# -*- coding: utf-8 -*-
# PyMeeus: Python module implementing astronomical algorithms.
# Copyright (C) 2018  Dagoberto Salazar
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.
from math import sin, cos, tan, atan, atan2, asin
from pymeeus.Angle import Angle
from pymeeus.Epoch import Epoch, JDE2000
from pymeeus.Coordinates import (
    mean_obliquity,
    true_obliquity,
    nutation_longitude,
    ecliptical2equatorial,
)
from pymeeus.Earth import Earth
"""
.. module:: Sun
   :synopsis: Module including functions regarding Sun position
   :license: GNU Lesser General Public License v3 (LGPLv3)
.. moduleauthor:: Dagoberto Salazar
"""
[docs]class Sun(object):
    """
    Class Sun handles the parameters related to the Sun.
    """
[docs]    def __init__(self):
        """Sun constructor.
        :returns: Sun object.
        :rtype: :py:class:`Sun`
        """ 
[docs]    @staticmethod
    def true_longitude_coarse(epoch):
        """This method provides the Sun's true longitude with a relatively low
        accuracy of about 0.01 degree.
        :param epoch: Epoch to compute the position of the Sun
        :type epoch: :py:class:`Epoch`
        :returns: A tuple containing the true (ecliptical) longitude (as an
            Angle object) and the radius vector in astronomical units.
        :rtype: tuple
        :raises: TypeError if input value is of wrong type.
        >>> epoch = Epoch(1992, 10, 13)
        >>> true_lon, r = Sun.true_longitude_coarse(epoch)
        >>> print(true_lon.dms_str(n_dec=0))
        199d 54' 36.0''
        >>> print(round(r, 5))
        0.99766
        """
        # First check that input values are of correct types
        if not (isinstance(epoch, Epoch)):
            raise TypeError("Invalid input type")
        # Compute the time in Julian centuries
        t = (epoch - JDE2000) / 36525.0
        # Compute the geometric mean longitude of the Sun
        l0 = 280.46646 + t * (36000.76983 + t * 0.0003032)
        l0 = Angle(l0)
        l0.to_positive()
        # Now, compute the mean anomaly of the Sun
        m = 357.52911 + t * (35999.05029 - t * 0.0001537)
        m = Angle(m)
        mrad = m.rad()
        # The eccentricity of the Earth's orbit
        e = 0.016708634 - t * (0.000042037 + t * 0.0000001267)
        # Equation of the center
        c = (
            (1.914602 - t * (0.004817 + t * 0.000014)) * sin(mrad)
            + (0.019993 - t * 0.000101) * sin(2.0 * mrad)
            + 0.000289 * sin(3.0 * mrad)
        )
        c = Angle(c)
        true_lon = l0 + c
        true_anom = m + c
        # Sun's radius vector
        r = (1.000001018 * (1.0 - e * e)) / (1.0 + e * cos(true_anom.rad()))
        return (true_lon, r) 
[docs]    @staticmethod
    def apparent_longitude_coarse(epoch):
        """This method provides the Sun's apparent longitude with a relatively
        low accuracy of about 0.01 degree.
        :param epoch: Epoch to compute the position of the Sun
        :type epoch: :py:class:`Epoch`
        :returns: A tuple containing the sun_apparent (ecliptical) longitude
            (as an Angle object) and the radius vector in astronomical units.
        :rtype: tuple
        :raises: TypeError if input value is of wrong type.
        >>> epoch = Epoch(1992, 10, 13)
        >>> app_lon, r = Sun.apparent_longitude_coarse(epoch)
        >>> print(app_lon.dms_str(n_dec=0))
        199d 54' 32.0''
        >>> print(round(r, 5))
        0.99766
        """
        # First check that input values are of correct types
        if not isinstance(epoch, Epoch):
            raise TypeError("Invalid input type")
        # First find the true longitude
        sun = Sun()
        true_lon, r = sun.true_longitude_coarse(epoch)
        # Compute the time in Julian centuries
        t = (epoch - JDE2000) / 36525.0
        # Then correct for nutation and aberration
        omega = 125.04 - 1934.136 * t
        omega = Angle(omega)
        lambd = true_lon - 0.00569 - 0.00478 * sin(omega.rad())
        return (lambd, r) 
[docs]    @staticmethod
    def apparent_rightascension_declination_coarse(epoch):
        """This method provides the Sun's apparent right ascension and
        declination with a relatively low accuracy of about 0.01 degree.
        :param epoch: Epoch to compute the position of the Sun
        :type epoch: :py:class:`Epoch`
        :returns: A tuple containing the right ascension and the declination
            (as Angle objects) and the radius vector in astronomical units.
        :rtype: tuple
        :raises: TypeError if input value is of wrong type.
        >>> epo = Epoch(1992, 10, 13)
        >>> ra, delta, r = Sun.apparent_rightascension_declination_coarse(epo)
        >>> print(ra.ra_str(n_dec=1))
        13h 13' 31.4''
        >>> print(delta.dms_str(n_dec=0))
        -7d 47' 6.0''
        >>> print(round(r, 5))
        0.99766
        """
        # First check that input values are of correct types
        if not isinstance(epoch, Epoch):
            raise TypeError("Invalid input type")
        # Second, find the apparent longitude
        sun = Sun()
        app_lon, r = sun.apparent_longitude_coarse(epoch)
        # Compute the obliquity of the ecliptic
        e0 = mean_obliquity(epoch)
        # Compute the time in Julian centuries
        t = (epoch - JDE2000) / 36525.0
        # Then correct for nutation and aberration
        omega = 125.04 - 1934.136 * t
        omega = Angle(omega)
        # Correct the obliquity
        e = e0 + 0.00256 * cos(omega.rad())
        alpha = atan2(cos(e.rad()) * sin(app_lon.rad()), cos(app_lon.rad()))
        alpha = Angle(alpha, radians=True)
        alpha.to_positive()
        delta = asin(sin(e.rad()) * sin(app_lon.rad()))
        delta = Angle(delta, radians=True)
        return (alpha, delta, r) 
[docs]    @staticmethod
    def geometric_geocentric_position(epoch, tofk5=True):
        """This method computes the geometric geocentric position of the Sun
        for a given epoch, using the VSOP87 theory.
        :param epoch: Epoch to compute Sun position, as an Epoch object
        :type epoch: :py:class:`Epoch`
        :param tofk5: Whether or not the small correction to convert to the FK5
            system will be applied or not
        :type tofk5: bool
        :returns: A tuple with the geocentric longitude and latitude (as
            :py:class:`Angle` objects), and the radius vector (as a float,
            in astronomical units), in that order
        :rtype: tuple
        :raises: TypeError if input values are of wrong type.
        >>> epoch = Epoch(1992, 10, 13.0)
        >>> l, b, r = Sun.geometric_geocentric_position(epoch, tofk5=False)
        >>> print(round(l.to_positive(), 6))
        199.907297
        >>> print(b.dms_str(n_dec=3))
        0.744''
        >>> print(round(r, 8))
        0.99760852
        """
        # NOTE: In page 169, Meeus gives a different value for the LONGITUDE
        # (199.907372 degrees) as the one presented above (199.907297 degrees).
        # After many checks and tests, I came to the conclusion that the result
        # above is the right one, and Meeus' result is wrong.
        # On the other hand, the difference in LATITUDE may be due to the fact
        # that this software uses the complete set of VSOP87C terms, instead of
        # the abridged version in Meeus' book.
        # First check that input values are of correct types
        if not isinstance(epoch, Epoch) and not isinstance(tofk5, bool):
            raise TypeError("Invalid input types")
        # Use Earth heliocentric position to compute Sun's geocentric position
        lon, lat, r = Earth.geometric_heliocentric_position(epoch, tofk5)
        lon = lon.to_positive() + 180.0
        lat = -lat
        return lon, lat, r 
[docs]    @staticmethod
    def apparent_geocentric_position(epoch, nutation=True):
        """This method computes the apparent geocentric position of the Sun
        for a given epoch, using the VSOP87 theory.
        :param epoch: Epoch to compute Sun position, as an Epoch object
        :type epoch: :py:class:`Epoch`
        :param nutation: Whether the nutation correction will be applied
        :type epoch: bool
        :returns: A tuple with the heliocentric longitude and latitude (as
            :py:class:`Angle` objects), and the radius vector (as a float,
            in astronomical units), in that order
        :rtype: tuple
        :raises: TypeError if input values are of wrong type.
        >>> epoch = Epoch(1992, 10, 13.0)
        >>> lon, lat, r = Sun.apparent_geocentric_position(epoch)
        >>> print(lon.to_positive().dms_str(n_dec=3))
        199d 54' 21.548''
        >>> print(lat.dms_str(n_dec=3))
        0.721''
        >>> print(round(r, 8))
        0.99760852
        """
        # NOTE: In page 169, Meeus gives a different value for the LONGITUDE
        # (199d 54' 21.818'') as the one presented above (199d 54' 21.548'').
        # After many checks and tests, I came to the conclusion that the result
        # above is the right one, and Meeus' result is wrong.
        # On the other hand, the difference in LATITUDE may be due to the fact
        # that this software uses the complete set of VSOP87C terms, instead of
        # the abridged version in Meeus' book.
        # First check that input values are of correct types
        if not isinstance(epoch, Epoch):
            raise TypeError("Invalid input type")
        # Use Earth heliocentric position to compute Sun's geocentric position
        lon, lat, r = Earth.apparent_heliocentric_position(epoch, nutation)
        lon = lon.to_positive() + 180.0
        lat = -lat
        return lon, lat, r 
[docs]    @staticmethod
    def rectangular_coordinates_mean_equinox(epoch):
        """This method computes the rectangular geocentric equatorial
        coordinates (X, Y, Z) of the Sun, referred to the mean equinox of the
        date. The X axis is directed towards the vernal equinox (longitude 0),
        the Y axis lies in the plane of the equator and is directed towards
        longitude 90, and the Z axis is directed towards the north celestial
        pole.
        :param epoch: Epoch to compute Sun position, as an Epoch object
        :type epoch: :py:class:`Epoch`
        :returns: A tuple with the X, Y, Z values in astronomical units
        :rtype: tuple
        :raises: TypeError if input values are of wrong type.
        >>> epoch = Epoch(1992, 10, 13.0)
        >>> x, y, z = Sun.rectangular_coordinates_mean_equinox(epoch)
        >>> print(round(x, 7))
        -0.9379963
        >>> print(round(y, 6))
        -0.311654
        >>> print(round(z, 7))
        -0.1351207
        """
        # NOTE: In page 172, Meeus gives slightly different values for x, y, z
        # as the ones internally computed in the example above. After many
        # checks and tests, I came to the conclusion that the results above are
        # the right ones, and Meeus' results are wrong.
        # First check that input values are of correct types
        if not isinstance(epoch, Epoch):
            raise TypeError("Invalid input type")
        # Get Sun's geocentric position with reduction to FK5 system
        lon, lat, r = Sun.geometric_geocentric_position(epoch)
        # Get the mean obliquity
        epsilon0 = mean_obliquity(epoch)
        # Change to radians
        ll = lon.rad()
        b = lat.rad()
        e = epsilon0.rad()
        # Compute the results
        x = r * cos(ll)
        y = r * (sin(ll) * cos(e) - sin(b) * sin(e))
        z = r * (sin(ll) * sin(e) + sin(b) * cos(e))
        return x, y, z 
[docs]    @staticmethod
    def rectangular_coordinates_j2000(epoch):
        """This method computes the rectangular geocentric equatorial
        coordinates (X, Y, Z) of the Sun, referred to the standard equinox of
        J2000.0. The X axis is directed towards the vernal equinox (longitude
        0), the Y axis lies in the plane of the equator and is directed towards
        longitude 90, and the Z axis is directed towards the north celestial
        pole.
        :param epoch: Epoch to compute Sun position, as an Epoch object
        :type epoch: :py:class:`Epoch`
        :returns: A tuple with the X, Y, Z values in astronomical units
        :rtype: tuple
        :raises: TypeError if input values are of wrong type.
        >>> epoch = Epoch(1992, 10, 13.0)
        >>> x, y, z = Sun.rectangular_coordinates_j2000(epoch)
        >>> print(round(x, 8))
        -0.93740485
        >>> print(round(y, 8))
        -0.3131474
        >>> print(round(z, 8))
        -0.13577045
        """
        # First check that input values are of correct types
        if not isinstance(epoch, Epoch):
            raise TypeError("Invalid input type")
        # Second, compute Earth heliocentric position referred to J2000.0
        lon, lat, r = Earth.geometric_heliocentric_position_j2000(epoch)
        # Third, convert from Earth's heliocentric to Sun's geocentric
        lon = lon.to_positive() + 180.0
        lat = -lat
        x = r * cos(lat.rad()) * cos(lon.rad())
        y = r * cos(lat.rad()) * sin(lon.rad())
        z = r * sin(lat.rad())
        x0 = x + 0.00000044036 * y - 0.000000190919 * z
        y0 = -0.000000479966 * x + 0.917482137087 * y - 0.397776982902 * z
        z0 = 0.397776982902 * y + 0.917482137087 * z
        return x0, y0, z0 
[docs]    @staticmethod
    def rectangular_coordinates_b1950(epoch):
        """This method computes the rectangular geocentric equatorial
        coordinates (X, Y, Z) of the Sun, referred to the mean equinox of
        B1950.0. The X axis is directed towards the vernal equinox (longitude
        0), the Y axis lies in the plane of the equator and is directed towards
        longitude 90, and the Z axis is directed towards the north celestial
        pole.
        :param epoch: Epoch to compute Sun position, as an Epoch object
        :type epoch: :py:class:`Epoch`
        :returns: A tuple with the X, Y, Z values in astronomical units
        :rtype: tuple
        :raises: TypeError if input values are of wrong type.
        >>> epoch = Epoch(1992, 10, 13.0)
        >>> x, y, z = Sun.rectangular_coordinates_b1950(epoch)
        >>> print(round(x, 8))
        -0.94149557
        >>> print(round(y, 8))
        -0.30259922
        >>> print(round(z, 8))
        -0.11578695
        """
        # First check that input values are of correct types
        if not isinstance(epoch, Epoch):
            raise TypeError("Invalid input type")
        # Second, compute Earth heliocentric position referred to J2000.0
        lon, lat, r = Earth.geometric_heliocentric_position_j2000(epoch)
        # Third, convert from Earth's heliocentric to Sun's geocentric
        lon = lon.to_positive() + 180.0
        lat = -lat
        x = r * cos(lat.rad()) * cos(lon.rad())
        y = r * cos(lat.rad()) * sin(lon.rad())
        z = r * sin(lat.rad())
        x = 0.999925702634 * x + 0.012189716217 * y + 0.000011134016 * z
        y = -0.011179418036 * x + 0.917413998946 * y - 0.397777041885 * z
        z = -0.004859003787 * x + 0.397747363646 * y + 0.917482111428 * z
        return x, y, z 
[docs]    @staticmethod
    def rectangular_coordinates_equinox(epoch, equinox_epoch):
        """This method computes the rectangular geocentric equatorial
        coordinates (X, Y, Z) of the Sun, referred to an arbitrary mean
        equinox. The X axis is directed towards the vernal equinox (longitude
        0), the Y axis lies in the plane of the equator and is directed towards
        longitude 90, and the Z axis is directed towards the north celestial
        pole.
        :param epoch: Epoch to compute Sun position, as an Epoch object
        :type epoch: :py:class:`Epoch`
        :param equinox_epoch: Epoch corresponding to the mean equinox
        :type equinox_epoch: :py:class:`Epoch`
        :returns: A tuple with the X, Y, Z values in astronomical units
        :rtype: tuple
        :raises: TypeError if input values are of wrong type.
        >>> epoch = Epoch(1992, 10, 13.0)
        >>> e_equinox = Epoch(2467616.0)
        >>> x, y, z = Sun.rectangular_coordinates_equinox(epoch, e_equinox)
        >>> print(round(x, 8))
        -0.93368986
        >>> print(round(y, 8))
        -0.32235085
        >>> print(round(z, 8))
        -0.13977098
        """
        # First check that input values are of correct types
        if (not isinstance(epoch, Epoch)
                and not isinstance(equinox_epoch, Epoch)):
            raise TypeError("Invalid input types")
        # Second, compute Sun's rectangular coordinates w.r.t. J2000.0
        x0, y0, z0 = Sun.rectangular_coordinates_j2000(epoch)
        # Third, computed auxiliary angles
        t = (equinox_epoch - JDE2000) / 36525.0
        tt = (epoch - equinox_epoch) / 36525.0
        # Compute the conversion parameters
        zeta = t * (
            (2306.2181 + tt * (1.39656 - 0.000139 * tt))
            + t * ((0.30188 - 0.000344 * tt) + 0.017998 * t)
        )
        z = t * (
            (2306.2181 + tt * (1.39656 - 0.000139 * tt))
            + t * ((1.09468 + 0.000066 * tt) + 0.018203 * t)
        )
        theta = t * (
            2004.3109
            + tt * (-0.85330 - 0.000217 * tt)
            + t * (-(0.42665 + 0.000217 * tt) - 0.041833 * t)
        )
        # Redefine the former values as Angles, and compute them in radians
        zeta = Angle(0, 0, zeta)
        zetar = zeta.rad()
        z = Angle(0, 0, z)
        zr = z.rad()
        theta = Angle(0, 0, theta)
        thetar = theta.rad()
        xx = cos(zetar) * cos(zr) * cos(thetar) - sin(zetar) * sin(zr)
        xy = sin(zetar) * cos(zr) + cos(zetar) * sin(zr) * cos(thetar)
        xz = cos(zetar) * sin(thetar)
        yx = -cos(zetar) * sin(zr) - sin(zetar) * cos(zr) * cos(thetar)
        yy = cos(zetar) * cos(zr) - sin(zetar) * sin(zr) * cos(thetar)
        yz = -sin(zetar) * sin(thetar)
        zx = -cos(zr) * sin(thetar)
        zy = -sin(zr) * sin(thetar)
        zz = cos(thetar)
        xp = xx * x0 + yx * y0 + zx * z0
        yp = xy * x0 + yy * y0 + zy * z0
        zp = xz * x0 + yz * y0 + zz * z0
        return xp, yp, zp 
[docs]    @staticmethod
    def get_equinox_solstice(year, target="spring"):
        """This method computes the times of the equinoxes or the solstices.
        :param year: Year we want to compute the equinox or solstice for
        :type year: int
        :param target: Corresponding equinox or solstice. It can be "spring",
            "summer", "autumn", "winter"
        :type target: str
        :returns: The instant of time when the equinox or solstice happens
        :rtype: :py:class:`Epoch`
        :raises: TypeError if input values are of wrong type.
        :raises: ValueError if 'target' value is invalid.
        >>> epoch = Sun.get_equinox_solstice(1962, target="summer")
        >>> y, m, d, h, mi, s = epoch.get_full_date()
        >>> print("{}/{}/{} {}:{}:{}".format(y, m, d, h, mi, round(s, 0)))
        1962/6/21 21:24:42.0
        """
        # NOTE: The results from the previous example are computed using the
        # complete VSOP87 theory. The results provided by Meeus in exercises
        # 27.a and 27.b are computed with lower accuracy
        # First check that input values are of correct types
        if not (isinstance(year, int) and isinstance(target, str)):
            raise TypeError("Invalid input types")
        # Second, check that the target is correct
        if (
            (target != "spring")
            and (target != "summer")
            and (target != "autumn")
            and (target != "winter")
        ):
            raise ValueError("'target' value is invalid")
        # Now we can start computing an approximate value (Tables 27.A, 27.B)
        if (year >= -1000) and (year < 1000):
            y = year / 1000.0
            if target == "spring":
                jde0 = 1721139.29189 + y * (
                    365242.1374 + y * (0.06134 + y * (0.00111 - y * 0.00071))
                )
            elif target == "summer":
                jde0 = 1721233.25401 + y * (
                    365241.72562 + y * (-0.05323 + y * (0.00907 + y * 0.00025))
                )
            elif target == "autumn":
                jde0 = (1721325.70455
                        + y * (365242.49558
                               + y * (-0.11677 + y * (-0.00297
                                                      + y * 0.00074))))
            elif target == "winter":
                jde0 = (1721414.39987
                        + y * (365242.88257 + y * (-0.00769
                                                   + y * (-0.00933
                                                          - y * 0.00006))))
        elif (year >= 1000) and (year <= 3000):
            y = (year - 2000.0) / 1000.0
            if target == "spring":
                jde0 = 2451623.80984 + y * (
                    365242.37404 + y * (0.05169 + y * (-0.00411 - y * 0.00057))
                )
            elif target == "summer":
                jde0 = 2451716.56767 + y * (
                    365241.62603 + y * (0.00325 + y * (0.00888 - y * 0.0003))
                )
            elif target == "autumn":
                jde0 = 2451810.21715 + y * (
                    365242.01767 + y * (-0.11575 + y * (0.00337 + y * 0.00078))
                )
            elif target == "winter":
                jde0 = (2451900.05952
                        + y * (365242.74049
                               + y * (-0.06223 + y * (-0.00823
                                                      + y * 0.00032))))
        else:
            raise ValueError("'year' value out of range")
        k = ["spring", "summer", "autumn", "winter"].index(target)
        epoch = Epoch(jde0)
        corr = 1.0
        while abs(corr) > 0.0000025:
            lon, lat, r = Sun.apparent_geocentric_position(epoch)
            arg = k * 90.0 - lon.to_positive()
            arg = Angle(arg)
            corr = 58.0 * sin(arg.rad())
            epoch += corr
        epoch -= corr
        return epoch 
[docs]    @staticmethod
    def equation_of_time(epoch):
        """This method computes the equation of time for a given epoch,
        understood as the difference between apparent and mean time, or the
        difference between the hour angle of the true Sun and the mean Sun.
        :param epoch: Epoch to compute the equation of time, as an Epoch object
        :type epoch: :py:class:`Epoch`
        :returns: Difference between apparent and mean time, as a tuple, in
            minutes (int) and seconds (float) of time
        :rtype: tuple
        :raises: TypeError if input values are of wrong type.
        >>> epoch = Epoch(1992, 10, 13.0)
        >>> m, s = Sun.equation_of_time(epoch)
        >>> print(m)
        13
        >>> print(round(s, 1))
        42.6
        """
        # First check that input values are of correct types
        if not isinstance(epoch, Epoch):
            raise TypeError("Invalid input type")
        # Compute time in Julian millenia from J2000.0
        t = (epoch - JDE2000) / 365250
        l0 = (280.4664567
              + t * (360007.6982779
                     + t * (0.03032028
                            + t * (1.0 / 49931.0
                                   + t * (-1.0 / 15300.0
                                          - t * 1.0 / 2000000.0)))))
        l0 = Angle(l0)
        l0 = l0.to_positive()
        # Compute the apparent position of the Sun
        lon, lat, r = Sun.apparent_geocentric_position(epoch)
        # Now, get the true obliquity
        epsilon = true_obliquity(epoch)
        # Transform from eclliptical to equatorial coordinates
        alpha, dec = ecliptical2equatorial(lon, lat, epsilon)
        alpha = alpha.to_positive()
        # Now we need the nutation in longitude
        deltapsi = nutation_longitude(epoch)
        e = l0() - 0.0057183 - alpha + deltapsi * cos(epsilon.rad())
        e *= 4.0
        # Extract seconds
        s = (abs(e()) % 1) * 60.0
        m = int(e())
        return m, s 
[docs]    @staticmethod
    def ephemeris_physical_observations(epoch):
        """This method uses Carrington's formulas to compute the following
        quantities:
        - P  : position angle of the northern extremity of the axis of rotation
        - B0 : heliographic latitude of the center of the solar disk
        - L0 : heliographic longitude of the center of the solar disk
        :param epoch: Epoch to compute the parameters
        :type epoch: :py:class:`Epoch`
        :returns: Parameters P, B0 and L0, in a tuple
        :rtype: tuple
        :raises: TypeError if input value is of wrong type.
        >>> epoch = Epoch(1992, 10, 13)
        >>> p, b0, l0 = Sun.ephemeris_physical_observations(epoch)
        >>> print(round(p, 2))
        26.27
        >>> print(round(b0, 2))
        5.99
        >>> print(round(l0, 2))
        238.63
        """
        # First check that input values are of correct types
        if not isinstance(epoch, Epoch):
            raise TypeError("Invalid input type")
        # Compute the auxiliary parameters
        epoch += 0.00068
        theta = (epoch() - 2398220.0) * 360.0 / 25.38
        theta = Angle(theta)
        i = Angle(7.25)
        k = 73.6667 + 1.3958333 * (epoch() - 2396758.0) / 36525.0
        k = Angle(k)
        lon, lat, r = Sun.apparent_geocentric_position(epoch, nutation=False)
        eps = true_obliquity(epoch)
        dpsi = nutation_longitude(epoch)
        lonp = lon + dpsi
        x = atan(-cos(lonp.rad()) * tan(eps.rad()))
        x = Angle(x, radians=True)
        delta = lon - k
        y = atan(-cos(delta.rad()) * tan(i.rad()))
        y = Angle(y, radians=True)
        p = x + y
        b0 = asin(sin(delta.rad()) * sin(i.rad()))
        b0 = Angle(b0, radians=True)
        eta = atan(tan(delta.rad()) * cos(i.rad()))
        eta = Angle(eta, radians=True)
        l0 = eta - theta
        return p, b0, l0.to_positive() 
[docs]    @staticmethod
    def beginning_synodic_rotation(number):
        """This method calculates the epoch when the Carrington's synodic
        rotation No. 'number' starts.
        :param number: Number of Carrington's synodic rotation
        :type number: int
        :returns: Epoch when the provided rotation starts
        :rtype: :py:class:`Epoch`
        :raises: TypeError if input value is of wrong type.
        >>> epoch = Sun.beginning_synodic_rotation(1699)
        >>> print(round(epoch(), 3))
        2444480.723
        """
        # First check that input values are of correct types
        if not isinstance(number, int):
            raise TypeError("Invalid input type")
        # Apply formula (29.1)
        jde = 2398140.227 + 27.2752316*number
        # Now, find the correction using formula (29.2)
        m = 281.96 + 26.882476*number
        m = Angle(m)
        m = m.rad()
        delta = 0.1454 * sin(m) - 0.0085 * sin(2.0 * m) - 0.0141 * cos(2.0 * m)
        # Apply the correction
        jde += delta
        return Epoch(jde)  
def main():
    # Let's define a small helper function
    def print_me(msg, val):
        print("{}: {}".format(msg, val))
    # Let's show some uses of Sun functions
    print("\n" + 35 * "*")
    print("*** Use of Sun class")
    print(35 * "*" + "\n")
    # Compute an approximation of the Sun's true longitude
    epoch = Epoch(1992, 10, 13)
    true_lon, r = Sun.true_longitude_coarse(epoch)
    print_me("Sun's approximate true longitude", true_lon.dms_str(n_dec=0))
    # 199d 54' 36.0''
    print_me("Sun's radius vector", round(r, 5))  # 0.99766
    print("")
    # Now let's compute the Sun's approximate apparent longitude
    app_lon, r = Sun.apparent_longitude_coarse(epoch)
    print_me("Sun's approximate apparent longitude", app_lon.dms_str(n_dec=0))
    # 199d 54' 32.0''
    print("")
    # And now is the turn for the apparent right ascension and declination
    ra, delta, r = Sun.apparent_rightascension_declination_coarse(epoch)
    print_me("Sun's apparent right ascension", ra.ra_str(n_dec=1))
    # 13h 13' 31.4''
    print_me("Sun's apparent declination", delta.dms_str(n_dec=0))
    # -7d 47' 6.0''
    print("")
    # Let's compute Sun's postion, but more accurately
    epoch = Epoch(1992, 10, 13.0)
    l, b, r = Sun.geometric_geocentric_position(epoch, tofk5=False)
    print_me("Geometric Geocentric Longitude", round(l.to_positive(), 6))
    # 199.906016
    print_me("Geometric Geocentric Latitude", b.dms_str(n_dec=3))
    # 0.644''
    print_me("Radius vector", round(r, 8))
    # 0.99760775
    print("")
    # Compute Sun's apparent postion
    l, b, r = Sun.apparent_geocentric_position(epoch)
    print_me("Apparent Geocentric Longitude", l.to_positive().dms_str(n_dec=3))
    # 199d 54' 16.937''
    print_me("Apparent Geocentric Latitude", b.dms_str(n_dec=3))
    # 0.621''
    print_me("Radius vector", round(r, 8))
    # 0.99760775
    print("")
    # We can compute rectangular coordinates referred to mean equinox of date
    x, y, z = Sun.rectangular_coordinates_mean_equinox(epoch)
    print("Rectangular coordinates referred to mean equinox of date:")
    print_me("X", round(x, 7))  # -0.9379963
    print_me("Y", round(y, 6))  # -0.311654
    print_me("Z", round(z, 7))  # -0.1351207
    print("")
    # Now, compute rectangular coordinates w.r.t. standard equinox J2000.0
    x, y, z = Sun.rectangular_coordinates_j2000(epoch)
    print("Rectangular coordinates w.r.t. standard equinox J2000.0:")
    print_me("X", round(x, 8))  # -0.93740485
    print_me("Y", round(y, 8))  # -0.3131474
    print_me("Z", round(z, 8))  # -0.12456646
    print("")
    # Compute rectangular coordinates w.r.t. mean equinox of B1950.0
    x, y, z = Sun.rectangular_coordinates_b1950(epoch)
    print("Rectangular coordinates w.r.t. mean equinox of B1950.0:")
    print_me("X", round(x, 8))  # -0.94149557
    print_me("Y", round(y, 8))  # -0.30259922
    print_me("Z", round(z, 8))  # -0.11578695
    print("")
    # Compute rectangular coordinates w.r.t. an arbitrary mean equinox
    e_equinox = Epoch(2467616.0)
    x, y, z = Sun.rectangular_coordinates_equinox(epoch, e_equinox)
    print("Rectangular coordinates w.r.t. an arbitrary mean equinox:")
    print_me("X", round(x, 8))  # -0.93373777
    print_me("Y", round(y, 8))  # -0.32235109
    print_me("Z", round(z, 8))  # -0.12856709
    print("")
    # We can compute the date of equinoxes and solstices
    epoch = Sun.get_equinox_solstice(1962, target="summer")
    y, m, d, h, mi, s = epoch.get_full_date()
    print("The summer solstice of 1962:")
    print("{}/{}/{} {}:{}:{}".format(y, m, d, h, mi, round(s, 0)))
    # 1962/6/21 21:24:42.0
    epoch = Sun.get_equinox_solstice(2018, target="autumn")
    y, m, d, h, mi, s = epoch.get_full_date()
    print("The autumn equinox of 2018:")
    print("{}/{}/{} {}:{}:{}".format(y, m, d, h, mi, round(s, 0)))
    # 2018/9/23 1:55:14.0
    print("")
    # The equation of time, i.e., the difference between apparent and mean
    # time, can be easily computed
    epoch = Epoch(1992, 10, 13.0)
    m, s = Sun.equation_of_time(epoch)
    print("Equation of time difference: {} min {} secs".format(m, round(s, 1)))
    # 13m 42.6s
    print("")
    # Compute the ephemeris of physical observations of the Sun using
    # Carrington's formulas
    epoch = Epoch(1992, 10, 13)
    p, b0, l0 = Sun.ephemeris_physical_observations(epoch)
    print("Ephemeris of physical observations of the Sun:")
    print_me("P ", round(p, 2))     # 26.27
    print_me("B0", round(b0, 2))    # 5.99
    print_me("L0", round(l0, 2))    # 238.63
    print("")
    # Get the epoch when the Carrington's synodic rotation No. 'number' starts
    epoch = Sun.beginning_synodic_rotation(1699)
    print_me("Epoch for Carrington's synodic rotation No. 1699",
             round(epoch(), 3))     # 2444480.723
if __name__ == "__main__":
    main()