Minor
Class to model minor celestial objetcs.
- class pymeeus.Minor.Minor(q, e, i, omega, w, t)[source]
- Class Minor models minor celestial bodies. - __init__(q, e, i, omega, w, t)[source]
- Minor constructor. - The Minor object is initialized with this constructor, setting the orbital values and computing some internal parameters. This constructor is build upon the ‘set()’ method. - Parameters
- q (float) – Perihelion distance, in Astronomical Units 
- e (float) – Eccentricity of the orbit 
- i ( - Angle) – Inclination of the orbit, as an Angle object
- omega ( - Angle) – Longitude of the ascending node, as an Angle object
- w ( - Angle) – Argument of the perihelion, as an Angle object
- t ( - Epoch) – Epoch of passage by perihelion, as an Epoch object
 
- Raises
- TypeError if input value is of wrong type. 
 
 - __weakref__
- list of weak references to the object (if defined) 
 - geocentric_position(epoch)[source]
- This method computes the geocentric position of a minor celestial body (right ascension and declination) for the given epoch, and referred to the standard equinox J2000.0. Additionally, it also computes the elongation angle to the Sun. - Parameters
- epoch ( - Epoch) – Epoch to compute geocentric position, as an Epoch object
- Returns
- A tuple containing the right ascension, the declination and the elongation angle to the Sun, as Angle objects 
- Return type
- Raises
- TypeError if input value is of wrong type. 
 - >>> a = 2.2091404 >>> e = 0.8502196 >>> q = a * (1.0 - e) >>> i = Angle(11.94524) >>> omega = Angle(334.75006) >>> w = Angle(186.23352) >>> t = Epoch(1990, 10, 28.54502) >>> minor = Minor(q, e, i, omega, w, t) >>> epoch = Epoch(1990, 10, 6.0) >>> ra, dec, p = minor.geocentric_position(epoch) >>> print(ra.ra_str(n_dec=1)) 10h 34' 13.7'' >>> print(dec.dms_str(n_dec=0)) 19d 9' 32.0'' >>> print(round(p, 2)) 40.51 >>> t = Epoch(1998, 4, 14.4358) >>> q = 1.487469 >>> e = 1.0 >>> i = Angle(0.0) >>> omega = Angle(0.0) >>> w = Angle(0.0) >>> minor = Minor(q, e, i, omega, w, t) >>> epoch = Epoch(1998, 8, 5.0) >>> ra, dec, p = minor.geocentric_position(epoch) >>> print(ra.ra_str(n_dec=1)) 5h 45' 34.5'' >>> print(dec.dms_str(n_dec=0)) 23d 23' 53.0'' >>> print(round(p, 2)) 45.73 
 - heliocentric_ecliptical_position(epoch)[source]
- This method computes the heliocentric position of a minor celestial body, providing the result in ecliptical coordinates. - Parameters
- epoch ( - Epoch) – Epoch to compute geocentric position, as an Epoch object
- Returns
- A tuple containing longitude and latitude, as Angle objects 
- Return type
- Raises
- TypeError if input value is of wrong type. 
 - >>> a = 2.2091404 >>> e = 0.8502196 >>> q = a * (1.0 - e) >>> i = Angle(11.94524) >>> omega = Angle(334.75006) >>> w = Angle(186.23352) >>> t = Epoch(1990, 10, 28.54502) >>> epoch = Epoch(1990, 10, 6.0) >>> minor = Minor(q, e, i, omega, w, t) >>> lon, lat = minor.heliocentric_ecliptical_position(epoch) >>> print(lon.dms_str(n_dec=1)) 66d 51' 57.8'' >>> print(lat.dms_str(n_dec=1)) 11d 56' 14.4'' 
 - set(q, e, i, omega, w, t)[source]
- Method used to set the orbital values and set some internal parameters. - Parameters
- q (float) – Perihelion distance, in Astronomical Units 
- e (float) – Eccentricity of the orbit 
- i ( - Angle) – Inclination of the orbit, as an Angle object
- omega ( - Angle) – Longitude of the ascending node, as an Angle object
- w ( - Angle) – Argument of the perihelion, as an Angle object
- t ( - Epoch) – Epoch of passage by perihelion, as an Epoch object
 
- Raises
- TypeError if input value is of wrong type.