADS

make.sun Sun Ultra Enterprise Solaris threads

Table 3.2: Platforms on which SuperLU MT was tested.

We should take into account the trade-off between cache reuse and amount of parallelism in order
to set the appropriate w and maxsup. Since the parallel algorithm assigns one panel factorization to
one process, large values may constrain concurrency, even though they may be good for uniprocessor
performance. We recommend that w and maxsup be set a bit smaller than the best values used in
the sequential code.

The settings for parameters 2, 4 and 5 are the same as those described in section 2.11.3. The
settings for parameters 6, 7 and 8 are discussed in section 3.5.2.

In the file SRC/sp ienv.c, we provide sample settings of these parameters for several machines.

3.6 Example programs

In the SuperLU MT/EXAMPLE/ subdirectory, we present a few sample programs to illustrate the
complete calling sequences to use the simple and expert drivers to solve systems of equations. Ex-
amples are also given to illustrate how to perform a sequence of factorizations for the matrices with
the same sparsity pattern, and how SuperLU MT can be integrated into the other multithreaded
application such that threads are created only once. A Makefile is provided to generate the exe-
cutables. A README file in this directory shows how to run these examples. The leading comment
in each routine describes the functionality of the example.

3.7 Porting to other platforms

We have provided the parallel interfaces for a number of shared-memory machines. Table 3.2 lists
the platforms on which we have tested the library, and the respective make.inc files. The most
portable interface for shared memory programming is POSIX threads [30], since nowadays many
commercial UNIX operating systems have support for it. We call our POSIX threads interface the
Pthreads interface. To use this interface, you can copy make.pthreads into make.inc and then
compile the library. In the last column of Table 3.2, we list the runtime environment variable to
be set in order to use multiple CPUs. For example, to use 4 CPUs on the Origin2000, you need to
set the following before running the program:

setenv MP SET NUMTHREADS 4

50

Mutex Critical region

ULOCK allocate storage for a column of matrix U
LLOCK allocate storage for row subscripts of matrix L
LULOCK allocate storage for the values of the supernodes
NSUPER LOCK increment supernode number nsuper
SCHED LOCK invoke Scheduler() which may update global task queue

Table 3.3: Five mutex variables.

In the source code, all the platform specific constructs are enclosed in the C #ifdef preprocessor
statement. If your platform is different from any one listed in Table 3.2, you need to go to these
places and create the parallel constructs suitable for your machine. The two constructs, concurrency
and synchronization, are explained in the following two subsections, respectively.

3.7.1 Creating multiple threads

Right now, only the factorization routine pdgstrf is parallelized, since this is the most time-
consuming part in the whole solution process. There is one single thread of control on entering and
exiting pdgstrf. Inside this routine, more than one thread may be created. All the newly created
threads begin by calling the thread function pdgstrf thread and they are concurrently executed
on multiple processors. The thread function pdgstrf thread expects a single argument of type
void*, which is a pointer to the structure containing all the shared data objects.

3.7.2 Use of mutexes

Although the threads pdgstrf thread execute independently of each other, they share the same
address space and can communicate efficiently through shared variables. Problems may arise if
two threads try to access (at least one is to modify) the shared data at the same time. Therefore,
we must ensure that all memory accesses to the same data are mutually exclusive. There are five
critical regions in the program that must be protected by mutual exclusion. Since we want to allow
different processors to enter different critical regions simultaneously, we use five mutex variables as
listed in Table 3.3. The user should properly initialize them in routine ParallelInit, and destroy
them in routine ParallelFinalize. Both these routines are in file pxgstrf synch.c.

51

Chapter 4

Distributed-memory SuperLU on
manycore nodes (Version 4.0)

4.1 About SuperLU DIST

In this part, we describe the SuperLU DIST library designed for distributed-memory pearallel com-
puters using SPMD parallel programming model, together with multithreading for manycore node
architectures. The library is implemented in ANSI C, using MPI [27] for communication, OpenMP
for multithreading and CUDA for GPU. We have tested the code on a number of platforms, in-
cluding IBM, Cray XE6, Cray XT7, and numerous Linux clusters. The library includes routines
to handle both real and complex matrices in double precision. The parallel routine names for the
double-precision real version start with letters “pd” (such as pdgstrf); the parallel routine names
for double-precision complex version start with letters “pz” (such as pzgstrf).

4.2 Formats of the input matrices A and B

We provide two input interfaces for matrices A and B—one is global, and the other is entirely
distributed.

4.2.1 Global input

The input matrices A and B are globally available (replicated) on all the processes. The storage
type for A is SLU NC (compressed column), as in sequential case (see Section 2.3). The user-callable
routines with this interface all have the names “xxxxxxx ABglobal”. If there is sufficient memory,
this interface is faster than the distributed input interface described in the next section, because
the latter requires more data re-distribution at different stages of the algorithm.

4.2.2 Distributed input

Both input matrices A and B are distributed among all the processes. They use the same distri-
bution based on block rows. That is, each process owns a block of consecutive rows of A and B.
Each local part of sparse matrix A is stored in a compressed row format, called SLU NR loc storage
type, which is defined below.

52

typedef struct {

int nnz_loc; /* number of nonzeros in the local submatrix */

int m_loc; /* number of rows local to this process */

int fst_row; /* row number of the first row in the local submatrix */

void *nzval; /* pointer to array of nonzero values, packed by row */

int *rowptr; /* pointer to array of beginning of rows in nzval[]

and colind[] */

int *colind; /* pointer to array of column indices of the nonzeros */

} NRformat_loc;

Let mi be the number of rows owned by the ith process. Then the global row dimension for A
is nrow =

∑P−1
i=0 mi. The global column dimension is ncol. Both nrow and ncol are recorded in

the higher level SuperMatrix data structure, see Figure 2.2. The utility routine
dCreate CompRowLoc Matrix dist can help the user to create the structure for A. The definition
of this routine is

void dCreate_CompRowLoc_Matrix_dist(SuperMatrix *A, int m, int n,

int nnz_loc, int m_loc, int fst_row,

double *nzval, int *colind, int *rowptr,

Stype_t stype, Dtype_t dtype, Mtype_t mtype);

where, the first argument is output and the rest are inputs.
The local full matrix B is stored in the standard Fortran-style column major format, with

dimension m loc× nrhs, and ldb refers to the local leading dimension in the local storage.

4.3 Distributed data structures for L and U

We distribute both L and U matrices in a two-dimensional block-cyclic fashion. We first identify
the supernode boundary based on the nonzero structure of L. This supernode partition is then
used as the block partition in both row and column dimensions for both L and U . The size of each
block is matrix dependent. It should be clear that all the diagonal blocks are square and full (we
store zeros from U in the upper triangle of the diagonal block), whereas the off-diagonal blocks
may be rectangular and may not be full. The matrix in Figure 4.1 illustrates such a partition.
By block-cyclic mapping we mean block (I, J) (0 ≤ I, J ≤ N − 1) is mapped into the process at
coordinate {I mod nprow, J mod npcol} of the nprow×npcol 2D process grid. Using this mapping,
a block L(I, J) in the factorization is only needed by the row of processes that own blocks in row
I. Similarly, a block U(I, J) is only needed by the column of processes that own blocks in column
J .

In this 2D mapping, each block column of L resides on more than one process, namely, a
column of processes. For example in Figure 4.1, the second block column of L resides on the
column processes {1, 4}. Process 4 only owns two nonzero blocks, which are not contiguous in
the global matrix. The schema on the right of Figure 4.1 depicts the data structure to store the
nonzero blocks on a process. Besides the numerical values stored in a Fortran-style array nzval[]

in column major order, we need the information to interpret the location and row subscript of each
nonzero. This is stored in an integer array index[], which includes the information for the whole
block column and for each individual block in it. Note that many off-diagonal blocks are zero and

53

Figure 4.1: The 2 block-cyclic layout and the data structure to store a local block column of L.

hence not stored. Neither do we store the zeros in a nonzero block. Both lower and upper triangles
of the diagonal block are stored in the L data structure. A process owns dN/npcole block columns
of L, so it needs dN/nprowe pairs of index/nzval arrays.

For U , we use a row oriented storage for the block rows owned by a process, although for the
numerical values within each block we still use column major order. Similar to L, we also use a pair
of index/nzval arrays to store a block row of U . Due to asymmetry, each nonzero block in U has
the skyline structure as shown in Figure 4.1 (see [5] for details on the skyline structure). Therefore,
the organization of the index[] array is different from that for L, which we omit showing in the
figure.

4.4 Process grid and MPI communicator

All MPI applications begin with a default communication domain that includes all processes, say
Np, of this parallel job. The default communicator MPI COMM WORLD represents this communication
domain. The Np processes are identified as a linear array of process IDs in the range 0 . . . Np− 1.

4.4.1 2D process grid

For SuperLU DIST library, we create a new process group derived from an existing group using Ng

processes. There is a good reason to use a new group rather than MPI COMM WORLD, that is, the
message passing calls of the SuperLU library will be isolated from those in other libraries or in the
user’s code. For better scalability of the LU factorization, we map the 1D array of Ng processes
into a logical 2D process grid. This grid will have nprow process rows and npcol process columns,
such that nprow ∗ npcol = Ng. A process can be referenced either by its rank in the new group or
by its coordinates within the grid. The routine superlu gridinit maps already-existing processes
to a 2D process grid.

54

superlu_gridinit(MPI_Comm Bcomm, int nprow, int npcol, gridinfo_t *grid);

This process grid will use the first nprow ∗ npcol processes from the base MPI communicator
Bcomm, and assign them to the grid in a row-major ordering. The input argument Bcomm is an MPI
communicator representing the existing base group upon which the new group will be formed. For
example, it can be MPI COMM WORLD. The output argument grid represents the derived group to be
used in SuperLU DIST. Grid is a structure containing the following fields:

struct {

MPI_Comm comm; /* MPI communicator for this group */

int iam; /* my process rank in this group */

int nprow; /* number of process rows */

int npcol; /* number of process columns */

superlu_scope_t rscp; /* process row scope */

superlu_scope_t cscp; /* process column scope */

} grid;

In the LU factorization, some communications occur only among the processes in a row (col-
umn), not among all processes. For this purpose, we introduce two process subgroups, namely rscp

(row scope) and cscp (column scope). For rscp (cscp) subgroup, all processes in a row (column)
participate in the communication.

The macros MYROW(iam, grid) and MYCOL(iam, grid) give the row and column coordinates
in the 2D grid of the process who has rank iam.

NOTE: All processes in the base group, including those not in the new group, must call this grid
creation routine. This is required by the MPI routine MPI Comm create to create a new communi-
cator.

4.4.2 Arbitrary grouping of processes

It is sometimes desirable to divide up the processes into several subgroups, each of which per-
forms independent work of a single application. In this situation, we cannot simply use the first
nprow ∗ npcol processes to define the grid. A more sophisticated process-to-grid mapping routine
superlu gridmap is designed to create a grid with processes of arbitrary ranks.

superlu_gridmap(MPI_Comm Bcomm, int nprow, int npcol,

int usermap[], int ldumap, gridinfo_t *grid);

The array usermap[] contains the processes to be used in the newly created grid. usermap[] is
indexed like a Fortran-style 2D array with ldumap as the leading dimension. So usermap[i+j∗ldumap]
(i.e., usermap(i,j) in Fortran notation) holds the process rank to be placed in {i, j} position
of the 2D process grid. After grid creation, this subset of processes is logically numbered in a
consistent manner with the initial set of processes; that is, they have the ranks in the range
0 . . . nprow ∗ npcol − 1 in the new grid. For example, if we want to map 6 processes with ranks
11 . . . 16 into a 2 × 3 grid, we define usermap = {11, 14, 12, 15, 13, 16} and ldumap = 2. Such a
mapping is shown below

55

0 1 2
0 11 12 13
1 14 15 16

NOTE: All processes in the base group, including those not in the new group, must call this
routine.

Superlu gridinit simply calls superlu gridmap with usermap[] holding the first nprow ∗
npcol process ranks.

4.5 Algorithmic background

Although partial pivoting is used in both sequential and shared-memory parallel factorization al-
gorithms, it is not used in the distributed-memory parallel algorithm, because it requires dynamic
adaptation of data structures and load balancing, and so is hard to make it scalable. We use
alternative techniques to stabilize the algorithm, which include statically pivot large elements to
the diagonal, single-precision diagonal adjustment to avoid small pivots, and iterative refinement.
Figure 4.2 sketches our GESP algorithm (Gaussian elimination with Static Pivoting). Numerical
experiments show that for a wide range of problems, GESP is as stable as GEPP [24].

(1) Perform row/column equilibration and row permutation: A← Pr ·Dr ·A ·Dc,
where Dr and Dc are diagonal matrices and Pr is a row permutation chosen
to make the diagonal large compared to the off-diagonal.

(2) Find a column permutation Pc to preserve sparsity: A← Pc ·A · P T
c

(3) Perform symbolic analysis to determine the nonzero structures of L and U .
(4) Factorize A = L · U with control of diagonal magnitude:

if (|aii| <
√
ε · ‖A‖1) then

set aii to
√
ε · ‖A‖1

endif
(5) Perform triangular solutions using L and U .
(6) If needed, use an iterative solver like GMRES or iterative refinement (shown below)

iterate:
r = b−A · x . . . sparse matrix-vector multiply
Solve A · dx = r . . . triangular solution

berr = maxi
|r|i

(|A|·|x|+|b|)i . . . componentwise backward error

if (berr > ε and berr ≤ 1
2 · lastberr) then

x = x+ dx
lastberr = berr
goto iterate

endif
(7) If desired, estimate the condition number of A

Figure 4.2: The outline of the GESP algorithm.

Step (1) is accomplished by a weighted bipartite matching algorithm due to Duff and Koster [9].
Currently, process 0 computes Pr and then broadcasts it to all the other processes. If the distributed

56

input interface is used (Section 4.2.2), we first gather the distributed matrix A onto processor 0.
Work is underway to remove this sequential bottleneck.

In Step (2), we provide several ordering options, such as multiple minimum degree ordering [26]
on the graphs of A + AT , or the MeTiS [18] ordering on the graphs of A + AT . The user can use
any other ordering in place of the ones provided in the library. (Note, since we will pivot on the
diagonal in step (4), an ordering based on the structure of A + AT almost always yields sparser
factors than that based on the structure of ATA. This is different from SuperLU and SuperLU MT,
where we allow to pivot off-diagonal.) In this step, when a sequential ordering algorithm is used,
every process runs the same algorithm independently.

Step (3) can be done either sequentially or in parallel depending on how the options argument
is set (see Section 4.8.1 for details.) The parallel symbolic factorization was a newly added feature
since the v2.1 release. It is designed tightly around the separator tree returned from a graph
partitioning type of ordering (presently we use ParMeTiS [19]), and works only on power-of-two
processors. We first re-distribute the graph of A onto the largest 2q number of processors which
is smaller than the total Np processors, then perform parallel symbolic factorization, and finally
re-populate the {L\U} structure to all Np processors. The algorithm and performance was studied
in [15]. To invoke parallel symbolic factorization, the user needs to set the two fields of the options
argument as follows:

options.ParSymbFact = YES

options.ColPerm = PARMETIS;

Note that, even if the user sets options.ColPerm to use an ordering algorithm other than ParMeTiS,
the driver routine overrides it with ParMeTiS when it sees options.ParSymbFact = YES.

Steps (4) to (7) are the most time-consuming steps and were parallelized a while ago, see the
papers [24, 22].

4.5.1 Multicore and GPU enhancements

Given that the node architecture trend is to have many simpler cores on a NUMA node, possibly
with GPU-like accelerators, and the amount of memory per-core becomes smaller, the pure MPI
model does not match the light-weight processor architecture. We need to resort to other forms of
parallelism at node level. In sparse factorization (step (4) in Figure 4.2), the Schur complement
update after each panel factorization step exhibits ample fine-grid parallelism. We have designed
the OpenMP + CUDA code to exploit the on-node parallelism. For each MPI task of the Schur
complement update, we aggegrate the small L and U matrix blocks into a larger block, divide the
GEMM work between CPU and GPU using some heuristic performance model, offload the larger
block of GEMM to GPU. The key to success is to overlap the CPU work (multithreaded Scat-
ter/Gather, some portion of GEMM) with the GPU work (GEMM with multiple CUDA streams).
This way, we are able to hide the latency time due to PCI bus transfer between CPU and GPU.
The detailed algorithm description and performance data were given in the paper by Sao et al. [32].

To use Nvidia GPU, you must set the following Linux shell environment variable before compi-
lation:

setenv ACC GPU

Hybrid MPI+OpenMP setting may outperform MPI-only configurations in some cases and in
most cases hybrid MPI+OpenMP would require less memory. The environment variable OMP NUM THREADS

57

needs to be set appropriately. Hybrid configuration obtains threaded parallelism from both, explicit
OpenMP pragmas and multithreaded BLAS. Thus for good performance it is better if OpenMP
threading library and BLAS threading are synergistic. For example, when using Intel MKL libray,
just setting OMP NUM THREADS would set the number of threads for both MKL and OpenMP. How-
ever, it is possible to have different number of threads for MKL, in which case MKL NUM THREADS

controls the number of threads used by MKL. In our case, just setting OMP NUM THREADS is sufficient.
Triangular solve phase does not use multithreading yet. The MPI-only configuration may be

more suitable in case of many right hand sides or in other cases, where solve phase seems to be a
performance bottleneck.

4.6 Options argument

One important input argument is options, which controls how the linear system will be solved.
1Although the algorithm presented in Figure 4.2 consists of seven steps, for some matrices not all
steps are needed to get accurate solution. For example, for diagonally dominant matrices, choosing
the diagonal pivots ensures the stability; there is no need for row pivoting in step (1). In another
situation where a sequence of matrices with the same sparsity pattern need be factorized, the
column permutation Pc (and also the row permutation Pr, if the numerical values are similar) need
be computed only once, and reused thereafter. (Pr and Pc are implemented as permutation vectors
perm r and perm c.) For the above examples, performing all seven steps does more work than
necessary. Options is used to accommodate the various requirements of applications; it contains
the following fields:

• Fact

Specifies whether or not the factored form of the matrix A is supplied on entry, and if not,
how the matrix A will be factored base on some assumptions of the previous history. fact

can be one of:

– DOFACT: the matrix A will be factorized from scratch.

– SamePattern: the matrix A will be factorized assuming that a factorization of a ma-
trix with the same sparsity pattern was performed prior to this one. Therefore, this
factorization will reuse column permutation vector perm c.

– SampPattern SameRowPerm: the matrix A will be factorized assuming that a factoriza-
tion of a matrix with the same sparsity pattern and similar numerical values was per-
formed prior to this one. Therefore, this factorization will reuse both row and column
permutation vectors perm r and perm c, both row and column scaling factors Dr and
Dc, and the distributed data structure set up from the previous symbolic factorization.

– FACTORED: the factored form of A is input.

• Equil { YES | NO }
Specifies whether to equilibrate the system.

• ParSymbFact { YES | NO }
Specifies whether to perform parallel symbolic factorization. If it is set to YES, the ColPerm
field should be set to PARMETIS. Otherwise, the driver routine pdgssvx will use ParMeTiS

anyway, ignoring the other setting in ColPerm.

58

• ColPerm

Specifies the column ordering method for fill reduction.

– NATURAL: natural ordering.

– MMD AT PLUS A: minimum degree ordering on the structure of AT +A.

– MMD ATA: minimum degree ordering on the structure of ATA.

– METIS AT PLUS A: MeTiS ordering on the structure of AT +A.

– PARMETIS: ParMeTiS ordering on the structure of AT +A.

– MY PERMC: use the ordering given in perm c input by the user.

• RowPerm

Specifies how to permute rows of the original matrix.

– NATURAL: use the natural ordering.

– LargeDiag: use a weighted bipartite matching algorithm to permute the rows to make
the diagonal large relative to the off-diagonal.

– MY PERMR: use the ordering given in perm r input by the user.

• ReplaceTinyPivot { YES | NO }
Specifies whether to replace the tiny diagonals by

√
ε · ||A|| during LU factorization.

• IterRefine

Specifies how to perform iterative refinement.

– NO: no iterative refinement.

– DOUBLE: accumulate residual in double precision.

– EXTRA: accumulate residual in extra precision. (not yet implemented.)

• Trans { NOTRANS | TRANS | CONJ }
Specifies whether to solve the transposed system.

• SolveInitialized { YES | NO }
Specifies whether the initialization has been performed to the triangular solve.
(used only by the distributed input interface)

• RefineInitialized { YES | NO }
Specifies whether the initialization has been performed to the sparse matrix-vector multipli-
cation routine needed in the iterative refinement.
(used only by the distributed input interface)

• num lookaheads { integer }
Specifies the number of levels in the look-ahead factorization

• lookahead etree { YES | NO }
Specifies whether to use the elimination tree computed from the serial symbolic factorization
to perform static scheduling.

59

• SymPattern { YES | NO }
Gives the scheduling algorithm a hint whether the matrix has the symmetric pattern.

• PrintStat { YES | NO }
Specifies whether to print the solver’s statistics.

There is a routine named set default options dist() that sets the default values of these
options, which are:

fact = DOFACT /* factor from scratch */

equil = YES

ParSymbFact = NO

colperm = MMD_AT_PLUS_A

rowperm = LargeDiag /* use MC64 */

ReplaceTinyPivot = YES

IterRefine = DOUBLE

Trans = NOTRANS

SolveInitialized = NO

RefineInitialized = NO

num_lookaheads = 10;

lookahead_etree = NO;

SymPattern = NO;

PrintStat = YES

4.7 Basic steps to solve a linear system

In this section, we use a complete sample program to illustrate the basic steps required to use
SuperLU DIST. This program is listed below, and is also available as EXAMPLE/pddrive.c in the
source code distribution. All the routines must include the header file superlu ddefs.h (or
superlu zdefs.h, the complex counterpart) which contains the definitions of the data types, the
macros and the function prototypes.

#include <math.h>

#include "superlu_ddefs.h"

main(int argc, char *argv[])

/*

* Purpose

* =======

*

* The driver program PDDRIVE.

*

* This example illustrates how to use PDGSSVX with the full

* (default) options to solve a linear system.

*

* Five basic steps are required:

* 1. Initialize the MPI environment and the SuperLU process grid

60

* 2. Set up the input matrix and the right-hand side

* 3. Set the options argument

* 4. Call pdgssvx

* 5. Release the process grid and terminate the MPI environment

*

* On the Cray T3E, the program may be run by typing

* mpprun -n <procs> pddrive -r <proc rows> -c <proc columns> <input_file>

*

*/

{

superlu_options_t options;

SuperLUStat_t stat;

SuperMatrix A;

ScalePermstruct_t ScalePermstruct;

LUstruct_t LUstruct;

SOLVEstruct_t SOLVEstruct;

gridinfo_t grid;

double *berr;

double *b, *xtrue;

int_t m, n, nnz;

int_t nprow, npcol;

int iam, info, ldb, ldx, nrhs;

char trans[1];

char **cpp, c;

FILE *fp, *fopen();

nprow = 1; /* Default process rows. */

npcol = 1; /* Default process columns. */

nrhs = 1; /* Number of right-hand side. */

/* --

INITIALIZE MPI ENVIRONMENT.

--*/

MPI_Init(&argc, &argv);

/* Parse command line argv[]. */

for (cpp = argv+1; *cpp; ++cpp) {

if (**cpp == ’-’) {

c = *(*cpp+1);

++cpp;

switch (c) {

case ’h’:

printf("Options:\n");

printf("\t-r <int>: process rows (default %d)\n", nprow);

printf("\t-c <int>: process columns (default %d)\n", npcol);

61

exit(0);

break;

case ’r’: nprow = atoi(*cpp);

break;

case ’c’: npcol = atoi(*cpp);

break;

}

} else { /* Last arg is considered a filename */

if (!(fp = fopen(*cpp, "r"))) {

ABORT("File does not exist");

}

break;

}

}

/* --

INITIALIZE THE SUPERLU PROCESS GRID.

--*/

superlu_gridinit(MPI_COMM_WORLD, nprow, npcol, &grid);

/* Bail out if I do not belong in the grid. */

iam = grid.iam;

if (iam >= nprow * npcol) goto out;

/* --

GET THE MATRIX FROM FILE AND SETUP THE RIGHT HAND SIDE.

--*/

dcreate_matrix(&A, nrhs, &b, &ldb, &xtrue, &ldx, fp, &grid);

if (!(berr = doubleMalloc_dist(nrhs)))

ABORT("Malloc fails for berr[].");

/* --

NOW WE SOLVE THE LINEAR SYSTEM.

--*/

/* Set the default input options. */

set_default_options_dist(&options);

m = A.nrow;

n = A.ncol;

/* Initialize ScalePermstruct and LUstruct. */

ScalePermstructInit(m, n, &ScalePermstruct);

LUstructInit(n, &LUstruct);

62

/* Initialize the statistics variables. */

PStatInit(&stat);

/* Call the linear equation solver. */

pdgssvx(&options, &A, &ScalePermstruct, b, ldb, nrhs, &grid,

&LUstruct, &SOLVEstruct, berr, &stat, &info);

/* Check the accuracy of the solution. */

pdinf_norm_error(iam, ((NRformat_loc *)A.Store)->m_loc,

nrhs, b, ldb, xtrue, ldx, &grid);

PStatPrint(&options, &stat, &grid); /* Print the statistics. */

/* --

DEALLOCATE STORAGE.

--*/

PStatFree(&stat);

Destroy_CompRowLoc_Matrix_dist(&A);

ScalePermstructFree(&ScalePermstruct);

Destroy_LU(n, &grid, &LUstruct);

LUstructFree(&LUstruct);

if (options.SolveInitialized) {

dSolveFinalize(&options, &SOLVEstruct);

}

SUPERLU_FREE(b);

SUPERLU_FREE(xtrue);

SUPERLU_FREE(berr);

/* --

RELEASE THE SUPERLU PROCESS GRID.

--*/

out:

superlu_gridexit(&grid);

/* --

TERMINATES THE MPI EXECUTION ENVIRONMENT.

--*/

MPI_Finalize();

}

Five basic steps are required to call a SuperLU routine:

1. Initialize the MPI environment and the SuperLU process grid.

63

This is achieved by the calls to the MPI routine MPI Init() and the SuperLU routine
superlu gridinit(). In this example, the communication domain for SuperLU is built upon
the MPI default communicator MPI COMM WORLD. In general, it can be built upon any MPI
communicator. Section 4.4 contains the details about this step.

2. Set up the input matrix and the right-hand side.
This example uses the interface with the distributed input matrices, see Section 4.2.2. In
most practical applications, the matrices can be generated on each process without the need
to have a centralized place to hold them. But for this example, we let process 0 read the input
matrix stored on disk in Harwell-Boeing format [10] (a.k.a. compressed column storage), and
distribute it to all the other processes, so that each process only owns a block of rows of
matrix. The right-hand side matrix is generated so that the exact solution matrix consists of
all ones. The subroutine dcreate matrix() accomplishes this task.

3. Initialize the input arguments: options, ScalePermstruct, LUstruct, stat.
The input argument options controls how the linear system would be solved—use equilibra-
tion or not, how to order the rows and the columns of the matrix, use iterative refinement or
not. The subroutine set default options dist() sets the options argument so that the
solver performs all the functionality. You can also set it up according to your own needs,
see section 4.6 for the fields of this structure. ScalePermstruct is the data structure that
stores the several vectors describing the transformations done to A. LUstruct is the data
structure in which the distributed L and U factors are stored. Stat is a structure collecting
the statistics about runtime and flop count, etc.

4. Call the SuperLU routine pdgssvx().

5. Release the process grid and terminate the MPI environment.
After the computation on a process grid has been completed, the process grid should be
released by a call to the SuperLU routine superlu gridexit(). When all computations have
been completed, the MPI routine MPI Finalize() should be called.

4.8 User-callable routines

4.8.1 Driver routines

There are two driver routines to solve systems of linear equations, which are named pdgssvx ABglobal

for the global input interface, and pdgssvx for the distributed interface. We recommend that the
general users, especially the beginners, use a driver routine rather than the computational rou-
tines, because correctly using the driver routine does not require thorough understanding of the
underlying data structures. Although the interface of these routines are simple, we expect their
rich functionality can meet the requirements of most applications. Pdgssvx ABglobal/pdgssvx
perform the following functions:

• Equilibrate the system (scale A’s rows and columns to have unit norm) if A is poorly scaled;

• Find a row permutation that makes diagonal of A large relative to the off-diagonal;

• Find a column permutation that preserves the sparsity of the L and U factors;

64

• Solve the system AX = B for X by factoring A followed by forward and back substitutions;

• Refine the solution X.

4.8.2 Computational routines

The experienced users can invoke the following computational routines to directly control the
behavior of SuperLU DIST in order to meet their requirements.

• pdgstrf(): Factorize in parallel.
This routine factorizes the input matrix A (or the scaled and permuted A). It assumes that
the distributed data structures for L and U factors are already set up, and the initial values
of A are loaded into the data structures. If not, the routine symbfact() should be called to
determine the nonzero patterns of the factors, and the routine pddistribute() should be
called to distribute the matrix. Pdgstrf() can factor non-square matrices.

• pdgstrs()/pdgstrs Bglobal(): Triangular solve in parallel.
This routine solves the system by forward and back substitutions using the the L and U
factors computed by pdgstrf(). Pdgstrs() takes distributed B. For pdgstrs Bglobal(),
B must be globally available on all processes.

• pdgsrfs()/pdgsrfs ABXglobal(): Refine solution in parallel.
Given A, its factors L and U , and an initial solution X, this routine performs iterative
refinement. Pdgsrfs() takes distributed A, B and X. For pdgsrfs ABXglobal(), A, B and
X must be globally available on all processes.

4.8.3 Utility routines

The following utility routines can help users create and destroy the SuperLU DIST matrices. These
routines reside in three places: SRC/util.c, SRC/{d,z}util.c, and SRC/p{d,z}util.c. Most of
the utility routines in sequential SuperLU can also be used in SuperLU DIST for the local data, see
Section 2.9.3. Here, we only list those new routines specific to SuperLU DIST. Note that in order to
avoid name clash between SuperLU and SuperLU DIST, we append “ dist” to each routine name
in SuperLU DIST.

/* Create a supermatrix in distributed compressed row format. A is output. */

dCreate_CompRowLoc_Matrix_dist(SuperMatrix *A, int_t m, int_t n,

int_t nnz_loc, int_t m_loc, int_t fst_row,

double *nzval, int_t *colind, int_t *rowptr,

Stype_t stype, Dtype_t dtype, Mtype_t mtype);

/* Deallocate the supermatrix in distributed compressed row format. */

Destroy_CompRowLoc_Matrix_dist(SuperMatrix *A);

/* Allocate storage in ScalePermstruct. */

ScalePermstructInit(const int_t m, const int_t n,

ScalePermstruct_t *ScalePermstruct);

65

/* Deallocate ScalePermstruct */

ScalePermstructFree(ScalePermstruct_t *ScalePermstruct);

/* Allocate storage in LUstruct. */

LUstructInit(const int_t n, LUstruct_t *LUstruct);

/* Deallocate the distributed L & U factors in LUstruct. */

Destroy_LU(int_t n, gridinfo_t *grid, LUstruct_t *LUstruct);

/* Deallocate LUstruct. */

LUstructFree(LUstruct_t *LUstruct);

/* Initialize the statistics variable. */

PStatInit(SuperLUStat_t *stat);

/* Print the statistics. */

PStatPrint(superlu_options_t *options, SuperLUStat_t *stat,

gridinfo_t *grid);

/* Deallocate the statistics variable. */

PStatFree(SuperLUStat_t *stat);

4.9 Installation

4.9.1 File structure and complilation

The top level SuperLU DIST/ directory is structured as follows:

SuperLU_DIST/README instructions on installation

SuperLU_DIST/CBLAS/ BLAS routines in C, functional but not fast

SuperLU_DIST/DOC/ Users’ Guide

SuperLU_DIST/EXAMPLE/ example programs

SuperLU_DIST/INSTALL/ test machine dependent parameters

SuperLU_DIST/SRC/ C source code, to be compiled into libsuperlu_dist.a

SuperLU_DIST/lib/ contains library archive libsuperlu_dist.a

SuperLU_DIST/Makefile top level Makefile that does installation and testing

SuperLU_DIST/make.inc compiler, compiler flags, library definitions and C

preprocessor definitions, included in all Makefiles.

(You may need to edit it to suit for your system

before compiling the whole package.)

SuperLU_DIST/MAKE_INC/ sample machine-specific make.inc files

Before installing the package, you may need to edit SuperLU DIST/make.inc for your system.
This make include file is referenced inside all the Makefiles in the various subdirectories. As a
result, there is no need to edit the Makefiles in the subdirectories. All information that is machine
specific has been defined in this include file.

66

Sample machine-specific make.inc are provided in the MAKE INC/ directory for several platforms,
such as Cray XE6 and IBM SP. When you have selected the machine to which you wish to install
SuperLU DIST, you may copy the appropriate sample include file (if one is present) into make.inc.
For example, if you wish to run on a Cray XE6, you can do:

cp MAKE INC/make.xe6 make.inc

For the systems other than those listed above, slight modifications to the make.inc file will
need to be made. In particular, the following items should be examined:

1. The BLAS library.
If there is a BLAS library available on your machine, you may define the following in make.inc:

BLASDEF = -DUSE VENDOR BLAS
BLASLIB = <BLAS library you wish to link with>

The CBLAS/ subdirectory contains the part of the BLAS (in C) needed by SuperLU DIST

package. However, these routines are intended for use only if there is no faster implementation
of the BLAS already available on your machine. In this case, you should do the following:

1) In make.inc, undefine (comment out) BLASDEF, define:

BLASLIB = ../lib/libblas$(PLAT).a

2) At the top level SuperLU DIST directory, type:

make blaslib

to create the BLAS library from the routines in CBLAS/ subdirectory.

2. External libraries: MeTiS and ParMeTiS.
If you will use MeTiS or ParMeTiS ordering, or parallel symbolic factorization (which depends
on ParMeTiS), you will need to install them yourself. Since ParMeTiS package already contains
the source code for the MeTiS library, you can just download ParMeTiS at:

http://glaros.dtc.umn.edu/gkhome/metis/parmetis/download

After you have installed it, you should define the following in make.inc:

PARMETIS DIR = <top-level ParMeTiS directory>

METISLIB = -L$(PARMETIS DIR)/build/Linux-x86 64/libmetis -lmetis

PARMETISLIB = -L$(PARMETIS DIR)/build/Linux-x86 64/libparmetis -lparmetis

I PARMETIS = -I$(PARMETIS DIR)/include -I$(PARMETIS DIR)/metis/include

3. C preprocessor definition CDEFS.
In the header file SRC/Cnames.h, we use macros to determine how C routines should be named
so that they are callable by Fortran.1 The possible options for CDEFS are:

• -DAdd : Fortran expects a C routine to have an underscore postfixed to the name;

• -DNoChange: Fortran expects a C routine name to be identical to that compiled by C;

• -DUpCase: Fortran expects a C routine name to be all uppercase.

4. (optional) Enable Nvidia GPU access.

1Some vendor-supplied BLAS libraries do not have C interfaces. So the re-naming is needed in order for the
SuperLU BLAS calls (in C) to interface with the Fortran-style BLAS.

67

(a) Set the following Linux environment variable: setenv ACC GPU

(b) Add the CUDA library location in make.inc:

ifeq "${ACC}" "GPU"

CUDA_FLAGS = -DGPU_ACC

INCS += -I<CUDA directory>/include

LIBS += -L<CUDA directory>/lib64 -lcublas -lcudart

endif

A Makefile is provided in each subdirectory. The installation can be done automatically by
simply typing “make” at the top level.

Hybrid MPI+OpenMP setting is implemented in the factorization routines. It may outperform
MPI-only configurations in some cases and requires less memory. The environment variable

OMP NUM THREADS

needs to be set to enable this feature.

4.9.2 Performance-tuning parameters

Similar to sequential SuperLU, several performance related parameters are set in the inquiry func-
tion sp ienv(). The declaration of this function is

int sp ienv(int ispec);

Ispec specifies the parameter to be returned2:

ispec = 2: the relaxation parameter to control supernode amalgamation
= 3: the maximum allowable size for a block (supernode)
= 6: the estimated fills factor for the adjacency structures of L and U

The values to be returned may be set differently on different machines. The setting of maximum
block size (parameter 3) should take into account the local Level 3 BLAS speed, the load balance and
the degree of parallelism. Small block size may result in better load balance and more parallelism,
but poor individual node performance, and vice versa for large block size.

These parameters can also be set as Linux environment variables, so that the routine sp ienv()

does not need to be recompiled every time when you change the settings.

setenv NREL <##> /* parameter #2: maximum size of the relaxed supernode */

setenv NSUP <##> /* parameter #3: maximum supernode size */

The following parameters are related to GPU usage:

setenv CUBLAS_NB <##> /* middle dimension of CUDA GEMM (default 128) */

setenv MAX_BUFFER_SIZE <##> /* maximum buffer size on GPU (default 5M words) */

These parameters are described in detail in various algorithm papers, see [22, 32].

2The numbering of 2, 3 and 6 is consistent with that used in SuperLU and SuperLU MT.

68

4.10 Example programs

In the SuperLU DIST/EXAMPLE/ directory, we present a few sample programs to illustrate the com-
plete calling sequences to use the expert driver to solve systems of equations. These include how to
set up the process grid and the input matrix, how to obtain a fill-reducing ordering. A Makefile

is provided to generate the executables. A README file in this directory shows how to run these
examples. The leading comment in each routine describes the functionality of the example. The
two basic examples are pddrive ABglobal() and pddrive(). The first shows how to use the global
input interface, and the second shows how to use the distributed input interface.

4.11 Fortran 90 Interface

We developed a complete Fortran 90 interface for SuperLU DIST. All the interface files and an
example driver program are located in the SuperLU DIST/FORTRAN/ directory. Table 4.1 lists all
the files.

f pddrive.f90 An example Fortran driver routine.

superlu mod.f90 Fortran 90 module that defines the interface functions to access SuperLU DIST’s
data structures.

superlupara.f90 It contains parameters that correspond to SuperLU DIST’s enums.

hbcode1.f90 Fortran function for reading a sparse Harwell-Boeing matrix from
the file.

superlu c2f wrap.c C wrapper functions, callable from Fortran. The functions fall
into three classes: 1) Those that allocate a structure and return
a handle, or deallocate the memory of a structure. 2) Those that
get or set the value of a component of a struct. 3) Those that
are wrappers for SuperLU DIST functions.

dcreate dist matrix.c C function for distributing the matrix in a distributed
compressed row format.

Table 4.1: The Fortran 90 interface files and an example driver routine.

Note that in this interface, all objects (such as grid, options, etc.) in SuperLU DIST are opaque,
meaning their size and structure are not visible to the Fortran user. These opaque objects are
allocated, deallocated and operated in the C side and not directly accessible from Fortran side.
They can only be accessed via handles that exist in Fortran’s user space. In Fortran, all handles
have type INTEGER. Specifically, in our interface, the size of Fortran handle is defined by superlu ptr
in superlupara.f90. For different systems, the size might need to be changed. Then using these
handles, Fortran user can call C wrapper routines to manipulate the opaque objects. For example,
you can call f create gridinfo(grid handle) to allocate memory for structure grid, and return a handle
grid handle.

The sample program illustrates the basic steps required to use SuperLU DIST in Fortran to solve
systems of equations. These include how to set up the processor grid and the input matrix, how to

69

call the linear equation solver. This program is listed below, and is also available as f pddrive.f90 in
the subdirectory. Note that the routine must include the moudle superlu mod which contains the
definitions of all parameters and the Fortran wrapper functions. A Makefile is provided to generate
the executable. A README file in this directory shows how to run the example.

program f_pddrive

!

! Purpose

! =======

!

! The driver program F_PDDRIVE.

!

! This example illustrates how to use F_PDGSSVX with the full

! (default) options to solve a linear system.

!

! Seven basic steps are required:

! 1. Create C structures used in SuperLU

! 2. Initialize the MPI environment and the SuperLU process grid

! 3. Set up the input matrix and the right-hand side

! 4. Set the options argument

! 5. Call f_pdgssvx

! 6. Release the process grid and terminate the MPI environment

! 7. Release all structures

!

use superlu_mod

include ’mpif.h’

implicit none

integer maxn, maxnz, maxnrhs

parameter (maxn = 10000, maxnz = 100000, maxnrhs = 10)

integer rowind(maxnz), colptr(maxn)

real*8 values(maxnz), b(maxn), berr(maxnrhs)

integer n, m, nnz, nrhs, ldb, i, ierr, info, iam

integer nprow, npcol

integer init

integer(superlu_ptr) :: grid

integer(superlu_ptr) :: options

integer(superlu_ptr) :: ScalePermstruct

integer(superlu_ptr) :: LUstruct

integer(superlu_ptr) :: SOLVEstruct

integer(superlu_ptr) :: A

integer(superlu_ptr) :: stat

! Create Fortran handles for the C structures used in SuperLU_DIST

call f_create_gridinfo(grid)

70

call f_create_options(options)

call f_create_ScalePermstruct(ScalePermstruct)

call f_create_LUstruct(LUstruct)

call f_create_SOLVEstruct(SOLVEstruct)

call f_create_SuperMatrix(A)

call f_create_SuperLUStat(stat)

! Initialize MPI environment

call mpi_init(ierr)

! Initialize the SuperLU_DIST process grid

nprow = 2

npcol = 2

call f_superlu_gridinit(MPI_COMM_WORLD, nprow, npcol, grid)

! Bail out if I do not belong in the grid.

call get_GridInfo(grid, iam=iam)

if (iam >= nprow * npcol) then

go to 100

endif

if (iam == 0) then

write(*,*) ’ Process grid ’, nprow, ’ X ’, npcol

endif

! Read Harwell-Boeing matrix, and adjust the pointers and indices

! to 0-based indexing, as required by C routines.

if (iam == 0) then

open(file = "g20.rua", status = "old", unit = 5)

call hbcode1(m, n, nnz, values, rowind, colptr)

close(unit = 5)

!

do i = 1, n+1

colptr(i) = colptr(i) - 1

enddo

do i = 1, nnz

rowind(i) = rowind(i) - 1

enddo

endif

! Distribute the matrix to the gird

call f_dcreate_matrix_dist(A, m, n, nnz, values, rowind, colptr, grid)

! Setup the right hand side

nrhs = 1

call get_CompRowLoc_Matrix(A, nrow_loc=ldb)

71

do i = 1, ldb

b(i) = 1.0

enddo

! Set the default input options

call f_set_default_options(options)

! Change one or more options

! call set_superlu_options(options,Fact=FACTORED)

! Initialize ScalePermstruct and LUstruct

call get_SuperMatrix(A,nrow=m,ncol=n)

call f_ScalePermstructInit(m, n, ScalePermstruct)

call f_LUstructInit(m, n, LUstruct)

! Initialize the statistics variables

call f_PStatInit(stat)

! Call the linear equation solver

call f_pdgssvx(options, A, ScalePermstruct, b, ldb, nrhs, &

grid, LUstruct, SOLVEstruct, berr, stat, info)

if (info == 0) then

write (*,*) ’Backward error: ’, (berr(i), i = 1, nrhs)

else

write(*,*) ’INFO from f_pdgssvx = ’, info

endif

! Deallocate SuperLU allocated storage

call f_PStatFree(stat)

call f_Destroy_CompRowLoc_Matrix_dist(A)

call f_ScalePermstructFree(ScalePermstruct)

call f_Destroy_LU(n, grid, LUstruct)

call f_LUstructFree(LUstruct)

call get_superlu_options(options, SolveInitialized=init)

if (init == YES) then

call f_dSolveFinalize(options, SOLVEstruct)

endif

! Release the SuperLU process grid

100 call f_superlu_gridexit(grid)

! Terminate the MPI execution environment

call mpi_finalize(ierr)

72

! Destroy all C structures

call f_destroy_gridinfo(grid)

call f_destroy_options(options)

call f_destroy_ScalePermstruct(ScalePermstruct)

call f_destroy_LUstruct(LUstruct)

call f_destroy_SOLVEstruct(SOLVEstruct)

call f_destroy_SuperMatrix(A)

call f_destroy_SuperLUStat(stat)

stop

end

Similar to the driver routine pddrive.c in C, seven basic steps are required to call a SuperLU DIST

routine in Fortran:

1. Create C structures used in SuperLU: grid, options, ScalePermstruct, LUstruct, SOLVEstruct,
A and stat. This is achieved by the calls to the C wrapper “create” routines f create XXX(),
where XXX is the name of the corresponding structure.

2. Initialize the MPI environment and the SuperLU process grid. This is achieved by the calls to
mpi init() and the C wrapper routine f superlu gridinit(). Note that f superlu gridinit() requires
the numbers of row and column of the process grid. In this example, we set them to be 2,
respectively.

3. Set up the input matrix and the right-hand side. This example uses the distributed input
interface, so we need to convert the input matrix to the distributed compressed row format.
Process 0 first reads the input matrix stored on disk in Harwell-Boeing format by calling
Fortran routine hbcode1(). The file name in this example is g20.rua. Then all processes
call a C wrapper routine f dcreate dist matrix() to distribute the matrix to all the processes
distributed by block rows. The right-hand side matrix in this example is a column vector of
all ones. Note that, before setting the right-hand side, we use get CompRowLoc Matrix() to
get the number of local rows in the distributed matrix A.

One important note is that all the C routines use 0-based indexing scheme. Therefore, after
process 0 reads the matrix in compressed column format, we decrement its column pointers
(colptr) and row indices (rowind) by 1 so they become 0-based indexing.

4. Set the input arguments: options, ScalePermstruct, LUstruct, and stat. The input argument
options controls how the linear system would be sloved. The routine f set default options dist()
sets the options argument so that the slover performs all the functionalities. You can also set it
according to your own needs, using a call to the Fortran routine set superlu options(). LUstruct
is the data struture in which the distributed L and U factors are stored. ScalePermstruct is
the data struture in which several vectors describing the transformations done to matrix A
are stored. stat is a structure collecting the statistcs about runtime and flop count. These
three structures can be set by calling the C wrapper “init” routines f XXXInit.

5. Call the C wrapper routine f pdgssvx() to solve the equation.

73

6. Release the process grid and terminate the MPI environment. After the computation on a pro-
cess grid has been completed, the process grid should be released by a call to f spuerlu gridexit().
When all computations have been completed, the C wrapper routine mpi finalize() should be
called.

7. Deallocate all the structures. First we need to deallocate the storage allocated by SuperLU DIST

by a set of “free” calls. Note that this should be called before f spuerlu gridexit(), since some of
the “free” calls use the grid. Then we call the C wrapper “destroy” routines f destroy XXX()
to destroy all the Fortran handles. Note that f destroy gridinfo() should be called after
f spuerlu gridexit().

4.11.1 Callable functions in the Fortran 90 module file spuerlu mod.f90

The Fortran 90 module superlu mod contains the interface routines that can manipulate a SuperLU DIST

object from Fortran. The object is pointed to by the corresponding handle input to these routines.
The routines are divided into two sets. One set is to get the properties of an object, with the
routine names “get XXX()”. Another set is to set some properties for an object, with the routine
names “set XXX()”. These functions have optional arguments, so the users do not have to provide
the full set of parameters. Superlu mod module uses superluparam mod module that defines all
the integer constants corresponding to the enumeration constants in SuperLU DIST. Below are the
calling sequences of all the routines.

subroutine get_GridInfo(grid, iam, nprow, npcol)

integer(superlu_ptr) :: grid

integer, optional :: iam, nprow, npcol

subroutine get_SuperMatrix(A, nrow, ncol)

integer(superlu_ptr) :: A

integer, optional :: nrow, ncol

subroutine set_SuperMatrix(A, nrow, ncol)

integer(superlu_ptr) :: A

integer, optional :: nrow, ncol

subroutine get_CompRowLoc_Matrix(A, nrow, ncol, nnz_loc, nrow_loc, fst_row)

integer(superlu_ptr) :: A

integer, optional :: nrow, ncol, nnz_loc, nrow_loc, fst_row

subroutine set_CompRowLoc_Matrix(A, nrow, ncol, nnz_loc, nrow_loc, fst_row)

integer(superlu_ptr) :: A

integer, optional :: nrow, ncol, nnz_loc, nrow_loc, fst_row

subroutine get_superlu_options(opt, Fact, Trans, Equil, RowPerm, &

ColPerm, ReplaceTinyPivot, IterRefine, &

SolveInitialized, RefineInitialized)

integer(superlu_ptr) :: opt

74

integer, optional :: Fact, Trans, Equil, RowPerm, ColPerm, &

ReplaceTinyPivot, IterRefine, SolveInitialized, &

RefineInitialized

subroutine set_superlu_options(opt, Fact, Trans, Equil, RowPerm, &

ColPerm, ReplaceTinyPivot, IterRefine, &

SolveInitialized, RefineInitialized)

integer(superlu_ptr) :: opt

integer, optional :: Fact, Trans, Equil, RowPerm, ColPerm, &

ReplaceTinyPivot, IterRefine, SolveInitialized, &

RefineInitialized

4.11.2 C wrapper functions callable by Fortran in file spuerlu c2f wrap.c

This file contains the Fortran-callable C functions which wraps around the user-callable C routines
in SuperLU DIST. The functions are divided into three classes: 1) allocate a C structure and return
a handle to Fortran, or deallocate the memory of of a C structure given its Fortran handle; 2) get
or set the value of certain fields of a C structure given its Fortran handle; 3) wrapper functions for
the SuperLU DIST C functions. Below are the calling sequences of these routines.

/* functions that allocate memory for a structure and return a handle */

void f_create_gridinfo(fptr *handle)

void f_create_options(fptr *handle)

void f_create_ScalePermstruct(fptr *handle)

void f_create_LUstruct(fptr *handle)

void f_create_SOLVEstruct(fptr *handle)

void f_create_SuperMatrix(fptr *handle)

void f_create_SuperLUStat(fptr *handle)

/* functions that free the memory allocated by the above functions */

void f_destroy_gridinfo(fptr *handle)

void f_destroy_options(fptr *handle)

void f_destroy_ScalePermstruct(fptr *handle)

void f_destroy_LUstruct(fptr *handle)

void f_destroy_SOLVEstruct(fptr *handle)

void f_destroy_SuperMatrix(fptr *handle)

void f_destroy_SuperLUStat(fptr *handle)

/* functions that get or set certain fields in a C structure. */

void f_get_gridinfo(fptr *grid, int *iam, int *nprow, int *npcol)

void f_get_SuperMatrix(fptr *A, int *nrow, int *ncol)

void f_set_SuperMatrix(fptr *A, int *nrow, int *ncol)

void f_get_CompRowLoc_Matrix(fptr *A, int *m, int *n, int *nnz_loc,

int *m_loc, int *fst_row)

void f_set_CompRowLoc_Matrix(fptr *A, int *m, int *n, int *nnz_loc,

int *m_loc, int *fst_row)

75

void f_get_superlu_options(fptr *opt, int *Fact, int *Trans, int *Equil,

int *RowPerm, int *ColPerm, int *ReplaceTinyPivot,

int *IterRefine, int *SolveInitialized,

int *RefineInitialized)

void f_set_superlu_options(fptr *opt, int *Fact, int *Trans, int *Equil,

int *RowPerm, int *ColPerm, int *ReplaceTinyPivot,

int *IterRefine, int *SolveInitialized,

int *RefineInitialized)

/* wrappers for SuperLU_DIST routines */

void f_dCreate_CompRowLoc_Matrix_dist(fptr *A, int *m, int *n, int *nnz_loc,

int *m_loc, int *fst_row, double *nzval,

int *colind, int *rowptr, int *stype,

int *dtype, int *mtype)

void f_set_default_options(fptr *options)

void f_superlu_gridinit(int *Bcomm, int *nprow, int *npcol, fptr *grid)

void f_superlu_gridexit(fptr *grid)

void f_ScalePermstructInit(int *m, int *n, fptr *ScalePermstruct)

void f_ScalePermstructFree(fptr *ScalePermstruct)

void f_PStatInit(fptr *stat)

void f_PStatFree(fptr *stat)

void f_LUstructInit(int *m, int *n, fptr *LUstruct)

void f_LUstructFree(fptr *LUstruct)

void f_Destroy_LU(int *n, fptr *grid, fptr *LUstruct)

void f_Destroy_CompRowLoc_Matrix_dist(fptr *A)

void f_dSolveFinalize(fptr *options, fptr *SOLVEstruct)

void f_pdgssvx(fptr *options, fptr *A, fptr *ScalePermstruct, double *B,

int *ldb, int *nrhs, fptr *grid, fptr *LUstruct,

fptr *SOLVEstruct, double *berr, fptr *stat, int *info)

void f_check_malloc(int *iam)

76

Bibliography

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Ham-
marling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide, Release 2.0.
SIAM, Philadelphia, 1995. 324 pages.

[2] M. Arioli, J. W. Demmel, and I. S. Duff. Solving sparse linear systems with sparse backward
error. SIAM J. Matrix Anal. Appl., 10(2):165–190, April 1989.

[3] L. S. Blackford, J. Choi, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’ Guide.
SIAM, Philadelphia, 1997. http://www.netlib.org/scalapack.

[4] T. A. Davis, J. R. Gilbert, S. Larimore, and E. Ng. A column approximate minimum degree
ordering algorithm. ACM Trans. Mathematical Software, 30(3):353–376, 2004.

[5] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. H. Liu. A supernodal approach
to sparse partial pivoting. SIAM J. Matrix Analysis and Applications, 20(3):720–755, 1999.

[6] J. W. Demmel, J. R. Gilbert, and X. S. Li. An asynchronous parallel supernodal algorithm for
sparse gaussian elimination. SIAM J. Matrix Analysis and Applications, 20(4):915–952, 1999.

[7] J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. A Set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft., 16:1–17, 1990.

[8] J. Dongarra, J. Du Croz, S. Hammarling, and Richard J. Hanson. An Extended Set of FOR-
TRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft., 14(1):1–17, March 1988.

[9] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. SIAM J. Matrix Analysis and Applications, 20(4):889–901, 1999.

[10] I.S. Duff, R.G. Grimes, and J.G. Lewis. Users’ guide for the Harwell-Boeing sparse matrix col-
lection (release 1). Technical Report RAL-92-086, Rutherford Appleton Laboratory, December
1992.

[11] A. George, J. Liu, and E. Ng. A data structure for sparse QR and LU factorizations. SIAM
J. Sci. Stat. Comput., 9:100–121, 1988.

[12] A. George and E. Ng. Symbolic factorization for sparse Gaussian elimination with partial
pivoting. SIAM J. Sci. Stat. Comput., 8(6):877–898, 1987.

77

[13] J. R. Gilbert, X. S. Li, E. G. Ng, and B. W. Peyton. Computing row and column counts for
sparse QR and LU factorization. BIT, 41(4):693–710, 2001.

[14] John R. Gilbert and Esmond G. Ng. Predicting structure in nonsymmetric sparse matrix
factorizations. In A. George, J. R. Gilbert, and J. W. H. Liu, editors, Graph theory and sparse
matrix computation, pages 107–139. Springer-Verlag, New York, 1993.

[15] L. Grigori, J. W. Demmel, and X. S. Li. Parallel symbolic factorization for sparse LU with
static pivoting. SIAM J. Scientific Computing, 29(3):1289–1314, 2007.

[16] B. Hendrickson and R. Leland. The CHACO’s User’s Guide. Technical Report SAND95-
2344•UC-405, Sandia National Laboratories, Albuquerque, 1995. http://www.cs.sandia.

gov/~bahendr/chaco.html.

[17] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, 1996.

[18] G. Karypis and V. Kumar. MeTiS – serial graph partitioning and computing fill-reducing ma-
trix ordering. University of Minnesota. http://glaros.dtc.umn.edu/gkhome/views/metis.

[19] G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS: Parallel graph partitioning and sparse
matrix ordering library – version 3.1. University of Minnesota, 2003. http://www-users.cs.
umn.edu/~karypis/metis/parmetis/.

[20] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Subprograms for
Fortran usage. ACM Trans. Math. Soft., 5:308–323, 1979.

[21] X. S. Li. Sparse Gaussian elimination on high performance computers. Technical Report
UCB//CSD-96-919, Computer Science Division, U.C. Berkeley, September 1996. Ph.D disser-
tation.

[22] X. S. Li. An overview of SuperLU: Algorithms, implementation, and user interface. ACM
Trans. Mathematical Software, 31(3):302–325, September 2005.

[23] X. S. Li and J. W. Demmel. Making sparse Gaussian elimination scalable by static pivoting.
In Proceedings of SC98: High Performance Networking and Computing Conference, Orlando,
Florida, November 7–13 1998.

[24] X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-memory sparse direct
solver for unsymmetric linear systems. ACM Trans. Mathematical Software, 29(2):110–140,
June 2003.

[25] X. S. Li and M. Shao. A supernodal approach to imcomplete LU factorization with partial
pivoting. ACM Trans. Mathematical Software, 37(4), 2010.

[26] J. W. H. Liu. Modification of the minimum degree algorithm by multiple elimination. ACM
Trans. Mathematical Software, 11:141–153, 1985.

[27] Message Passing Interface (MPI) forum. http://www.mpi-forum.org/.

[28] W. Oettli and W. Prager. Compatibility of approximate solution of linear equations with given
error bounds for coefficients and right hand sides. Num. Math., 6:405–409, 1964.

78

[29] F. Pellegrini. Scotch and libScotch 5.1 User’s Guide (version 5.1.11). INRIA Bordeaux
Sud-Ouest, Université Bordeaux I. November, 2010. http://www.labri.fr/perso/pelegrin/
scotch/.

[30] POSIX System Application Arogram Interface: Threads extension [C Language], POSIX
1003.1c draft 4. IEEE Standards Department.

[31] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra with
Applications, 1(4):387–402, 1994.

[32] P. Sao, R. Vuduc, and X. Li. A distributed CPU-GPU sparse direct solver. In Proc. of
Euro-Par 2014, LNCS Vol. 8632, pp. 487-498, Porto, Portugal, August 25-29 2014.

[33] R.D. Skeel. Iterative refinement implies numerical stability for Gaussian elimination. Mathe-
matics of Computation, 35(151):817–832, 1980.

79

