developerWorks : Linux | Open Source : Features / Library - Papers

= ShopIEM + Support ~ Downloads

— — - (1

IBM : developerWorks : Linux library | Open source library

— Download it now!

JFS IayOUt . . IE)reDeFA((:?:Jfalt(Ti)Reader
How the Jour naled File System handles the on-disk layout

Steve Best, Linux Technology Center, IBM
Dave Kleikamp, Linux Technology Center, IBM

May 2000
This article describes the on-disk Journaled File System (JFS) layout and the
mechanisms used to achieve scalability, reliability, and performance using the Partitions, aggregates, AGs,

on-disk layout structures. Y ou'll learn about the policies and algorithms used to filesets
manipul ate these structures and where JFS uses B+ trees throughout the file system
to increase file system operations.

Extents, inodes, B+ trees
Block Allocation Map
Inode allocations

The JFS architecture can be explained in the context of its disk layout characteristics. The
on-disk layout is the format used by JFSto control the file system. This paper covers
extent-based file geometry, the directory formats, the formats of block allocation maps, Fileset allocation inodes
inodes, and other characteristics of the layout structures. It provides detail and examples of Fjje
the B+ tree data structures used for file layout. B+ trees were selected to increase the -
performance of reading and writing extents, the most common operations that JFS does. w

Directory

Access Control List (ACL)
Extended Attribute (EA)

Partitions, aggr egates, allocation groups, filesets
Hereisthe "big picture” view of the on-disk layout.

Partitions Streams
A JFSfile system is built on top of a partition, which isthe abstraction exportedto JFSby ———— _ _
FDISK. Agaregate with afileset
A partition has: Summary

Resources

« A fixed partition block size, with legal values of 512, 1024, 2048, or 4096 bytes. The
partition block size defines the smallest unit of 1/0 supported on the partition. It About the authors
corresponds to the underlying disk sector size of the physical device making up the
partition, with 512 bytes being the most common size.

« A size, PART_NBIlocks, which isthe number of partition disk blocks.
o An abstract address space, [0.. PART_NBIlocks - 1], of partition disk blocks.

Aqggregates

To support DCE DFS (Distributed Computing Environment Distributed File System), JFS separates the notion of adisk
space allocation pool, called an aggregate, from the notion of a mountable file system sub-tree, called afileset. The terms
aggregate and fileset in this article correspond to their DFS usage. There is exactly one aggregate per partition; there may
be multiple filesets per aggregate. In the first release, JFS only supports one fileset per aggregate; however, al of the
meta-data has been designed for the fully general case.

Figure 1 shows the layout of an aggregate with two filesets.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (1 of 30) [4/18/2001 2:46:34 PM]

http://www.ibm.com/shop1/
http://www.ibm.com/support/
http://www.ibm.com/download/
http://www.ibm.com/home/
http://www.ibm.com/products/
http://www.ibm.com/services/
http://www.ibm.com/solutions/
http://www.ibm.com/news/
http://www.ibm.com/ibm/
http://www.ibm.com/help/
http://www.ibm.com/
http://www-106.ibm.com/developerworks/
http://www-105.ibm.com/developerworks/papers.nsf/dw/linux-papers-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/opensource-papers-bytitle?OpenDocument&Count=500
ftp://www6.software.ibm.com/software/developer/library/jfslayout.pdf
http://www.adobe.com/prodindex/acrobat/readstep.html

developerWorks : Linux | Open Source : Features / Library - Papers

Mola: Agoragale Block Siza is 1K in this sxampla
1KB

(One Aggregate Block)

. T T T L L L L L T 1 Mote: If the aggregate
Agaregate (HESEH‘U‘ED j block size were 512 byles
Block # | I) N | 1 1 | I Y Y | | I) N AN N A N | this waild bBe 83 fod 31

0 31
-7 Inodes (16KE)
Aggregate Inode Table: incde numbers shown
Brir ! o 1 Setohdary
Q %n.r ¢gn1rol e 0226 8 101214@ EEEEHEEEEEAQQM =L
Bge
perbloc 789 1)3 5 7 9 111315 ([Th9 2123 252729 31 [Superbloc see Figure 2
az2 38 40 44 &0
aggrinode #1: aggrinode #2: aggrinode #4:
"wellt Block map bad blocks
= 2 - rﬁwnar: ruu& ™\ fawner: roet) Eval}er rﬁﬁ
- = — O T m o om
.| 222 |Z22 |:-3%a Poe: biahbial] | PSie: "‘% lah blah blah
#°|228 [z88 |Ez.=- g | oive: teoss | | o
HE: E £ a sg.8s | 4 i %addr: 64 °adar 10
= o o Qg @ agadr: aadr:
SE|SEE | 258 |EsEstE langt ' | lengih: 1|
1st extent of Aggregate -]
Inode Allocation Map =T
58
elea]
(]
=
yo—) D— 1 I— 1
w7 [nodes (1BKB) ———m
secondary Aggregale Inode Table: inode numbers shown
| | | | | (L
D"E B 1012 14 UENS 28 22 24 26 28 35
(Eluch Allocation Map @
L] | | I:_T_}B 5 781 1315@1921%252?2931
G4 a0
LAY L 2| T T 7 [iiiéset 0 (destribes in
E:ggggl IAG é? aggrinade 16) baging her
L= | X Ll {sg= figure 2) | |
88 100 240 aggrinode #1; aggrinodes #2: aggrinode #4;
S "l block map bad Block
— e s r”wner root ™\ fGwner: root Y fowner root)
setondary Adqradgale Inode A acation Mapy, | meernt -RddYe = = = o Dera[n e 4 pﬁli'n-t.l x.tl.z.';..
f blah ah ale:

§ & i LI aaEI’;sE szel 1 size! 1024

] [=] [=] = — ofesl 17 1 [=amear 17

o388 |gB8 [fsiz=2 Mo a0 W 2 o

SE Egn ‘gn ;:g:: lergth: lengt 16 | g

EE[EEE | 228 [2®sms o

38 |£HEE :|£EE :|E535% g

&g
=]
g
FIGUREY. The Big Picture: Al aggregate with two hilesels
An aggregate has:

o A 32K reserved area at the front of it.
« A fixed aggregate block size, with legal values of 512, 1024, 2048, or 4096 bytes, but no smaller than the partition
block size. The aggregate block size defines the smallest unit of space allocation supported on the aggregate. Do

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (2 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

not confuse it with the partition block size, which defines the smallest unit of 1/0.

A Primary Aggregate Superblock and Secondary Aggregate Superblock. The superblocks contain aggregate-wide
information such as the size of the aggregate, size of alocation groups, aggregate block size, etc. The secondary
aggregate superblock is adirect copy of the primary aggregate superblock. The secondary superblock is used if the
primary aggregate superblock is corrupted. These superblocks are at fixed locations. This allows JFS to always be
able to find these without depending on any other information. The superblock structureis defined in

ifs superblock.h, struct jfs_superbl ock.

An Aggregate Inode Table, containing inodes describing the aggregate-wide control structures. The Aggregate
Inode Table logically contains an array of inodes. An aggregate has no directory structure; the aggregate inodes are
not visible anywhere in the aggregate or fileset name space.

A Secondary Aggregate Inode Table, containing replicated inodes from the Aggregate Inode Table. Since the
inodes in the Aggregate Inode Table are critical for finding any file system information, they will each be
replicated in the Secondary Aggregate Inode Table. The actual data for the inodes will not be repeated, just the
addressing structures used to find the data and the inode itself.

An Aggregate Inode Map, which describes the Aggregate Inode Table. The Aggregate Inode Allocation Map
contains allocation state information on the aggregate inodes as well as their on-disk location.

A Secondary Aggregate Inode Map, which describes the Secondary Aggregate Inode Table. Since the Aggregate
Inode Table itself must be duplicated, the Secondary Aggregate Inode Map is actually a separate mapping structure
from the Aggregate Inode Allocation Map.

A Block Allocation Map, which describes the control structures for alocating and freeing aggregate disk blocks
within the aggregate. The Block Allocation Map maps one-to-one within the aggregate disk blocks.

A f sck Working Space (not shown in Figure 1), which provides space for f sck to track the aggregate block
alocation. This space is necessary because JFS supports very large aggregates; there might not be enough memory
to track thisinformation in memory when f sck isrun. The space is described by the superblock. One bit is
needed for every aggregate block. The f sck working space always exists at the end of the aggregate.

An In-line Log (not shown in Figure 1) provides space for logging of meta-data changes of the aggregate. The
space is described by the superblock. The in-line log always follows the f sck working space.

Initially, the first inode extent is allocated when the aggregate is created. Additional inode extents are allocated and
deallocated dynamically as needed. These Aggregate Inodes each describe certain aspects of the aggregate itself, as
follows:

Aggregate Inode zero is reserved.

Aggregate Inode one, the "self" inode, describes the aggregate disk blocks comprising the Aggregate Inode Map.
Thisisacircular representation, in that Aggregate Inode oneisitself in thefile that it describes. The obvious
circular representation problem is handled by forcing at least the first aggregate inode extent to appear at a
well-known location, namely, 4K after the Primary Aggregate Superblock. Therefore, JFS can easily find
Aggregate Inode one, and from there it can find the rest of the Aggregate Inode Table by following the B+ treein
Inode one.

To duplicate the Aggregate Inode Table, JFS will aso need to find the copy of the Aggregate Inode one to find the
rest of the duplicated table. The superblock will contain an extent descriptor that describes the location of the first
inode extent of the Second Aggregate Inode Table. From that JFS will be able to find the Secondary Aggregate
Inode one and the rest of the Secondary Aggregate Inode Table.

Aggregate Inode two describes the Block Allocation Map.

Aggregate Inode three describes the In-line Log when mounted. Thisinodeis alocated, but no datais saved to
disk.

Aggregate Inode four describes the bad blocks discovered during formatting of the aggregate. These bad blocks are
marked allocated in the block map. Thisinode is a normal file whose data is the bad blocks.

Aggregate Inodes five through 15 are reserved for future extensions.

Starting at Aggregate Inode 16, there is one inode per fileset, the Fileset Allocation Map Inode. Thisinode
describes the control structures that represent filesets. As additional filesets are added to the aggregate, the
Aggregate Inode Table itself may have to grow to accommodate additional fileset inodes.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (3 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_superblock.h

developerWorks : Linux | Open Source : Features / Library - Papers

Allocation groups

Allocation groups (AGs) divide the space in an aggregate into chunks, and allow JFS resource allocation policies to use
well known methods for achieving great JFS I/O performance. First, the allocation policies try to cluster disk blocks and
disk inodes for related data to achieve good locality for the disk. Files are often read and written sequentialy, and the
fileswithin adirectory are often accessed together. Second, the allocation policiestry to distribute unrelated data
throughout the aggregate in order to accommodate locality. Allocation groups within an aggregate are identified by a
zero-based AG index, the AG number.

Allocation group sizes must be selected, which yield AGs that are sufficiently large to provide for contiguous resource
allocation over time. To minimize the number of updates that need to be done when an aggregate is expanded or shrunk,
the allocation groups need to be limited to a maximum number of groups, 128. Additionaly, JFS will impose a minimum
on the allocation group size of 8192 aggregate blocks. The allocation group size must always be a power of 2 multiple of
the number of blocks described by one dmap page (1, 2, 4, 8, ... dmap pages). The alocation group size is stored in the
aggregate superblock.

An aggregate whose size is not a multiple of the allocation group size will contain a partial alocation group; the last
allocation group of the aggregate is not fully covered by disk blocks. This partial alocation group will be treated as a
complete allocation group, except JFS will mark the non-existent disk blocks allocated in the Block Allocation Map.

Filesets

A fileset isaset of filesand directories that form an independently mountable sub-tree. A fileset is completely contained
within a single aggregate. Note that multiple filesets may exist within asingle aggregate; in that case, all of the filesets
share acommon pool of free aggregate disk blocks as defined by the aggregate control structures.

Figure 2 showsthe layout of two filesets contained in an aggregate.

Mole: Agoregale Block Size is 1K in this sxampla

- 37 Inodas (1BKBj————»

Aggregate Inode Table: inode numbers shown
Primary 0246 B1012 14. 18 28 22 24 26 28 36| Secandary
RESERVED | Aggregate| ©3Mro! AG Aggregate
Superblocy 0 1.3 67 9 1101315 (D19 2123262729 31| Syperblock &
0 32 36 40 44 /} . 60
P m——— -
agarinode #: D;T;Eﬁi EEF?P%II::I.I; aggrinode #2: "E’.;}ﬁ:; fﬁﬂ;. ~ =1
sl ze: 12988 block map |~ ate: blah blah
u;ﬁ.et: 0 oiiset: O
r: 8 addr:
Iangﬂ-n: 240 Iengﬂ'n: EQQE

offset; 8192
|eﬁg§r'-5 10284

wag entries
total

——— S
M~ ~—

[

Filesat 0 - ~——— Fileset 1 ———

Fileset O Inode Table: 15t extent

U{:zd 6 B101214 1618282224 262836] + - ' o
g Control IAG Caontrol IAG §>

Page (1XE)5 7 9 11315 17 19 212325 2729 31| Page
240 244 | I\E-iﬁ 264 5992 5996 6000
!

I e

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (4 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

/ N\ \
-'/r Fileset 0 Inode —\" I'2nd Half of \'

Aggregate Map: 151 extant lileset Superblock |file3-el inode #2

' = Infermation root directory for Fileset 0
= B O LE-X-1 =
[X=¥- ECQ o aTa™
a” |22° [g8e |eg.ob _)] _
sE[228 |2=2 [EZEE=E ACL File: This looks like a normal inode
£3|=Ego -Egn ﬂﬁ;ﬁ; whaose data is the ACL's, This data is
.\\::E,E' SEE ;| 3EE : |ESz=sz: decribed in Section 2.10 on page 43,
7 - -
% IAG
_Abzad N _
Fileset 0 Inode / ™ Mote: The fileset inodes
Agaregate Map: & m pointed to by the IAG do
P 1]
2nd extent E < EZ‘.EED not follow the IAG on the
2. | EB. |2==== disk, Fileset files can be
Eri W iE sc2cm .
-E“g = ug HETET allocated at any peint on
;Eg . EEH 'EE-EE-E the disk, even between
il Bkl Bttt other fileset files,
FIGURE 2. Two filesets in an aggregale
A fileset has:

« A Fileset Inode Table, containing inodes describing the fileset-wide control structures. The Fileset Inode Table
logically contains an array of inodes.

« A Fileset Inode Allocation Map, which describes the Fileset Inode Table. The Fileset Inode Allocation Map
contains allocation state information on the fileset inodes as well as their on-disk location. The "super-inode”
describing the Fileset Allocation Map and other fileset information resides in the Aggregate Inode Table as
previously described. Since the Aggregate Inode Table is replicated, there is also a secondary version of thisinode,
which points to the same data. The "super-inode” isitself afile. When the fileset isinitially created, the first inode
extent is allocated; additional inode extents are allocated and deallocated dynamically as needed.

Theinodesin afileset are allocated as follows:

« Fileset inode zero isreserved.

« Fileset inode one contains additional fileset information that would not fit in the Fileset Allocation Map Inode in
the Aggregate Inode Table.

« Fileset inode two is the root directory inode for the fileset. Note that JFS preserved the common Unix convention
that inode number two is the root of the file "system.”

« Fileset inode threeisthe ACL file for the fil eset.

« Fileset inodes starting with four are used by ordinary fileset objects, user files, directories, and symbolic links.

Extents, inodes, B+ trees
An extent is a sequence of contiguous aggregate blocks allocated to a JFS object as a unit. An extent is wholly contained

within asingle aggregate (and therefore a single partition); however, large extents may span multiple allocation groups.

Every JFS object is represented by an inode. Inodes contain the expected object-specific information such as time stamps
and file type (regular vs. directory, etc.). They also "contain™ a B+ tree to record the allocation of extents. Note
specifically that all JFS meta data structures (except for the superblock) are represented as "files". By reusing the inode
structure for this data, the data format (on-disk layout) becomes inherently extensible.

Details of extents, B+ trees, and inodes are in the sections that follow.

Extents
A "file" isallocated in sequences of extents. An extent is a contiguous variable-length sequence of aggregate blocks

allocated as a unit. An extent can range in size from 1 to 2(24) - 1 aggregate blocks. An extent may span multiple
Allocation Groups (AGS). These extents are indexed in a B+ tree for better performance in inserting new extents, locating

particular extents, etc.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (5 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

Two values are needed to define an extent, its length and its address. The length is measured in units of aggregate block
size. JFS uses a 24-bit value to represent the length of an extent, so an extent can rangein sizefrom 1to 2(24) - 1
aggregate blocks.

With a 512-byte aggregate block size (the smallest allowable), the maximum extent is512 * (2(24) - 1) byteslong
(dlightly under 8G). With a 4096-byte aggregate block size (the largest allowable), the maximum extent is 4096 * (2(24) -
1) byteslong (slightly under 64G). These limits only apply to a single extent; they have no limiting effects on overal file
size. The address is the address of the first block of the extent. The addressis also in units of the aggregate blocks: it is
the block offset from the beginning of the aggregate.

An extent-based file system combined with a user-specified aggregate block size allows JFS to need no separate support
for internal fragmentation. Y ou can configure the aggregate with a small aggregate block size (for example, 512 bytes) to
minimize internal fragmentation for aggregates with alarge number of small size files.

In general, the alocation policy for JFS tries to maximize contiguous allocation by allocating a minimum number of
extents, with each extent as large and contiguous as possible. Thisallows for large I/O transfer, resulting in improved
performance. However, in special casesthisis not always possible. For example, copy-on-write clones of a segment will
cause a contiguous extent to be partitioned into a sequence of smaller contiguous extents. Another case is restriction of
extent size. For example, the extent size is restricted for compressed files since JFS must read the entire extent into
memory and decompressit. JFS has alimited amount of memory available, so it must ensure that it will have enough
room for the decompressed extent.

A defragmentation utility is provided to reduce external fragmentation, which occurs from dynamic

allocation/deall ocation of variable-size extents. This allocation and deallocation can result in disconnected variable size
free extents all over the aggregate. The defragmentation utility will coalesce multiple small free extents into single larger
extents.

Inodes

JFS on-disk inode is 512 bytes. A JFS on-disk inode contains four basic sets of information. The first set describes the
POSIX attributes of the JFS object. The second set describes additional attributes for JFS object; these attributes include
information necessary for the VFS support, information specific to the OS environment, and the header for the B+ tree.
The third set contains either the extent allocation descriptors of the root of the B+ tree or in-line data. The fourth set
contains extended attributes, more in-line data, or additional extent allocation descriptors. The definition of the on-disk
inode structure is defined in jfs dinode.h, st ruct di node.

JFS alocates inodes dynamically, which provides the following advantages:

« Inode disk blocks may be placed at any disk address, which decouples the inode number from the location. This
decoupling simplifies supporting aggregate and fileset reorganization to enable shrinking the aggregate. The inodes
can be moved, and they will till have the same number. This allows JFS not to need to search the directory
structure to update the inode numbers. The decoupling is also necessary for supporting DFS fileset cloning. When
afileset iscloned, just the inodes are copied. Since JFS can put the new inodes anywhere on disk, the new inodes
will have the same numbers as the inodes they are copied from. This allows JFS not to have to copy the directory
structures and update the inode numbers.

« It eliminates the need to alocate "ten times as many inodes as you will ever need.” Thisis especially important
with the larger inode size (512 bytes) in JFS.

« Fileallocation for large files can consume multiple allocation groups and still be contiguous, whereas static
alocation forces agap (for the initially allocated inodes in each allocation group).
On the other hand, dynamic inode allocation causes a number of problems, including the following:

« With static alocation the geometry of the file system implicitly describes the layout of inodes on disk; with
dynamic allocation separate mapping structures are required.

« Those mapping structures are critical to JFS integrity. Due to the overhead involved in replicating these structures,
JFS has decided to accept the risk of loss of these maps. However, JFS will replicate the B+ tree structures, which
allows JFS to find the maps.

Inodes are allocated dynamically by allocating inode extents that are simply a contiguous chunk of inodes on the disk. By

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (6 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_dinode.h

developerWorks : Linux | Open Source : Features / Library - Papers

definition, a JFS inode extent contains 32 inodes. With a 512-byte inode size, an inode extent is therefore 16KB in size
on the disk.

When a new inode extent is allocated, the extent is not initialized. However, for f sck to be able to check if aninodeis
in use, JFS will need some information in the inode to check. Once an inode in an extent is marked in-use, its fileset
number, inode number, inode stamp, and the inode allocation group block address must be initialized. Thereafter, the link
field will be sufficient to determineif the inode is currently in use.

Notice that dynamic inode allocation implies that there is no direct relationship between an inode number and the disk
address of the inode. Therefore, JFS must have a means of finding the inodes on disk. The Inode Allocation Map
provides this function.

Inodes generation numbers are ssimply counters that get incremented each time an inode is reused.

The static-inode-allocation practice of storing a per-inode generation counter doesn't work with dynamic inode
allocation, because when an inode becomes free, its disk space may literally be reused for something other than an inode
(in other words, the space may be reclaimed for ordinary file data storage). Therefore, in JFS there is simply one inode
generation counter that isincremented on every inode allocation, rather than one counter per inode that would be
incremented when that inode is reused.

B+ trees

This section describes the B+ tree data structure used for file layout. B+ trees were selected to increase the performance
of reading and writing extents, which are the most common operations JFS will have to do. B+ trees provide afast search
for reading a particular extent of afile. They also provide an efficient way to append or insert an extent in afile. Less
commonly, JFSwill need to traverse an entire B+ tree when removing afile. In order to ensure JFS will remove the
blocks used for the B+ tree as well asthefile data, the B+ treeis also efficient for traversal.

An extent allocation descriptor (xad structure) describes the extent and adds two more fields that are needed for
representing files: an offset, describing the logical byte address the extent represents, and a flags field. The extent
allocation descriptor structure isdefined in jfs xtree.h, struct xad.

The xad structureis:

struct xad {
unsi gned flag: 8;

unsi gned rsvrd: 16;
unsi gned of f1:8;
ui nt 32 of f 2;
unsi gned | en: 24;
unsi gned addr 1: 8;
ui nt 32 addr 2;

} xad_t;

where:

« flagisan 8-hit field containing miscellaneous flags. These flags can indicate copy-on-write, if the extent is
allocated but not recorded, information for compression, etc.

« rsvrdisal6-bit field reserved for future use. It is always zero.

« off1,0ff2 isa40-bit field, containing the logical offset of the first block in the extent. The logical offset is
represented in units of the aggregate block size; in other words, to get a byte, offset must be multiplied by the
aggregate block size.

« lenisa24-hit field, containing the length of the extent. The length is represented in units of aggregate block size.
« addrl,addr2isa40-bit field, containing the address of the extent. The address is represented in units of aggregate
block size.
An xad structure describes two abstract ranges:

« The physical range of disk blocks on the disk. This starts at aggregate block number xad address and extends for
xad_length aggregate blocks.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (7 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_xtree.h

developerWorks : Linux | Open Source : Features / Library - Papers

« Thelogical range of bytes within afile. This starts at byte number xad_offset * AGBS (aggregate block size) and
extends for xad _length * AGBS bytes.

The physical range and logical range are, of course, both the same number of byteslong. Note that xad_of f set is
stored in units of aggregate block size (for example, avalue of "3" in xad_of f set means 3 aggregate blocks, not 3
bytes). It follows from this that extents within afile are always aligned on aggregate block size boundaries.

There is one generic B+ tree index structure for all index objects (except for directories) in JFS. The data being indexed

will depend on the object. The B+ tree is keyed by offset of xad of data being described by the tree. The entries are sorted

by the offsets of the xad structures. An xad structure is an entry in anode of a B+ tree.

Figure 3 shows a single xad structure and how it describes both the range of bytes logically within the file as well asthe
physical location of that range of bytes on the disk itself (in other words, with the aggregate).

file "foo”
byte O

byte 1 KEY:

byte 2 an xad structure

AGBS: Aggregate Block size

xad_offset
®ad length
xad_address

multiply
by AGES

w
E (aggregate block number)
=T
+*
< \
£ \
l‘} II|
1 physical location
| 5 within aggregate:
=

—— |

T xad_length aggregate blocks

FIGURE 3. xad describes two "ranges

The bottom of the second section of a disk inode contains a data descriptor that tells what is stored in the second half of
the inode. The second half could contain in-line data for the fileif it is small enough. If the file data won't fit in the
in-line data space for the inode, it will be contained in extents, and the inode will contain the root node of the B+ tree.
The header will indicate how many xad are in use and how many are available. Generally, the inode will contain 8 xad
structures for the root of the B+ tree. If there are 8 or fewer extents for the file, then these 8 xad structures are also a leaf

node of the B+ tree. They will describe the extents. (See Figure 4, example 1.) Otherwise the 8 xad structures in the inode

will point to either the leaves or internal nodes of the B+ tree.

example 10 inode <- 8 allocated extents:
B xad in inode point directly to extents of data

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (8 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

xad entries

xad entries

(8 total)

Inode

7 Inode Info

B+tree header

offset: 26624
addr; 256

length: 2

Example 2: inode = B allocated extents and < - 254 allocated extents:
1 xad in inode points to one leaf node.
The leaf node entries in turn point to the extents of data.

Inode
Inade Infa
B+tree header

offsat: 0
addr; 412
length: 4

xad entries
(8 tatal)

|] 1T 1T 1
254 xad leaf node entries
11| [I 2

offset: 0
addr; 0
) length: 0

heade

o
—
P

Example 3: 245 allocated extents and = - 2032 allocated extents:
Up to 8 xad in inode each points to one leaf node.
Each leaf node points to up to 254 extents of data.
The header for each leaf node links them together.

—
-

(8 total)

Inode

-

Inode Info)

B+tree headar

offset; 0
addr: 412
length: 4

ollsel: 750
addr: 560
length: 4

——
"‘1-..____...-"""—"'

offset; 0
addr: 0
length: O

p—

fheade

| | | =
254 xad |eaf node Bntrias§ %|
| I I [| -

412

T 1 T
254 xad leal node entries

'ﬁ-ead;r

]

(=]
=1

Example 4: incde = 2032 allocated extents and == 516128 allocated extents:
Up to 8 xad in inode each points to one internal node.
Each internal node points to 254 leaf nodes.
Each leaf node points to up to 254 extents of data.
The header for each leaf or internal node links siblings.

Inode o | T T 1 -
¢~ Inode Info E 254 xad leaf node entries
B +iree headar 011 L | _ 1
A offaet: 0 38
addr: 360 ;
length: 4 ;
" offset: 8340 i
& addr: 212 I
= I length: 4
s 8 ~——— = T T T -
a2 M——) @ 254 xad leaf node entriasg
=
= (| |
offset; 0 -
addr: 0 412
v length: 0

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (9 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

Once the 8 xad structures in the inode are filled, an attempt will be made to use the last quadrant of the inode for more
xad structures. If the INLINEEA bitissetinthedi _node field of the inode, then the last quadrant of theinodeis
available.

Once al of the available xad structures in the inodes are used, the B+ tree must be split. JFS will allocate 4K of disk
space for aleaf node of the B+ tree. A leaf nodeislogically an array of xad entries with a header. The header pointsto
thefirst free xad entry in the node, all xad entries following that one are also not allocated. The 8 xad entries are copied
from the inode to the leaf node, the header isinitialized to point to the Sth entry as the first free entry. Then JFS will
update the root of the B+ tree into the inode's first xad structure; this xad structure will point to the newly allocated | eaf
node. The offset for this new xad structure will be the offset of the first entry in the leaf node. The header in the inode
will be updated to indicate that now only 1 xad is being used for the B+ tree. The header in the inode also needs to be
updated to indicate that the inode now contains the pure root of the B+ tree. (See Figure 4, example 2.)

As new extents are added to the file, they will continue to be added to this same |leaf node in the necessary order. This
will continue until this node fills. Once the node fills anew 4K of disk space will be alocated for another leaf node of the
B+ tree. The second xad structure from the inode will be set to point to this newly allocated node. (See Figure 4, example

3)

Thiswill continue until all 8 xad structuresin the inode are filled, at which time another split of the B+ tree will occur.
This split will create internal inodes of the B+ tree which are used purely to route the searches of the tree. JFS will
allocate 4K of disk space for an internal node of the B+ tree. An internal node looks the same as a leaf node. The 8 xad
entries are copied from the inode to the internal node, the header isinitialized to point to the 9th entry asthe first free
entry. Then JFS will update the root of the B+ tree by making the inode's first xad structure pointed to the newly
allocated internal inode. The header in the inode will be updated to indicate that only 1 xad is being used for the B+ tree.
(See Figure 4, example 4.)

Thefile|fs xtree.h describes the header for the root of the B+ treeinst ruct xt page_t . Thefilejfs btree.histhe
header for an internal node or aleaf nodeinstruct bt page_t.

Examples
The following examples further illustrate the use of extent descriptors and xad structures:
o A 1041377 bytefile, alocated contiguously.
« Thesame 1041377 bytefile, but split into three pieces on the disk.
o A 1041377 bytefile, but with a"hole" in it (a sparsefile).
« A 16GB file, allocated contiguously.

In al of these examples, the aggregate block sizeis 1KB.

1041377 bytefile, allocated contiguously: Thisfile requires 1017 1KB aggregate blocks (with 31 bytesin the last
aggregate block lost to internal fragmentation). Only one xad structure is required to describe this contiguous file:

flag not di scussed here

of f set 0 /* the beginning of the file */
| engt h 1017 /* 1017 1KB aggregate bl ocks */
addr ess XXXXX /* aggregate bl ock # */

This same xad structure could represent any contiguous file of size 1040385 (1016 * 1024 + 1) to 1041408 (1017 *
1024), because extent descriptors only represent sizes down to aggregate block size granularity. Only the inode
di _si ze field records byte granularity.

1041377 bytefile, in three pieces: Assume that the samefileis split into three separate extents on the disk: one 495
aggregate blocks long, one 22, one 500. It requires three xad structures to represent this file one per physical extent:

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (10 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_xtree.h
http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_btree.h

developerWorks : Linux | Open Source : Features / Library - Papers

xad #O0:

flag not di scussed here

of f set 0 /* the beginning of the file */
| engt h 495 /* 495 1KB aggregate bl ocks */
addr ess XXXXX /* aggregate block # */
xad #1:

flag not di scussed here

of f set 495 /* the beginning of the file */
| engt h 22 /* 22 1KB aggregate bl ocks */
addr ess YYYYY /* aggregate bl ock # */
xad #2:

flag not di scussed here

of f set 517 /* the beginning of the file */
| engt h 500 /* 500 1KB aggregate bl ocks */
addr ess 22222 /| * aggregate block # */

In this case, xad number O describes the first 495 physical aggregate blocks of thefile. Thexad_of f set field contains
zero, because this xad describes the bytes starting at logical offset zero. The next xad, xad number 1, describes the next
22 physical aggregate blocks of thefile. Thexad_of f set field contains 495, because this xad describes the bytes
starting at logical offset 506880 (495 * 1024); the previous bytes being described by xad 0. The final xad describes the
last 500 blocks of thefile. Thexad_of f set field hereis517. Notice that for files which are not sparse, the

xad_of f set field of agiven xad isequal to the sum of the lengths of all previous xad structures (517 = 495 + 22 in
this example). If this relationship were aways true, the xad_of f set fields would be redundant and could be
eliminated. However, the next example shows that, for sparsefiles, the xad_of f set field isnot redundant.

1041377 byte sparsefile: Consider afile created viathe following POSIX style operations:

fd = create ("newfile", blah blah blah);
wite (fd, "hi", 2);

| seek (fd, 1041374, 0);

wite (fd, " bye" , 3);

Thisfile has two bytes of data ("hi") starting at logical byte offset zero, and three more bytes starting at logical byte
offset 1,041,374 ("bye"), and would be all zero (sparse) in between. Thefileis 1041377 bytes long.

In general, JFS does not allocate physical disk space to hold byte ranges of afile that has never been written to.
Therefore, it will take two xad structures to represent this file: one for an extent containing the "hi" data, and one for an
extent containing the "bye" data:

xad #0 :

flag not di scussed here

of f set 0 /* the beginning of the file */
| engt h 1 /* 1 1KB aggregate bl ocks */
addr ess XXXXX /* aggregate block # */
xad #1:

flag not di scussed here

of f set 1016 /* the beginning of the file */
| ength 1 /* 1 1KB aggregate bl ocks */
addr ess YYYYy / * aggregate bl ock */

In this case, the first extent (xad 0) contains the bytes "hi", followed by 1022 bytes of zero. The last extent (xad 1)
contains 990 bytes of zero, followed by the 3 bytes of "bye". The remaining 31 bytesin the 1KB extent are not part of the
file (they are the same 31 byteslost to internal fragmentation asin the first example).

Notice that in thiscase the xad_of f set fields are necessary; they are the only way to know that xad 1 represents a

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (11 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

sequence of bytesthat are at an "unexpected” logical offset within the file (that is, the offset for xad 1 does not equal the
offset of xad O + length). Thisis how sparse files are represented.

Thedi _si ze field of theinode will contain the offset value of the last byte written plus one.

16GB file, allocated contiguously: The length field in an xad structure is only 24 bits long: therefore, it can hold avalue
of up to 2(24) - 1. If the aggregate block size is 1KB (for example), then the longest extent a single xad can represent is
(2(24) - 1) * 2(10) = 1KB less than 16G. By implication, thisis also the largest extent a single xad structure can
represent. Thus, if afileislarge enough, it will require multiple xad structures to represent it, even if thefileis
contiguous on disk. This example shows such afile: a 16G file, allocated contiguously starting at aggregate block
number 12345 and going for 16777216 1KB aggregate blocks (16G).

xad #O0:

flag not di scussed here

of f set 0 /* the beginning of the file */
| ength 16777215 /* 1 1KB aggregate bl ocks */
addr ess 12345 / * aggregate bl ock */
xad #1:

flag not di scussed here

of f set 16777215 /* the beginning of the file */
| engt h 1 /* 1 1KB aggregate bl ocks */
addr ess 16789560 /* aggregate block # */

In this case, whether or not the file is contiguous on the disk, it will take at least two xad structures to represent it, due to
the length limitation of an individual extent.

Block Allocation Map

The Block Allocation Map is used to track the allocated or freed disk blocks for an entire aggregate. Since al of the
filesets within an aggregate share the same pool of disk blocks, this alocation map is used by all of the filesets within an
aggregate when allocating or freeing disk blocks.

The Block Allocation Map isitself afile described by aggregate inode 2. When the aggregate isinitialy created, the data
blocks for the map to cover the aggregate space are alocated. The map may grow or shrink dynamically as the aggregate
is expanded or shrunk.

The Block Allocation Map tracks if each individual aggregate block is alocated or freed.

Figure 5 shows the logical and physical structure of the map asindexed by the block map inode. Each page of the map is
4K in length. The map contains three types of pages. the bmap control page, the dmap control pages, and the dmap pages.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (12 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

Logical structure of block allocation map L2 243 o blocks
L1, - 233 max blocks

Lo, LO, 10s 223 hax blocks

Dmap, .. |Dmap . 2'% max blocks

Physical structure of Block Allocation Map
Note: The size of each "page" is 4K.

I% =1 QI%
o E‘I_g §1E &g
£ =15 EIE E'E
3] B EIE oI
o o f=}
E, L2 | Ly | L9 MEE:E Dmaﬁ'nz'a._g"ﬁ Lo, Dmap{mz#z'nz'n:mé:; S
& I'm W
= 218 EIE_ %g
L - 3 4 1027 1028 2052 2053 2054
Map Fages

FIGURE 5. Block Allocation Map

Each dmap contains a single bit to represent each aggregate block. Thei-th bit represents the allocation status of thei-th
logical aggregate block. Thisisdefined by st ruct dmap_t, injfs dmap.h file. Each dmap page covers 8K of

aggregate blocks.

Because the Block Allocation Map may have many dmap pages they are organized by the dmap control pages, LN in
Figure 5. These pages improve the performance of finding large extents of free blocks. The size of the aggregate will
determine how many of these pages and how many levels are needed. At most there will be three levels, which allows a
maximum size of 2(43) aggregate blocks. If not all of the levels are needed, the Block Map Inode will be a sparsefile
with holes for the first page of each of the unused levels.

JFS employs a commit strategy to insure that the control datais reliably updated. Reliable update means that consistent
JFS structure and resource allocation state is maintained in the face of system failures. In order to ensure the Block
Allocation Map isin aconsistent state JFS maintains two maps in the dmap structure, the working map and the persistent
map. The working map records the current allocation state. The persistent map records the committed allocation state,
consisting of the allocation state as found on disk or described by records within the JFS log or committed JFS
transactions. When an aggregate block is freed, the permanent map is updated first. When an aggregate block is
allocated, the working map is updated first. A bit of O represents a free resource and a value of 1 an allocated resource.

The dmap control pages of the Block Allocation Map contain atree similar to the tree in admap structure, except the leaf
level contains 1024 elements. The dmap control page is defined by struct dmapct | _t which can be found in the

[fs_dmap.h.

Figure 6 shows the detail of atree field from one dmap structure. Note thisfield in the dmap structure is aflat array, but
it represents a tree as shown. The tree tracks the maximum number of contiguous blocks at each level except the bottom
level. The bottom level of the tree, treg[85] through tree [341], contains the binary buddy representation of the working
map as described below. The other levels of the tree contain the maximum number of contiguous free blocks from four
sections of the next lower level.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (13 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_dmap.h
http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_dmap.h

developerWorks : Linux | Open Source : Features / Library - Papers

tree [0...34]
342 elements —1+4+16+ 644256

- N
trae 1] lru[E]. 'lrn[:!]. tru[d]l
r Y
tree[5) .trau[ﬂ] .tru[?] .tru[ﬂ] 16 entries at this level
4 N
Iree[21] .tma[ﬂ]lrn[iﬁ] .trau[ﬂd] 64 entries at this level

r Y
.uu[35].trn[ﬁﬁ].tru[a?].tru[aa] 256 binary buddy entries at this lavel

Binary Buddy performed on each word of bitmap to get the bottam level of the tree

32 bits

mﬁ.ﬂ:_:,!r:_:::""' ey

Bit Ma
P FIGURE &. Tree structure in dmap structure

The binary buddy system is used to complete the leaf level of each of the summary trees. The tree in the dmap structure

isformed by first obtaining the longest binary buddy string of free bits for each word of the bitmap. The strings are
encoded as a power of 2, with -1 being used to represent all allocated.

Figure 7 shows an example of finding the longest binary buddy string of free bits for aword.

FIGURE 7. Binary Buddy of a word of the bitmap

Edmﬂ' 12 3 4 5 6 7 8 8101112131415 1617 1819 20 21 22 23 24 25 26 27 28 29 30 1

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (14 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

The binary buddy system is then used to complete the leaf of the tree. The tree is formed by taking the longest number of
free blocks starting at the specified index, including only its buddy shown as a power of 2.

Figure 8 shows a shortened example of figuring the leaf of the dmap tree. Note that only completely free words are

combined with their completely free buddy. When combined, the right-most buddy isturned into a-1 to indicateit is
represented by another entry.

Indices 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
™ @ D@E 96 56 56 56 56 56 5
@) 6461616164 0
(2 D 4 @ 14 1 A
2 8) -1

2

Array 2 3 4 5 7 -1-1 18 -1 -1-1-1-1-1 -1
FIGURE 8. Binary Buddy

The dmap control pages of the Block Allocation Map contain atree similar to the tree in dmap structure except the |eaf
level contains 1024 elements. These el ements would be the binary buddy representation of tree [0] for the following 1024
map pages. For LO pages it would be the following 1024 dmap pages, for L1 pages it would be the following 1024 LO
pages, and for L2 page it would be the following 1024 L1 pages.

At the top of the Block Allocation Map thereis amap control structure, st ruct dbrap_t . This structure contains
summary information which speeds up the finding of AGs which have more than average free space. The structure can be
found in the jfs dmap.h.

The Block Allocation Map is not journaled: it can be repaired during recovery time by | ogr edo or reconstructed by
f sck. Both the working and persistent maps need to be the same state after f sck or | ogr edo.

Extending Aggregate to increase file system size

To increase the size of an aggregate on-line, JFS must first make sure that JFS has the Block Allocation Map pages
necessary to cover the new aggregate blocks. Generaly, the space for the extra map pages can come from the existing
aggregate, but in the case where the aggregate is 100% full thisisimpossible. Therefore we need a method to handle this
special case.

To solve this problem JFS always allocates more space for the Block Allocation Map than it needs to actually address the
aggregate space. Each map will have an extra page of space for bitmaps, and if this page would cause another level of
summary trees then the map will have extra pages for the necessary summary information. This extra space alows JFSto
break the expansion of the aggregate into smaller pieces if necessary to grow the aggregate to the desired size. The
following steps will be followed when an attempt is made to extend the aggregate:

1. If thereis enough free space in the existing aggregate to extend the Block Allocation Map to the size needed to
address al of the blocks for the new aggregate, then JFS will go ahead and extend the aggregate to the full size.
Extra pages will be added as necessary to the Block Allocation Map to handle future extensions of the aggregate.

2. If there wasn't enough space for a complete extend, JFS will extend the aggregate by just the amount of blocks
which can be addressed by the extra page already available in the Block Allocation Map.

3. Now JFS has some extra aggregate blocks which aren't yet being used by anything in the aggregate. JFS can use

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (15 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_dmap.h

developerWorks : Linux | Open Source : Features / Library - Papers

these aggregate blocks to add space to the Block Allocation Map to continue extending the aggregate until JFS
reaches the asked-for final size. JFS must remember to aways keep the extra pagesin the Block Allocation Map
while doing this.

This interaction will be hidden from the rest of the system by having thevf s_cnt | () cal handle this completely.

Alter native encoded binary buddy representation

The Block Allocation Map can also be represented using an encoded binary buddy system. This representation has the
same physical and logical structure as the previous representation except the leaves of the trees look different and the
dmap structure looks different.

The lowest level of the Block Allocation Map isdefined by st ruct dmap. Each dmap page covers 8K of aggregate
blocks.
/~k

* dmap summary tree

*

* dmaptree_t nust be consistent with dmapctl _t.

*/

typedef struct {
i nt32 nl eaf s; /* 4. nunber of tree leafs */
i nt32 | 2nl eaf s; /[* 4: 12 nunber of tree leafs */
i nt32 | eafi dx; /* 4: index of first tree |eaf */
i nt32 hei ght ; /* 4: height of the tree */
int8 budm n; /[* 1: mn |2 tree | eaf value to conbi ne*/
int8 stree[TREESI ZE] ; /* TREESI ZE: tree */
ui nt8 pad[2] ; [* 2: pad to word boundary */

} dnmaptree_t; /[* - 360 - */

/*

* dnmap page per 8K bl ocks bitmap

*/

t ypedef struct {
i nt 32 nbl ocks; /* 4: num bl ks covered by this dmap */
i nt 32 nfree; /* 4: numof free blks in this dmap */
i nt 64 start; /* 8: starting blkno for this dmap */
dmaptree_t tree; /* 360: dmap tree */
ui nt 8 pad[1672] ; /* 1672: pad to 2048 bytes */
ui nt 32 wrap[LPERDVAP] ; /* 1024: bits of the working map */
ui nt 32 prmap[LPERDVAP] ; /* 1024: bits of the persistent map */

} dmap_t; /* - 4096 - */

In the encoded binary buddy system each entry hasthreefields: t ype, si ze, and bi t map. Thet ype field indicates
whether the blocks are free, allocated, represented by the bitmap, or not represented by thisfield (don't care). If the type
is"don't care" then those blocks are described by its left buddy and the si ze field isignored. If thet ype isabitmap
then the bi t map field is used to map one-to-one with the 32 blocks to indicate whether each isfree or allocated. A bit
value of O represents a free block and avalue of 1 represents an allocated block. The size isthe power of 2 representation
indicating how many aggregate blocks are described by the entry.

For each completely free entry, if itsleft-hand buddy of the same size is also completely free, then the right entry is
turned into a"don't care” type. The left-hand buddy's size is incremented to include the right buddy. When allocating
blocks, the buddies are only combined if they are allocated to the same extent. The "don't care” types are necessary to
maintain for | ogr edo to be able to correct the map.

Figure 9 shows a small example of the encoded binary buddy representation for some allocations and deall ocations.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (16 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

1. 128 blocks free 4. 0-63 allocated te C
Size Type Bitmap Blocks Size Type Bitmap Blocks
7 F 0-31 (] A 0-31
oeC 32-63 Dc 32-63
DC 64-95 5 | A £4-95
De 96-127 5 | A 96-127

5. 61-63 freed

2. 64-95 allocated to A 64-95 freed
Size Type Bitmap Blocks Size Type Bitmap Blocks
6 | F 0-31 5 | A 0-31
Dc 32-63 B | Oxfffffffg 22-63
5 A 64-95 E E 64-95
5 E 96-127 5 A 96-127
3. 96-127 allocated to B 6. 96-127 freed
Size Type Bitmap Blocks Size Type Bitmap Blocks
6 | F 0-31 5 | A 0-31
Dc J2-63 B | Oxffififfg =2-62
5 A §4-95 6 E B4-95
5 A 96-127 A 86-127

FIGURE 8. Encoded Binary Buddy Example

The dmap structure contains a summary tree. Each of the other map levels also contain a summary tree. These trees
improve the performance of finding large extents of free blocks. The summary information is sufficient for determining
whether a dmap page has a sequence of free bits so that fruitless searches are avoided without referencing the dmap page.

Figure 10 shows the detail of atree field from one dmap structure. Note this field in the dmap structure is aflat array, but
it represents a tree as shown. The tree tracks the maximum number of contiguous blocks at each level. The bottom level
of thetree, tree [21] through tree [84], maps to the encoded binary buddy representation in the working map. The other
levels of the tree contain the maximum number of contiguous free blocks from four sections of the next lower level. The
other levels of the Block Allocation Map would have asimilar tree except the leaf level would contain 1024 el ements.
These elements would map to the encoded binary buddy representation of tree[0] for the following dmap pages.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (17 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

FIGURE 10, Tree structure in dmap structure

1 entry al this 4 entries at this 16 entries at this 64 entries at this
level. tree[0] level. tree[1..4] level. tree[5..20] level. tree[21.84]
Size Type Bitmap /" Size Type Bitmap 7 Size Type Bitmap Size Type Bitmap
1| F = ol F — gl F - B 0x00000001 ~,
B| F 9| F -1
M| F 7| F 8| F
“.| @| F v Al AN T
256 entries at this
level. tree[85..340]
Size Type Bitmap
~
B 0x00000001
iy
B oxfiffoo0o (
B oxffoo0000
B oxooooffoo |/
T| A ‘\‘
Dc
Do
DGc _F,-J
=
B| F ‘
Dc
Dc
Dc __;|
Dc)
A
Dc
Dc
Dc J

If four elements to be combined are al of the "don't care" type then the combined entry is marked of size -1. The buddy
entry for these items will take care of marking the correct state.

Inode allocations
With dynamic inode allocation, inode numbers no longer map directly to a specific logical disk block of the aggregate,
therefore, data structures are needed to support three types of operations:

« Forward lookup: Given an inode number, find the on-disk inode. File lookup is atypical case.

« Reverselookup: Given apartition disk block number (more precisely, an allocation group number), find near free
inodes. This case occurs during new inode allocation, where JFS tries to locate an inode physically nearby the

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (18 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

chosen alocation group (so that, for example, filesin the same sub directory have inodes that are all near each
other).

« Freeinode number lookup: To allocate a new inode extent, find the next 32 inodes which do not have a
corresponding inode extent allocated for them. This case occurs when all currently allocated inodes are being used,
when JFS needs inodes for an alocation group and has never alocated inodes before, or when there are no inodes
free for an allocation group.

Note one subtle effect of dynamic inode allocation: inode numbers that are near each other are not necessarily near each
other on disk: inode N+ 32 may be arbitrarily far from inode N. Conversely, inode numbers that are far apart may in fact
can be close together on disk; it is theoretically possible for inode N+K to be next to inode N (even for the case K > 1).

Inode Allocation Map

The Inode Allocation Map solves the forward lookup problem. The aggregate and each fileset maintains an Inode
Allocation Map, which is adynamic array of Inode Allocation Groups(IAG). The IAG isthe datafor the Inode
Allocation Map. For the aggregate the inodes mapped by the Inode Allocation Map are also known as the Aggregate
Inode Table. For afileset the inodes mapped by the Inode Allocation Map are also known as the File Inode Table.

Each IAG is4K in size and describes 128 physical inode extents on the disk. Since each inode extent, contains 32 inodes,
each |AG describes 4096 inodes. An IAG can exist anywhere in the aggregate. All of the inode extents for an IAG exist
in one alocation group, the IAG isthen tied to that AG until all of itsinode extents are freed. At this point an inode
extent could be allocated for it in any AG and then the IAG would betied to that AG. ThelAG isdefined by i ag_t
structure which can be found in the jfs_imap.h .

/*
* i node all ocation group page (per 4096 inodes of an AG
*/
t ypedef struct {
i nt 64 agstart; /* 8: starting block of ag */
i nt 32 i agnum /* 4: inode allocation group nunber */
i nt 32 i nof r eef wd; /* 4. ag inode free list forward */
i nt 32 i nof r eeback; /* 4. ag inode free list back */
i nt 32 ext f reef wd; /* 4: ag inode extent free list forward */
i nt 32 ext f reeback; /* 4: ag inode extent free list back */
i nt 32 i agfree; /I* 4: iag free list */
/* summary map: 1 bit per inode extent */
i nt 32 i nosmap[SMAPSZ] ; /* 16: sum map of mapwords w free inodes;
* note: this indicates free and backed
* i nodes, if the extent is not backed the
* value will be 1. if the extent is
* backed but all inodes are being used the
* value will be 1. if the extent is
* backed but at | east one of the inodes is
* free the value will be O.
*/
i nt 32 ext smap[SMAPSZ] ; /* 16: sum map of mapwords w free extents */
i nt 32 nfr eei nos; /* 4: nunber of free inodes */
i nt32 nfreeexts; /* 4. nunber of free extents */
I* (72) */
ui nt 8 pad[1976] ; /* 1976: pad to 2048 bytes */
/* allocation bit map: 1 bit per inode (0 - free, 1 - allocated) */
ui nt 32 wmap[EXTSPERI AG ; /* 512: working allocation map */
uint 32 pmap[EXTSPERI AG ; [* 512: persistent allocation map */
pxd_t i noext [EXTSPERI AG ; /* 1024: inode extent addresses */
} iag_t; /* (4096) */

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (19 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_imap.h

developerWorks : Linux | Open Source : Features / Library - Papers

Thefirst 4K page of the Inode Allocation Map is a control page. This page contains summary information for the Inode
Allocation Map. The definition for adi nomap_t structure can be found in the jfs_imap.h.

Abstractly, the Inode Allocation Map is adynamically extensible array of the IAG structures:
struct iag inode_allocation map [1.. N]J;

Physicaly, the Inode Allocation Map isitself afile within the aggregate. The Aggregate Inode Allocation Map is
described by the aggregate self-node. The Fileset Inode Allocation Map is described by Fileset Inode. Its pages are
allocated and freed as necessary under standard B+ tree indexing. The key for the B+ tree is the byte offset of the IAG

page.

JFS employs a commit strategy to insure that the control datais reliably updated. Reliable update means that consi stent
JFS structure and resource allocation state is maintained in the face of system failures. In order to ensure the Inode
Allocation Maps are in consistent state it maintains two maps, the working map and the persistent map within each IAG.
The working map records the current allocation state. The persistent map records the committed allocation state,
consisting of the allocation state as found on the disk or described by records within the JFS log for committed JFS
transactions.

Each hit in these maps describe whether the corresponding inode is free or alocated. A bit value of O represents afree
inode and avalue of 1 an alocated inode. Within each control section of an IAG thereis a summary map which isused to
improve performance of finding free inodes. The summary map maps to the working bitmap of the IAG. The summary
map uses one bit to map for 32 contiguous bits of the working map. Each bit indicates either available inodes(0) or no
available inodes (1) for the corresponding inodes it mapsto. (If thereis not an extent alocated then there are no available
inodes for that inode summary map bit.)

An IAG aso contains Inode Extent Descriptors which describe the corresponding inode extent. There are 128 of these
per IAG. Within each control section of an IAG thereis asummary map which is used to improve performance of
finding free inode extents. The summary map uses one bit to map for each inode extent. A 0 indicates afree inode extent,
while a1 indicates an allocated inode extent.

Given an inode number, the Inode Allocation Map can be used to find the physical location of the inode by the following
steps:

1. Find the IAG which describes thisinode. Need to find the key (byte offset) to search in the B+ tree for the inode
allocation map.

iag key = ((lInode nunber / Inodes per iag) * |Inodes per iag) + 4096 (EQ 1)

2. Find which inode within the found IAG is being referenced. This can be used for indexing in the working and
persistent maps of the IAG.

iag i node index = (Inode nunber) nod (Inodes per iag) (EQ 2)

3. Find the inode extent descriptor within the IAG which describes the inode extent containing the specified inode.
i node extent descriptor = (iag inode index) / (Inode per inode extent) (EQ 3)

4. The inode being sought is at the appropriate offset within the found inode extent.

i node offset = ((iag inode index) nod (lnodes per inode extent)
* sizeof dinode) (EQ 4)

Figure 11 shows an example of looking up inode #9157. The Inode Allocation Map itself is described by the fileset's
allocation map inode in the Aggregate Inode Table.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (20 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_imap.h

developerWorks : Linux | Open Source : Features / Library - Papers

FIGURE 11. Looking up inode #9157
Q inode with B+ tree
root (N descriptors) Inside
I]]]]]mmll “file" data
I:I B+ tree leal/internal node

|
I
—
B+ tree
Control Page IAG for IAG for IAG for
- = Inum 0-4095 inum 4096-8191 Ifum 8192-12287

The inode number, # 9157, is converted to an offset by the formula shown previously:

iag key = ((inum/ num.inodes per _iag) * (num.inodes per_iag)) + 4096
= ((9157 / 4096) * 4096) + 4096
= 12288

iag inode index = inumnod num.inodes_per _iag
= (9157 nod 4096)
= 965

i node extent descriptor = iag_inode_index / num.inodes_per_extent

= 965 / 32

30

i node of f set = (i ag_inode_index nmod num.i nodes_per_extent)

* sizeof dinode

(965 nod 32) * 512

5 * 512

2560

To simplify JFS maintenance commands and to make it easier to understand the dynamics of the layout policies, the
extentsin alnode Allocation Map file are always 4KB each.

When a new fileset is created one IAG must be allocated along with the first inode extent to handle the meta-data files of
the fileset. (Namely the reserved inodes and the root directory inode).

AG FreelnodeList

The AG Free Inode List solves the reverse lookup problem. In order to reduce the overhead of extending or truncating the
aggregate JFS will set a maximum number of AGs allowed per aggregate. Therefore, there will be afixed number of AG
Free Inode List headers. The header for thelist isin the control page of the Inode Allocation Map. Thei th entry isthe
header for a doubly-linked list of al Inode Allocation Map entries (IAGs) with free inodes contained in the i th AG. The

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (21 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

IAG number isused astheindex in thelist. A -1 indicates the end of thelist. Each |AG control section contains forward
and backward pointers for the list.

Insertions for aparticular AG list are done at the head of the list. Aninsertion can occur when anew inode extent is
allocated or when an inode is deleted from an extent which was full. When all inodes extents for an IAG become full the
IAG isremoved from the list.

Figure 12 shows the layout of the AG Free Inode List. Notice the IAG in AG3 does not have any corresponding inode
extents allocated. Therefore, these inodes do not show up in the AG Free Inode List.

i B iy o A

(] AG 2

=
Ly

AG D

Ty A

i

head :

L head :

head :

-1

head :

|

[AG

AG

o |

ot b

127

e
Mo =

head : -1

—_—
T IAG 1
]

IAG 4

lAG

|

(e

fileset #0: e &
AG Free List

FIGURE 12. AG Free list

The table is not journaled; it can be repaired during recovery time by | ogr edo or reconstructed by f sck. The
definition for describing the AG Freelist struct dinomap t, isin jfs imap.hfile.

AG Freelnode Extent List

The AG Free Inode Extent List helpsto solve the reverse lookup problem and the free inode number lookup problem. It
allows JFSto find the next extent within an IAG for a particular AG which has not yet been backed to disk. (Whichin
affect tells JFS the free inode numbers.) Each fileset hasits own AG Free Inode Extent List for each AG. In order to
reduce the overhead of extending or truncating the aggregate JFS will set a maximum number of AGs allowed per
aggregate. Therefore, there will be afixed number of AG Free Inode Extent List headers. The header for thislistisin the
control page of the Inode Allocation Map. Theith entry is the header for a doubly-linked list of al Inode Allocation Map
entries (IAGs) with free inode extents contained in the ith AG. The IAG number isused astheindex inthelist. A -1
indicates the end of the list. Each IAG control section contains forward and backward pointers for the list.

When all inodes in an extent are deleted the inode extent disk blocks are freed. When an inode extent for an IAG is
deleted the lAG number isinserted as the head of the AG Free Inode Extent List. When anew |AG is created and an
inode extent is alocated for it the IAG number isinserted at the head of the AG Free Inode Extent List. When all inode
extents for an |AG are allocated the |IAG isremoved from the list. When all inode extents for an |AG are freed the IAG is
removed from the list and added to the IAG Free List. When a new inode extent needs to be allocated for an AG, the first
map entry is used from the head of the AG Free Extent List. Figure 12 shows the layout of the AG Free Inode Extent

List. In this example the AG Free Inode Extent List looks the same asthe AG Free Inode List.
Thetableis not journaled; it can be repaired during recovery time by | ogr edo or reconstructed by f sck.

The current definition for the structure describing thistableisin jfs imap.h, st ruct di nomap_t.

IAG FreelList

The lAG Free List solves the problem of the free inode number lookup. It allows JFS to find the IAG without any
corresponding allocated inode extents. (Thisin effect tells JFS the free inode numbers). The aggregate hasits own linked
list and each fileset has its own linked list. Thislist provides the anchor for alinked list of IAGs. The IAG number is

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (22 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_imap.h
http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_imap.h

developerWorks : Linux | Open Source : Features / Library - Papers

used astheindex in thelist. A -1 indicates the end of the list. When all inodesin an extent are deleted, the inode extent
disk blocks are freed. When all inodes are free for a particular IAG, the IAG number is inserted at the head of the IAG
Free List. When a new inode extent needs to be allocated and there isnot alAG for the AG with free extents, the first
map entry is removed from the head of the IAG Free List. Once alocated the inode extent all ocation descriptors are
never deleted. The address of the inode extent will be set to 0x0. Inodes from allocation group 3 in Figure 12 would be

onthislist.

For the aggregate the IAG Free List header isafield in the Aggregate self Inode. For each fileset the IAG Free List
header isafield in the Fileset Allocation Map Inode. The list is not journaled; it can be repaired during recovery time by
| ogr edo or reconstructed by f sck.

The definition for describing the IAG Freelist struct i nomap_t isinthefs dinode.hfile.

IAG Free Next

The IAG Free Next counter helps to solve the problem of the free inode number lookup. It allows JFS to find the iagnum
for the next IAG which should be allocated. (Which in effects tells JFS the free inode number). The aggregate has its own
counter and each fileset has its own counter. These counters are in the control page for the Inode Allocation Map. Once
allocated, an IAG is never deleted.

Fileset allocation inodes

The Fileset Allocation Map Inodes in the Aggregate Inode Table are a specia type of inode. Since they represent the
fileset they are the "super-inode" for the fileset. They contain some fileset specific information in the top half of the inode
instead of the normal inode data. It also tracks the location of the Fileset Inode Allocation Map in its B+ tree. The
structure is defined by struct dinode, jfs_dinode.h file.

File
A fileisrepresented by an inode containing the root of a B+ tree which describes the extents containing user data. The
B+ treeisindexed by the offset of the extents.

Symbolic link

A symbolic link is represented by an inode with thedi _node field set to indicate a symbolic link. (S_IFLNK) The full
path-name of the file being linked to is stored in-line in the inode if there is space. Otherwise, it will be stored as the data
for thisinode in an extent indexed by the B+ tree for the inode.

Directory

A Directory isajournaled meta-datafilein JFS. A directory is composed of directory entries which indicate the objects
contained in the directory. A directory entry links a name to an inode number. The specified inode describes the object
with the specified name. In order to improve performance of locating a specific directory entry, a B+ tree sorted by name
is used.

Thedirectory inodes di _si ze field represents just the leaf pages of the directory B+ tree. When the leaf node of the
directory is contained within the inode, thedi _si ze field is 256.

A directory will not contain specific entries for self(".") and parent (".."). Instead these will be represented in the inode
itself. Self isthe directory's own inode number. The parent will be a special field in theinode, i dot dot , struct
dtr oot _t,|fs dtree.hfile.

The directory inode will contain the root of its B+ tree in asimilar manner to anormal file. However this B+ tree will be
keyed by name. The leaf nodes of adirectory B+ tree will contain the directory entry and will be keyed from the
complete name of the entry. The directory B+ tree will use suffix compression for the last internal nodes of the B+ tree.
The rest of the internal nodes will use the same compressed suffix. Suffix compression truncates the name to just enough
characters to distinguish the current entry from the previous entry.

Figure 13 shows an example of suffix compression.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (23 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_dinode.h
http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_dinode.h
http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_dtree.h

developerWorks : Linux | Open Source : Features / Library - Papers

FIGURE 13. Suffix compression

Entry: apple application banana barn

Suffix compression Entry: a appli b bar

Since a B+ tree entry can be of varying size JFS needs a scheme to handle these entries. JFS wanted to avoid having to
shift the entries in the page when deleting an entry, on average thiswould be 2K of data.

Figure 14 shows the elements of a directory B+ tree node:

4K Leaf Node
Header
naxt index: 3 - inum: 482 next 126 inum: 7 inum:; 813 next -1 next; 54 rlﬂ:_r:
sthlindax: 0 Directory next; 124 cnt: 1 next; -1 next; -1 &0tz 1 cnt: 2 ent:
freelist: 5 Slot Pkrray nlen: 15 name; nlen: & freelist; & Name: name; name;
maxslot 126 name: name:; name; xt
application.t apple banana
Slot# rzj 4 5 6 123 124 125 126
a G
1 4
2 123
,“‘1‘1—.—._.'._,_,_--—'—&-
l.\‘h‘_._-.___...-'"_"".
126
4K Internal Node
Header
length: 4 length: 4 lengih: 4
index: 3 . . 5
Siindex: 0| Directory e~ | oeet 480 next 79| | § [nexce | et | oc oflet ioao
) 5 - - - . : i: : - -
freelist: 123 Slot Array nlen: 1 nlen: 2 cnt: 1 ent: 3 :‘me. ent: . nlen: 1
maxslot: 126 name; name: narme: narme. 3 NAME: ooree.
m po a
Slot# :7 4 5 6 123 124 125 126
0 126 '
1 4
o 5
“"-..___..--"".'.-._._H
M
126

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (24 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

FIGURE 14. Directory B+ -tree

« Fixed number of Directory Slots depending on the size of the node. These are the slots to be used for storing the
directory slot array and the directory entries or router entries. A directory slot is aways 32 bytes. The fixed size
directory slots save JFS from having to shift when a directory entry is removed, thus avoiding internal
fragmentation.

« A Directory B+ tree Header which describes the inode of the B+ tree. It contains aflag indicating whether the node
isan internal or leaf node, and whether it is the root of the B+ tree. It also contains the block address of itself. The
field next i ndex tellswhich isthe last entry used in the directory slot array. Thefield st bl i ndex tellswhere
the directory dlot array starts. Thefieldf r eel i st contains the header to the free list of unused slots in the node.

« A Directory Slot Array which is a sorted array of indices to the directory slotsthat are currently in use. This array
limits the amount of shifting necessary when directory entries are added or deleted. Since the array is much smaller
than the entries themselves the array is shifted instead of having to shift the entries. A binary search can be used on
this array to search for particular directory entries.

« A Directory B+ tree Slot Free List which helps to minimize internal fragmentation. The directory B+ tree header
contains the header for the list and each free directory slot points to the next free dlot in the list. Thefirst free slot
in a contiguous series of free dotswill contain a count indicating how long the seriesis. This allows quick
initialization of newly created directory B+ tree node.

« A Directory Entry which links a name to an inode number. A directory entry is contained in adirectory slot of a
leaf node. A directory entry can continue to additional slotsif needed to contain the entire name. Thefield next in
the directory entry will indicate if the entry continues to another entry. The majority of directory entries should fit
into asingle sot.

« A Router Entry used for routing the search of the directory B+ tree. A router entry is contained in a directory slot
of an internal node. A router entry maps a suffix compressed router key to an extent containing an internal or leaf
node of the next level of the directory B+ tree. A router entry can continue to additional slots if needed to contain
the entire router key. Thefield next in the router entry will indicate if the entry continues to another entry. The
majority of router entries should fit into asingle slot.

Aninterna or aleaf node in the directory B+ treeis a4K page. Since many directories are not very large this could result
in wasted disk space for most directories. Therefore the initial leaf node for a directory will have the following allocation
scheme:

1. Initia directory entries are stored in directory in-line data area.

2. When the in-line data area of the directory inode becomes full JFS allocates a leaf node the same size as the
aggregate block size.

3. When that initial leaf node becomes full and the leaf node is not yet 4K double the current size. First attempt to
double the extent in place, if there is not room to do this a new extent must be allocated and the data from the old
extent must be copied to the new extent. The directory slot array will only have been big enough to reference
enough slots for the smaller page so a new slot array will have to be created. Use the slots from the beginning of
the newly alocated space for the larger array and copy the old array data to the new location. Update the header to
point to this array and add the slots of the old array to the freelist.

Figure 15 depicts one level of growth of the directory.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (25 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

1K Leaf Node
Header
nextindex: 3 Directory inum: 482 next 28 inum:7 inum: 813 next: -1 next: 17 | next;
stblindex: 0 Slot Array next: 28 et 1 Xt -1 next; -1 ent: 1 ent: 2 cnt
freelisy: 5 nlen: 15 hamea: frealist: § freelist: & name: name: nama:
maxslet 30 nanme: narma: name: t
application. 1 appla banana
Slot# [y W 2 3 27 28 25 a0
] 3
1 1
2K leaf Node
Header
next index: 32 :':13”:?: _Em: . | |
stblindex: 3 | next: 34 . nlen: 8 next -1 next: next: mext:
freelist O ent: 1 Directory pame: ent: 29 EulE cnll ent:
maxslot: 62 name: Slot Array orange | name: fame: name: marme:
Slot# 0 /31 \ 33 34 60 61 62
.
o 3
1 1
) 27
l““-‘-‘_.-.-._._._._.-l'._"l
M
62

FIGURE 15, Growth of directory page

4. If the leaf node again becomes full and is still not 4K repeat step 3. Once the leaf node reaches 4K allocate a new
leaf node. Every leaf node after theinitial one will be allocated as 4K to start.

5. When al entries are free in aleaf page, the page will be removed from the B+ tree. The directory will shrink back
into theinode only if al of the directory entries are deleted.

Access Control List (ACL)
Associated with every inode of JFS are various Access Control Lists (ACLs). ACLs can represent different items such as
permissions, user identifiers, or group identifiers. The ACL fields are ignored for aggregate inodes.

Although there are no requirements on the ACL representation on disk and in memory, the "external”" representation as
seen outside DFSisfixed. The only limit on ACL sizeisthat its external representation must fit within an 8192-byte
df s_acl structure.

Any JFS object can be associated with an ACL which governs the discretionary access to that object; this ACL isreferred
to asthe regular ACL. Directory objects may additionally have two associated optional ACL s that are used at object

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (26 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

creation time; theinitial directory ACL, and the initial file ACL. If present, theinitial ACL isapplied to any files created
in that directory.

The ACL architecture does not specify how ACLs should be stored. However, it suggests the ACL fields somehow
identify or name their auxiliary object such that sharing within afileset can be detected via a simple equality check. To
handle this JFS will have afile (the ACL file) in each fileset to store ACLs of the fileset; fileset inode 1 will represent
thisfile. Each inode in the fileset will store an index into the ACL file.

The ACL file needsto have a bitmap to locate the free regions to store the ACLs. The ACL file will have a 4K bitmap
followed by 8M of ACL entries, repeated as necessary. One bit in the bitmap will represent 256 bytes of contiguous disk
space; the bitmap does not describe itself.

Figure 16 shows the layout of the ACL file.

E_

= oa |

=] F s g’ E = g

O = __ [:- e :j_

B| bl (B¢ fan

Size 4K BM 4K BM
FIGURE 16. ACL File Layout
Y Logically these

are broken Into

256 byte ACL entries

boundaries for _

the bitmap. Logically these
are broken into
256 byte
boundaries for
the bitmap.

The ACL file dataisjournaled.

Extended Attribute (EA)

An Extended Attribute is a generic storage and access mechanism for data attached to JFS objects. EAs are stored
contiguously in an Extended Attribute Space (EAS) as defined by the EA descriptor in the inode for the JFS object. The
EA descriptor is simply an extent descriptor as defined in jfs_types.h, st ruct dxd_t.

An EA can be stored either in the inode or in a separate extent. The flags field of the EA descriptor will indicate which
way it is stored. Since this space could also be used for additional xad entries for the xtree for thefile, the di_mode field
of theinode will indicate if this spaceis available. If the INLINEEA bit is set the spaceis available.

If the EA is stored in the inode the offset and length fields of the EA descriptor will be ignored. The size of the EA
descriptor will indicate the number of bytes of the data.

If the EA is stored in an extent the EA descriptor will describe this extent. JFS does not expect EA datato be very large
so JFS will not support more than one extent of EA data per inode.

An EA entry will contain both the name of the EA and its value. To access an individual EA, JFSwill simply search the
EA datalinearly for the item.

The EA datais not journaled, however it iswritten synchronously (meaning it will always either be the old data or the
new data, but never apartially written data). JFS will journal where the EA dataislocated. The in-line EA datais
journaled.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (27 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developer/opensource/cvs/jfs/linux-2.2.12/include/linux/jfs/jfs_types.h

developerWorks : Linux | Open Source : Features / Library - Papers

Streams

A stream is used to attach datato afile or directory. This additional datais similar to directory data since it can be
referred to by name. Streams will not be supported in the first release but are discussed here to demonstrate compl eteness
of the meta-data structures.

The second quadrant of the disk inode will have afield for the stream descriptor. Since the number of streams attached to
an object can vary, the stream descriptor will be an inode number which will allow the streams to grow or shrink. The
data pointed to by the stream descriptor inode will be referred to as the stream list.

Streams do not have extended attributes associated with them, therefore the inodes needed for streams will never use the
last quadrant of the extended attributes. Instead it will be used for additional stream entries. The data for the B+ tree
looks just like directory entries. Each stream will in turn have its own inode which addresses the data blocks where the
stream data will be stored.

Figure 17 shows streams; they will not be journaled.

FIGURE 17. Streams Inode #12:
Inode #£4- file foocbar” stream "x"
" owner: root h [owner: root
perm: -rwx- - - - perm: -rwi- - - -
etc: blah blah etc: blah blah
size: 4006 size: 4006
————e
, A| offset 0
Stream Desc. : B addr: 2048
o length: 4
o=
=]
for file data s B
- 4=]
o —
4
\.,_“_‘1_‘-_._._'_'_,_.--"'"-._‘-"
w
Y
i 5
inum:
name: “x"
inum: 14
name: "]l""
. A

Stream list entries: These will be in the form of directory
entries. Figure 14 on page 40 shows the true format

Inode #12: Inode #14:
stream "x" stream "y"
fowner: root ! fowner: root
perm: -rwx- - - - PErm; -rwWx- - - -
elc: blah blah etc: blah blah
size: 4096 size: B182
A offset: 0 offset: 0
addr: 4096 addr: 16384
length: 4 length: B
['r}
2 =
e M
=]
m E =)

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (28 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers
= = | I | |

= =

E

Aggregate with afileset
Figure 18 shows an aggregate containing afileset.

Mote: Aggregate Block Size is 1K in this example.
r— 32 Inodes {16KE] ————————

Hggrngmﬁ Incda Tabla; inode numbars shown
Primary ' ' 4 & B 1012 13(B) 18 282224 26 28.36| Secondely [
RESERVED

fooragate |ControlPaga| 1AG Aparegate Allacation Map

Superblack , & 11 13£ ?2212252?2“31 Supeartlech L |
a a2 =1 ECI B4
aggrinode #1: "sell’ aggrinade #16: fileset 0
"'F“""'““r raol {owner: rool
B:.;g l%l lah Eoarinode #2: block mag) F"E;E bl Biah |
sEe: 1
aodr: EE J oitset: 0

%

langih: 8 (Aporinode #3: bad blocks) . Iaﬁ%ﬁ:: Eﬂ?
g o~ -:HE:Et EaE
S =4 r 1'3.:."'3—4
E E £ B IEI'Il;I:
3 e l——
L
~—— Y O—]

Fileset Inodes

TT T T T T T To@a 6 8 1012 14 16 18 28 22124 26 2838 | N N
Gonirol Fage 1AG 180G
L g [D@ SN 8 113 15197 19 212325 27 20 1 bl
=] /244 g 264 0264
filesetl Inode #10: - .
Fres Inode List f'IEBEttL!lr"{d_f #_?'
(f—.T/‘.—‘I\ 2nd Half of ron” firestor=
Ly L Fllaset Suparbleck Gggﬁ;; ety
AG D numinos: 39 Infarmatian atc: blah blah
nurmirea; 28 nixa, 4006
Inciree: -1 ACL File: This looks
i nEﬂilﬂEéE; -1 like a narmal inode
numirea: E hose data are the ACLs. Fileset Inoda
inciree: -1 The dala is described in [ﬁ] Allncation Map:
2 gxilrea: -1 eclion 2,10 on page 43, 2nd extent
numinos: 0
numiraa; 0 . IAG Free List:
—— \ Fileset Inode Allocation Map: 1st extent 15t eniry
\‘\.,______..--"""r__- G =]
e 4]
e 1 | 8258z |E8s |$8IER St |[g2s==
| g) | [og|ESE |2EE |gSeec 8t (3525
o a o G = -— [Tr N e — - [l =] = =
85 (285 (285 | |oEBE 8% . |2588
] TES | £33 i oo S B T
FIGURE 18. Aggregate containing a fileset
Summary

The JFS team’s most important goal was to create areliable, high-performance file system. This article discussed the
mechanisms that were used for scalability, reliability, and performance using the on-disk layout structures of JFS. Also
discussed in detail was how JFS uses B+ trees throughout the file system to increase file system operations.

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (29 of 30) [4/18/2001 2:46:34 PM]

developerWorks : Linux | Open Source : Features / Library - Papers

The JFS team is making great progressin moving JFSto Linux. To get involved, visit our JFS project page on
devel operWorks.

Resour ces
« JFS source code

o« JFS Overview
« |IBM makes JFS technology available for Linux

About the authors

Steve Best works in the Software Solutions & Strategy Division of IBM in Austin, Texas, asa member of the Linux
Technology Center. Steve has worked on operating system development in the areas of the file system,
internationalization, and security. Steve is currently working on the port of JFSto Linux. He can be reached at
shest@us.ibm.com.

Dave Kleikamp is a member of the Linux Technology Center in the Software Solutions & Strategy Division of IBM in
Austin, Texas. Dave has previously worked as the technical lead on the JFS filesystem for OS/2 and as a debugging
specialist for AIX. Daveis currently working on the open-source port of JFSto Linux. He can be reached at

shaggy @us.ibm.com.

What do you think of this article?
Oiller! O Good stuff O So-so: not bad O Needs work O Lame!

Comments?

| Submit feedback|

I

http://swgiwas001.sby.ibm.com/developerworks/library/jfslayout/index1.html (30 of 30) [4/18/2001 2:46:34 PM]

http://oss.software.ibm.com/developerworks/opensource/jfs
http://oss.software.ibm.com/developerworks/opensource/jfs
http://www-106.ibm.com/developerworks/library/jfs.html
http://oss.software.ibm.com/developerworks/opensource/features/jfs_feature.html
mailto:sbest@us.ibm.com
mailto:shaggy@us.ibm.com
http://www.ibm.com/privacy/
http://www.ibm.com/legal/
http://www.ibm.com/contact/

	ibm.com
	developerWorks : Linux | Open Source : Features / Library - Papers

	GIIHCPJOOMFMAHAFNHOKGCHKDBMAKLAMBF:
	form1:
	x:
	f1: JFS layout
	f2: Open source
	f3: http://www.ibm.com/developer/beta-feedback-thankyou.html
	f4: Off
	f5:

	f6:

