render

Thread

Anthony Williams
Copyright © 2007 -8 Anthony Williams

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE 1 0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

L0 =SS B 4= T= o PP
(D] = U 0o 1 ot (o USSP
Y oYX @0 0 1 £ U ol (o PP TP PTUPTN
MOVE @SSIGNIMENT OPEIBION ... et ettt ettt et e et et e et e e et e et ettt o e e et e ettt ettt e e et e e et e e et e e ean e eetn e eeeaeeeanaaennss
I 1= o O g 1 (U Tok (o) ST
Thread Constructor With @rgUIMENTScu. i et e et e e e et e e et e e eaeaeens
BT o BT (U o (o PP
VK= 0l oT= g W g ex Lo o o TR 0 =Y oL =Y (O P
VK= 0l oT= g0 g Tox o o TN T o Y o T (P
Member TUNCHION t i MBA_j 0F N() cuiiiiiiiii et e e e e e e e e e et e et e et e e et e et e e e e enaens
VK= 0o 1= g 10 g (e o [T A=Yl o ¥ () S
VK= gl o 1= g 10 (o T T =] A o [() S
VK= gl ol gV aTo (o g I oY A= O GV T o) () P
Static member fuNCtion har dWAr @ _CONCUI T ENCY () uiiuiiiniiiiii e e e e e e e e e e e e e e et e et e et eaaeeannas
Member fUNCLION Nat i Ve _NANGL ©() tivniiiiiiiiii e e e e e e e e e e e e e et et e e e eanns
(0 1S = L 0
(o] o T=T = 0] PP
Static MEMDEr FUNCLION SI BEP() .uivriiiiiiiie e e e e e e e e et e et e et e e e e e e e et e et e et e anaaannas
Static MeMDBEr FUNCHON Yi €1 A1) ..ivvniiiiiii e e e e e e e et e e e e e e e e e e et e et e et e anaaannas
VK= 0l o L= g U g Vo Lo g TR = o (P
NTo e B 1= 0l o 1= g W ot o) 0 E=3LY=Y o () PN
NON-MEMDEr FUNCLION ITDVE () +.iitiiiiiiii et e et ettt e e e e e e e e et e e e et e et e et e et e eneeaneeaneeaaennnns
(01 =SS Lo Yo 1y AR A o T =Y- To FA A o

Nl o o R o T V=Y U TP
N[oTa B l= 0l ol= g 10 TgTex Mo o o 1= N o | TP
Non-member function i Nt er rUPti ON_POi NE () .oevniiiiii e e e e e e e e e e eaaees
Non-member function i Nt er rupPt i ON_F @QUEST () .vvuiiiniiiieiieiee e e e e e e e e et e eaeeeneeans
Non-member function i nt er r upt i 0N_enabl () ..oeeuiiieiiiiiii e e
N[o el gl o /= g 0 g Tox (o o Y I =T=Y 1 () I PP
NON-MEMDEr FUNCLION Vi €1 G() 1ovniiiniiiie it e et e e e e et e et e et e et e e e e e e et e et e et eataaannns
L= S TIT=Y o] =T 0LVl VT o o o PN
(O ST =TS oY =Y 0 L=Vl U o oo PN
Non-member function template at _t hr @ad_eXi t () «eeueeeneiii i e e et e e e eaa s

(O =SSR A Tt =T= o Je oYU o J PP
L0101 1 g1 o o ST
(D {1 ol (o ST
Member fUNCLION Creat @ T I a0 () ovuiiiiiiiii i e e e e e e e e e e e e et e e e e e eanns
VK= 0l oT= g 10 gl To g T=Yo Ko IR A o1 =T- Yo I G T
Member fUNCLION T @MDVE_ T I AU () 1ovuiiiniiiiii i e e e e e e e e e e et e e e e e eanns
VK= gl oT= g W g ex Lo o I TR (- I (0

Changes since
Future
Thread Management

httpo://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Member FUNCEION i NE @I FUPL 811 () wuuieiiiieiie e e e e e e e e e e r e e e e et e e et e e et e e et s e e et e e et e e et e eeanaees 24
MEMDE TUNCHION ST Z () tevuiiiiiiiit et ettt e e e et e e e e e e e e e et e et e e et e e et e e e at e e et e e et e e etn e esan e eaneeennaaannaes 25
Y1 (0 a1 1 Lo o 1 26
Y 11> O] 01 o PP 26
[0 Tod 1= Lo I T 00 g (o= o PRSPPI 26
=T [e Yol - IR O] 0l o | PP PP 26

Shar edLockahl @ CONCEPLuiiiiii et e e e et e e e et r e e et r et e et ren e eanenes 27

Upgr adeLoCkabl @ CONCEPLiviieiiiiii ittt et e e e e e e e e e e e e ea e e r e e e e e e e e e enns 28

[0 QO 1Y/ 1= PPN 29
(0T Qo o) 0] =" 1= 29
(OS] = o] = (=Y o T3 o TV = Y 30

(O =S (=] o = (T T U =Y o o] P 31

(O S (=010 = (] g P U =Yoo o] P 34

(O S S (= 0] o = (T oo T Lo L=V o o1 PP 37
Classtemplate upgr ade_t 0_UNi QUE_| OCK t.uueiuueiiiieeiii e e e e e e e e e e e e et e e e e e e e et e e et e e et e e ateeaaneeeens 38
MULEX-SPECITIC ClasS SCOPEA_ T TY | OCK .iiiuiiiiii it e e e e e e e e e et e e et e e aneeaanas 38

o To: 2 110 1o 0 SR 39
Non-member function | ock(Lockabl €1, LOCKaDI €2, . ..) tiuiiiiiiiiiiiieiiii e e e e e e e aaa s 39
Non-member fUNCLion | 0CK(Degi N, BNA) ...iiiiiii e e e e e e e e e e aaa s 39
Non-member functiont ry_| ock(Lockabl €1, LOCKabl €2, ...) .iiiiiiiiiiiiiiii e e e e e e e e e 40
Non-member function t ry 1 ock(begi N, @NA) ..oouuiiiiiiiii e e 40

Y 1 Gl Y 0= PP 41
L0 =5 S U = U 41
170 A 21V 0= PP 41

(OF SR I (=1o I 11V =) PP 42
ClaSS I ECUI ST VB _ITUL ©X 1ivuiitniitieitiett et tet et e et eeteestesaa et s e et e et e et e st e et s et e st e st e et saaessnssaneeaeetseensesnaernnes 43
TYPEUES T ECUI ST VE L TY ITUE ©X 1uiiiiiieiiiieiii e e e e e e et e e e e e e e e e et e e et e e et e e e aa e e et e e et e e et e san e etneeenneenens 43

(O S T T I IR A N 1100 B 11V 1 0= SO PP 44
(O SR - U=Te I 11 VT =) 45
1000 oo (1T o g Y= =o)L= PP 45
(O F= Sy oo Yo Lo [N A e A T2 UL A= 1 N =TS 47
Class coNdi ti ON_VAr i @Dl € _BNY ...iiuuiiiiiiiii e e e e e e e e e e e e e s e e et e e et e e et r e e e e e ta e e ea e aanas 50

[=0 = oo T Lo IR A8 o o TP PP 52

1@ 0Ton (gL T T4 o] o PP 52
107 L0 = oY a1 =Y 1=V TP PP 52
NON-MEMDEr TUNCLION CAI | ONCE ..ivuiiiiiiii et e e ettt e et e e e et e et e et e e e et eaneeens 53
2 L= =TSSP 53
L0 5 S o =V G T =Y 53

[UL = PP 54
L@ Y PSP 54
Creating aSyNCIIONOUS VAIUESciuiiii it e e e e e e e et e e e e e et e e et e e et e et e e et e e eanaeeees 54

Wait Callbacks and LazZy FULUIESiiiiieii e et e e e e e e e et e et e e et e e e e e et e e eaneeanaees 55
FULUNES REFEIEINCE ... ettt et et e et e e et e e et e et e e ab e eeaeeenns 56
LT o 0 To S (= o P 70
(O - SR TR =Y Vo Y o 1ot IR T oL S SN 71
LR =T o Y T LoT IR A T oI L0 (0 NS 71
explicit thread_specific_ptr(void (*cleanup_function)(T*)); uioviriiiiiiiiiiiineiieineinene e 71

U @AA_SPECT Ti C_PT T ()] tuuuuuuununn i s 71

LI 1 A (0 T oo 12 13 S PP 71

LG o] LT oY e (TR o o1 1= S PP PRPPR 72

L e o LT U oYl () TR oo 1 13 S PPN 72

VOI 0 1 eSEt (T* NEW VAl UEBT0) | iititiiiitieinit ettt ettt e et e e e et e aneaneen 72

5 T @1 BASE()] trrreeieeeiiiiittteeeee e ettt ettt e ee et e e e ee et tbe e e eeeeee e e e bt e taeaeeeeeeae b bbaeaeeeeeeae e bbbt baeeaeeeeeaaabrbraaaeaaaaas 72

Date and TimMeE REGUITEMENTS ... iiui i ciieeii et e e e e e e e e e e e e e e e et e e et e e et e e et e e e ta e e aa e e ta e e et e e eanaeetn s eeanneeanaeetnsernnnaees 73
Y700 (= BRYET A= 0 1 A 11 Y 73
Non-member fUNCLION get _SYST @M LT MB(1) tuuuiiiuiiiiieiiie e e et e e e e e e e e e e e e e et e e st e et e e et e e et e e et resaneeaneeeenns 74
o 1011 =0 Lo =) P 75
ComplianNCe With SEANAAIciiiiiii et e e e e e e e et e et e e et e e et e e et e e et e e et e e et e et e et e eaaaeaens 76

2

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

C++11 standard Thread library
Shared Mutex library extension

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Overview

Boost.Thread enablesthe use of multiple threads of execution with shared datain portable C++ code. It provides classes and functions
for managing the threads themselves, along with others for synchronizing data between the threads or providing separate copies of
data specific to individual threads.

The Boost.Thread library was originally written and designed by William E. Kempf. This version is a major rewrite designed to
closely follow the proposals presented to the C++ Standards Committee, in particular N2497, N2320, N2184, N2139, and N2094

In order to use the classes and functions described here, you can either include the specific headers specified by the descriptions of
each class or function, or include the master thread library header:

#i ncl ude <boost/thread. hpp>

which includes all the other headersin turn.

httpo://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2497.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2320.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2184.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2139.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2094.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Changes since

Changes since boost 1.41

Fixed Bugs:

#2309 Lack of g++ symbol visibility support in Boost.Thread.

#2639 documentation should be extended(defer_lock, try_to_lock, ...).

#3639 Boost.Thread doesn't build with Sun-5.9 on Linux.

#3762 Thread can't be compiled with winscw (Codewarrior by Nokia).

#3885 document about mix usage of boost.thread and native thread api.
#3975 Incorrect precondition for promise::set_ wait_callback().

#4048 thread::id formatting involves locale

#4315 gece 4.4 Warning: inline ... declared as dllimport: attribute ignored.
#4480 OpenV M patches for compiler issues workarounds.

#4819 boost.thread's documentation misprints.

#5040 future.hpp in boost::thread does not compile with /clr.

#5423 thread issues with C++0x.

#5502 race condition between shared_mutex timed_lock and lock_shared.
#5594 boost::shared_mutex not fully compatible with Windows CE.

#5617 boost::thread::id copy ctor.

#5739 set-but-not-used warnings with gcc-4.6.

#5826 threads.cpp: resource leak on threads creation failure.

#5839 thread.cpp: ThreadProxy |eaks on exceptions.

#5859 win32 shared_mutex constructor leaks on exceptions.

#6100 Compute hardware_concurrency() using get_nprocs() on GLIBC systems.
#6141 Compilation error when boost.thread and boost.move are used together.
#6168 recursive_mutex is using wrong config symbol (possible typo).

#6175 Compile error with SunStudio.

#6200 patch to have condition_variable and mutex error better handle EINTR.
#6207 shared_lock swap compiler error on clang 3.0 c++11.

#6208 try_lock_wrapper swap compiler error on clang 3.0 c++11.

Changes since boost 1.40

The 1.41.0 release of Boost adds futures to the thread library. There are also afew minor changes.

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/2309
http://svn.boost.org/trac/boost/ticket/2639
http://svn.boost.org/trac/boost/ticket/3639
http://svn.boost.org/trac/boost/ticket/3762
http://svn.boost.org/trac/boost/ticket/3885
http://svn.boost.org/trac/boost/ticket/3975
http://svn.boost.org/trac/boost/ticket/4048
http://svn.boost.org/trac/boost/ticket/4315
http://svn.boost.org/trac/boost/ticket/4480
http://svn.boost.org/trac/boost/ticket/4819
http://svn.boost.org/trac/boost/ticket/5040
http://svn.boost.org/trac/boost/ticket/5423
http://svn.boost.org/trac/boost/ticket/5502
http://svn.boost.org/trac/boost/ticket/5594
http://svn.boost.org/trac/boost/ticket/5617
http://svn.boost.org/trac/boost/ticket/5739
http://svn.boost.org/trac/boost/ticket/5826
http://svn.boost.org/trac/boost/ticket/5839
http://svn.boost.org/trac/boost/ticket/5859
http://svn.boost.org/trac/boost/ticket/6100
http://svn.boost.org/trac/boost/ticket/6141
http://svn.boost.org/trac/boost/ticket/6168
http://svn.boost.org/trac/boost/ticket/6175
http://svn.boost.org/trac/boost/ticket/6200
http://svn.boost.org/trac/boost/ticket/6207
http://svn.boost.org/trac/boost/ticket/6208
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Changes since boost 1.35

The 1.36.0 release of Boost includes afew new features in the thread library:

New genericl ock() andtry_l ock() functionsfor locking multiple mutexes at once.

Rvalue reference support for move semantics where the compilers supportsit.

A few bugs fixed and missing functions added (including the serious win32 condition variable bug).
scoped_t ry_| ock types are now backwards-compatible with Boost 1.34.0 and previous rel eases.

Support for passing function arguments to the thread function by supplying additional arguments to the boost : : t hr ead con-
structor.

Backwards-compatibility overloads added for t i med_| ock andti ned_wai t functionsto allow use of xt i me for timeouts.

Changes since boost 1.34

Almost every line of codein Boost.Thread has been changed since the 1.34 rel ease of boost. However, most of the interface changes
have been extensions, so the new code is largely backwards-compatible with the old code. The new features and breaking changes
are described below.

New Features

Instances of boost : : t hr ead and of the various lock types are now movable.
Threads can be interrupted at interruption points.

Condition variables can now be used with any type that implementsthe Lockabl e concept, through the use of boost : : condi -
tion_variabl e_any (boost::conditionisatypedef toboost::condition_variabl e_any, provided for backwards
compatibility). boost::condition_variable is provided as an optimization, and will only work with
boost : : uni que_l ock<boost : : mut ex> (boost : : nut ex: : scoped_| ock).

Thread IDs are separated from boost : : t hr ead, so athread can obtainit'sown ID (usingboost : : t hi s_t hread: : get _i d()),
and | Ds can be used as keys in associative containers, as they have the full set of comparison operators.

Timeouts are now implemented using the Boost DateTimelibrary, through atypedef boost : : syst em t i me for absolutetimeouts,
and with support for relative timeouts in many cases. boost : : xt i ne is supported for backwards compatibility only.

Locksareimplemented aspublicly accessibletemplatesboost : : | ock_guar d,boost : : uni que_| ock, boost : : shared_| ock,
andboost : : upgr ade_I ock, which aretemplated on the type of the mutex. The Lockabl e concept has been extended to include
publicly available! ock() and unl ock() member functions, which are used by the lock types.

Breaking Changes

Thelist below should cover al changes to the public interface which break backwards compatibility.

boost : : try_nut ex has been removed, and the functionality subsumed into boost : : mut ex. boost: :try_nut ex isleft asa
t ypedef , but is no longer a separate class.

boost::recursive_try_mutex has been removed, and the functionality subsumed into boost: : recursi ve_mut ex.
boost::recursive_try_mutex isleftasat ypedef, but isno longer a separate class.

boost::detail::thread::|ock_ops has been removed. Code that relies on the | ock_ops implementation detail will no
longer work, asthis has been removed, asit isno longer necessary now that mutex types now have public| ock() and unl ock()
member functions.

scoped_| ock constructors with a second parameter of type bool are no longer provided. With previous boost rel eases,

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

boost: : mut ex: : scoped_| ock sone_I| ock(sone_nutex, fal se);

could be used to create alock object that was associated with a mutex, but did not lock it on construction. This facility has now
been replaced with the constructor that takes aboost : : def er _| ock_t ype asthe second parameter:

boost : : mut ex: : scoped_| ock sone_| ock(sonme_nut ex, boost : : def er _| ock) ;

Thel ocked() member function of the scoped_| ock types has been renamed to owns_| ock() .

You can no longer obtain a boost : : t hr ead instance representing the current thread: a default-constructed boost : : t hr ead
object is not associated with any thread. The only use for such a thread object was to support the comparison operators: this
functionality has been moved to boost : : t hread: : i d.

Thebroken boost : : read_write_nut ex has been replaced with boost : : shar ed_nut ex.

boost : : nut ex isnow never recursive. For Boost releases prior to 1.35 boost : : mut ex was recursive on Windows and not on
POSIX platforms.

When using aboost : : recur si ve_nut ex with acall to boost : : condi ti on_vari abl e_any: : wai t (), the mutex is only
unlocked one level, and not completely. This prior behaviour was not guaranteed and did not feature in the tests.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Future

The following features will be included in next releases. By order of priority:

#6194 Adapt to Boost.Move.

#4710 Missing async().

#6195 Provide the standard time related interface using Boost.Chrono.
* #2637 shared mutex lock

Lock guards

o #1850 request for unlock_guard (and/or unique_unlock) to compliment lock_guard/unique_lock

» #3567 Request for shared lock guard

#2741 Proposal to manage portable and non portable thread attributes.
» #2880 Request for Thread scheduler support for boost ..

» #3696 Boost Thread library lacks any way to set priority of threads

« #5956 Add optional stack size argument to thread::start_thread()

httpo://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/6194
http://svn.boost.org/trac/boost/ticket/4710
http://svn.boost.org/trac/boost/ticket/6195
http://svn.boost.org/trac/boost/ticket/2637
http://svn.boost.org/trac/boost/ticket/1850
http://svn.boost.org/trac/boost/ticket/3567
http://svn.boost.org/trac/boost/ticket/2741
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Thread Management
Synopsis

The boost : : t hr ead class is responsible for launching and managing threads. Each boost : : t hr ead object represents a single
thread of execution, or Not-a-Thread, and at most one boost : : t hr ead object represents a given thread of execution: objects of
typeboost : : t hr ead are not copyable.

Objectsof typeboost : : t hr ead are movable, however, so they can be stored in move-aware containers, and returned from functions.
This allows the details of thread creation to be wrapped in afunction.

boost::thread nake_thread();

void f()
{

boost::thread sone_t hread=nmake_t hread();
sonme_t hread. join()

[Note: On compilers that support rvalue references, boost : : t hr ead provides a proper move constructor and move-assignment
operator, and therefore meets the C++0x MoveConstructible and MoveAssignable concepts. With such compilers, boost : : t hr ead
can therefore be used with containers that support those concepts.

For other compilers, move support is provided with amove emulation layer, so containers must explicitly detect that move emulation
layer. See <boost/thread/detail/move.hpp> for details]

Launching threads

A new thread islaunched by passing an object of acallable typethat can be invoked with no parametersto the constructor. The object
is then copied into internal storage, and invoked on the newly-created thread of execution. If the object must not (or cannot) be
copied, thenboost : : ref canbeused to passin areferenceto thefunction object. Inthiscase, the user of Boost.Thread must ensure
that the referred-to object outlives the newly-created thread of execution.

struct callable

{
}

boost::thread copies_are_safe()

voi d operator()();

cal |l abl e x;
return boost::thread(x);
} /1l x is destroyed, but the newly-created thread has a copy, so this is K

boost: :thread oops()
call abl e x;
return boost::thread(boost::ref(x));

} /Il x is destroyed, but the newl y-created thread still has a reference
/1 this |eads to undefined behaviour

If you wish to construct an instance of boost : : t hr ead with a function or callable object that requires arguments to be supplied,
this can be done by passing additional argumentsto the boost : : t hr ead constructor:

void find_the_question(int the_answer);

boost: :thread deep_thought _2(find_the_question, 42);

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

The arguments are copied into the internal thread structure: if a reference is required, use boost : : ref , just as for references to
callable functions.

Thereis an unspecified limit on the number of additional arguments that can be passed.

Exceptions in thread functions

If the function or callable object passed to the boost : : t hr ead constructor propagates an exception when invoked that is not of
typeboost::thread_interrupted,std::ternmnate() iscaled.

Joining and detaching

When the boost : : t hr ead object that represents athread of execution is destroyed the thread becomes detached. Once athread is
detached, it will continue executing until the invocation of the function or callable object supplied on construction has completed,
or the program is terminated. A thread can also be detached by explicitly invoking the det ach() member function on the
boost : : t hr ead object. Inthiscase, theboost : : t hr ead object ceasesto represent the now-detached thread, and instead represents
Not-a-Thread.

In order to wait for athread of executiontofinish, thej oi n() orti med_j oi n() member functions of theboost : : t hr ead object
must be used. j oi n() will block the calling thread until the thread represented by the boost : : t hr ead object has completed. If the
thread of execution represented by the boost : : t hr ead object has already completed, or the boost : : t hr ead object represents
Not-a-Thread, thenj oi n() returnsimmediately. ti med_j oi n() issimilar, except that acall toti med_j oi n() will alsoreturnif
the thread being waited for does not complete when the specified time has el apsed.

Interruption

A running thread can beinterrupted by invoking thei nt er r upt () member function of the corresponding boost : : t hr ead object.
When the interrupted thread next executes one of the specified interruption points (or if it is currently blocked whilst executing one)
with interruption enabled, then aboost : : t hr ead_i nt er r upt ed exception will be thrown in the interrupted thread. If not caught,
thiswill cause the execution of the interrupted thread to terminate. As with any other exception, the stack will be unwound, and de-
structors for objects of automatic storage duration will be executed.

If athread wishes to avoid being interrupted, it can create an instance of boost::this_thread:: disable_interruption.
Objects of thisclass disableinterruption for the thread that created them on construction, and restore theinterruption state to whatever
it was before on destruction:

void f()
{

/1 interruption enabled here

{

boost::this_thread:: disable_interruption di;
/1 interruption disabled

{
boost::this_thread::disable_interruption di2;
/'l interruption still disabled
} I/ di 2 destroyed, interruption state restored
/'l interruption still disabled

} I/ di destroyed, interruption state restored
/1 interruption now enabl ed

The effects of an instance of boost : : t hi s_t hread: : di sabl e_i nt errupti on can be temporarily reversed by constructing an
instanceof boost : : thi s_thread: : restore_i nterruption,passingintheboost ::this_thread:: di sabl e_i nterruption
object in question. Thiswill restore theinterruption state to what it waswhentheboost : : t hi s_t hread: : di sabl e_i nterruption
object was constructed, and then disable interruption again when the boost : : t hi s_t hread: : restore_i nterrupti on object
is destroyed.

10

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

voi d g()
{

/1 interruption enabled here

{

boost::this_thread::disable_interruption di
/'l interruption disabled

{

boost::this_thread::restore_interruption ri(di)
/'l interruption now enabl ed
} I/ ri destroyed, interruption disable again
} I/ di destroyed, interruption state restored
/'l interruption now enabl ed

At any point, the interruption state for the current thread can be queried by calling boost: : thi s_thread: : i nterruption_en-
abl ed().

Predefined Interruption Points

The following functions are interruption points, which will throw boost : : t hr ead_i nt er r upt ed if interruption is enabled for
the current thread, and interruption is requested for the current thread:

* boost::thread::join()

* boost::thread::tined_join()

* boost::condition_variable::wait()

* boost::condition_variable::tined wait()

* boost::condition_variable_any::wait()

* boost::condition_variable_any::tinmed_wait()
* boost::thread::sleep()

* boost::this_thread::sleep()

* boost::this_thread::interruption_point()

Thread IDs

Objectsof classhoost : : t hread: : i d can be used to identify threads. Each running thread of execution has aunique ID obtainable
from the corresponding boost::thread by caling the get_id() member function, or by caling
boost::this_thread::get_id() fromwithin the thread. Objects of class boost : : t hread: : i d can be copied, and used as
keysin associative containers: the full range of comparison operatorsis provided. Thread IDs can a so be written to an output stream
using the stream insertion operator, though the output format is unspecified.

Eachinstance of boost : : t hr ead: : i d either refersto somethread, or Not-a-Thread. Instances that refer to Not-a-Thread compare
equal to each other, but not equal to any instances that refer to an actual thread of execution. The comparison operators on
boost : : thread: :idyield atotal order for every non-equal thread ID.

Using native interfaces with Boost.Thread resources
boost : : t hr ead classhasmembersnat i ve_handl e_t ype andnat i ve_handl e providing accessto the underlying native handle.

This native handle can be used to change for exampl e the scheduling.

11

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

In general, it is not safe to use this handle with operations that can conflict with the ones provided by Boost. Thread. An example of
bad usage could be detaching a thread directly as it will not change the internals of the boost : : t hr ead instance, so for example
the joinable function will continue to return true, while the native thread is no more joinable.

thread t(fct);

thread: : nati ve_handl e_type hnd=t. nati ve_handl e();
pt hr ead_det ach(hnd) ;

assert(t.joinable());

Using Boost.Thread interfaces in a native thread
Any thread of execution created using the native interface is called a native thread in this documentation.
Thefirst example of a native thread of execution isthe main thread.

The user can accessto some synchronization functions related to the native current thread using theboost : : t hi s_t hread yi el d,
sl eep, functions.

int main() {
I
boost::this_thread::sleep();
/1

}

Of course al the synchronization facilities provided by Boost. Thread are also available on native threads.

The boost : : t hi s_t hr ead interrupt related functions behave in a degraded mode when called from a thread created using the
native interface, i.e. boost::this_thread::interruption_enabled() returns false. As consequence the use of
boost::this_thread::disable_interruption and boost::this_thread::restore_interruption will do nothing
and callsto boost : : this_t hread: : i nterrupt_point () will bejustignored.

Asthe single way to interrupt a thread is through aboost : : t hr ead instance, i nt er rupt i on_r equest () wiil returns false for
the native threads.

12

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

ClaSS t hread

#i ncl ude <boost/thread/thread. hpp>

class thread

{
publi c:
thread();
~thread() ;
tenpl ate <cl ass F>
explicit thread(F f);
tenpl ate <class F,class Al,class A2,...>
thread(F f, Al al, A2 a2,...);
tenpl ate <cl ass F>
thread(detail::thread_nove_t<F> f);
/1l nove support
thread(detail::thread_nove_t<thread> Xx);
t hread& operator=(detail::thread_nove_t<thread> x);
operator detail::thread_nove_t<thread>();
detail ::thread_nove_t <thread> nove();
voi d swap(thread& x);
class id;
id get_id() const;
bool joinable() const;
void join();
bool tined_join(const systemtime& wait_until);
t enpl at e<t ypenane Ti meDur ati on>
bool tined_join(TinmeDuration const& rel _tine);
voi d detach();
static unsigned hardware_concurrency();
t ypedef platformspecific-type native_handl e_type;
native_handl e_type native_handl e();
void interrupt();
bool interruption_requested() const;
/1 backwards conpatibility
bool operator==(const thread& other) const;
bool operator!=(const thread& other) const;
static void yield();
static void sleep(const systemtine& xt);
|
voi d swap(thread& | hs, thread& rhs);
detail ::thread_nove_t <t hread> nove(detail::thread_nove_t<thread> t);

13

render

s httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Default Constructor

thread();

Effects: Constructs aboost : : t hr ead instance that refers to Not-a-Thread.

Throws: Nothing

Move Constructor

thread(detail::thread_nove_t <t hread> ot her);
Effects: Transfers ownership of the thread managed by ot her (if any) to the newly constructed boost : : t hr ead
instance.
Postconditions: other->get _id()==thread::id()
Throws: Nothing

Move assignment operator

t hread& operator=(detail::thread_nove_t<thread> other);
Effects: Transfers ownership of the thread managed by ot her (if any) to *t hi s. If there was a thread previously
associated with *t hi s then that thread is detached.
Postconditions: ot her->get id()==thread::id()
Throws: Nothing

Thread Constructor

t enpl at e<t ypenane Cal | abl e>
thread(Cal | abl e func);

Preconditions: Cal | abl e must by copyable.

Effects: f unc iscopied into storage managed internally by the thread library, and that copy is invoked on a newly-
created thread of execution. If thisinvocation results in an exception being propagated into the internal's of
the thread library that is not of type boost : : t hread_i nt errupt ed, thenstd: : term nate() will be

caled.
Postconditions: *t hi s refersto the newly created thread of execution.
Throws: boost: :thread_resource_error if anerror occurs.

Thread Constructor with arguments

tenpl ate <class F,class Al,class A2,...>
thread(F f, Al al, A2 a2,...);

Preconditions: F and each An must by copyable or movable.

14

> http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Effects:

Postconditions:
Throws:

Note:

As if t hread(boost:: bind(f, al,a2,...)). Consequently, f and each an are copied into internal
storage for access by the new thread.

*t hi s refersto the newly created thread of execution.
boost: :thread_resource_error if anerror occurs.

Currently up to nine additional argumentsal to a9 can be specified in addition to the function f .

Thread Destructor

~thread();

Effects: If *t hi s has an associated thread of execution, callsdet ach() . Destroys*t hi s.

Throws: Nothing.

Member function joi nabl e()

bool joinable() const;

Returns: true if *t hi s refersto athread of execution, f al se otherwise.

Throws: Nothing

Member function join()

void join();

Preconditions:
Effects:

Postconditions:

Throws:

Notes:

thi s->get _id()!=boost::this_thread::get_id()
If *t hi s refersto athread of execution, waits for that thread of execution to complete.

If *t hi s refersto athread of execution on entry, that thread of execution has completed. *t hi s no longer
refersto any thread of execution.

boost : : thread_i nt errupt ed if the current thread of execution is interrupted.

j oi n() isone of the predefined interruption points.

Member function tined_joi n()

bool tinmed_join(const systemtine& wait_until);

t enpl at e<t ypenane Ti meDur ati on>
bool tined_join(TineDuration const& rel _tine);

Preconditions:

Effects:

Returns:

thi s->get _id()!=boost::this_thread::get_id()

If *t hi s refersto athread of execution, waitsfor that thread of execution to complete, thetimewai t _unti |
has been reach or the specified durationr el _t i me haselapsed. If *t hi s doesn't refer to athread of execu-
tion, returnsimmediately.

true if *t hi s refersto athread of execution on entry, and that thread of execution has completed before
the cal timesout, f al se otherwise.

15

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Postconditions: If *t hi s refersto athread of execution on entry, andti ned_j oi n returnst r ue, that thread of execution
has completed, and *t hi s no longer refers to any thread of execution. If thiscall toti med_j oi n returns
fal se, *t hi s isunchanged.

Throws: boost : : t hread_i nt errupt ed if the current thread of execution is interrupted.

Notes: timed_j oi n() isone of the predefined interruption points.

Member function detach()

voi d detach();

Effects: If *t hi s refersto athread of execution, that thread of execution becomes detached, and no longer has an
associated boost : : t hr ead object.

Postconditions: *t hi s nolonger refersto any thread of execution.

Throws: Nothing

Member function get i d()
thread::id get_id() const;

Returns: If *t hi s refersto athread of execution, an instance of boost : : t hr ead: : i d that represents that thread. Otherwise
returns a default-constructed boost : : t hread: : i d.

Throws: Nothing

Member function interrupt()

void interrupt();

Effects: If *t hi s refersto athread of execution, request that the thread will be interrupted the next time it enters one of the
predefined interruption points with interruption enabled, or if it is currently blocked in a call to one of the predefined
interruption points with interruption enabled .

Throws: Nothing

Static member function nhardware_concurrency()

unsi gned har dwar e_concurrency();

Returns: The number of hardware threads available on the current system (e.g. number of CPUs or cores or hyperthreading
units), or 0 if thisinformation is not available.

Throws: Nothing

Member function native_handi e()

t ypedef platform specific-type native_handl e_type;
native_handl e_type native_handl e();

Effects: Returnsan instance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying implementation. If no such instance exists, nati ve_handl e() andnati ve_handl e_t ype are not present.

16

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Throws: Nothing.
oper at or ==

bool operator==(const thread& other) const;
Returns: get _i d()==ot her.get _id()
operator!=

bool operator!=(const thread& other) const;
Returns: get _id()!=other.get _id()
Static member function sieep()

voi d sl eep(systemtime const& abs_tine);

Effects: Suspends the current thread until the specified time has been reached.
Throws: boost : : thread_i nt errupt ed if the current thread of execution is interrupted.
Notes: sl eep() isone of the predefined interruption points.

Static member function yiei d()
void yield();

Effects: Seeboost::this_thread::yield().
Member function swap()

voi d swap(thread& other);

Effects: Exchanges the threads of execution associated with *t hi s and ot her, so *t hi s is associated with the
thread of execution associated with ot her prior to the call, and vice-versa.

Postconditions: t hi s->get i d() returnsthesamevalueasot her . get _i d() priortothecall.ot her. get _i d() returns
the samevalue ast hi s- >get _i d() prior tothecall.

Throws: Nothing.

Non-member function swap()

#i ncl ude <boost/thread/thread. hpp>

voi d swap(thread& | hs, thread& rhs);

Effects: | hs. swap(rhs).

17

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Non-member function nove()

#i ncl ude <boost/thread/thread. hpp>

detail ::thread _nove t<thread> nove(detail::thread nove t<thread> t)
Returns: t.
Enables moving thread objects. e.g.

extern void sonme_func();
boost::thread t (some_func);
boost: :thread t2(boost::nove(t)); // transfer thread fromt to t2

Class boost: :thread::id

#i ncl ude <boost/thread/thread. hpp>

class thread::id

{
public:
id();
bool operator==(const id& y) const;
bool operator!=(const id& y) const;
bool operator<(const id& y) const;
bool operator>(const id& y) const;
bool operator<=(const id& y) const;
bool operator>=(const id& y) const;
tenpl at e<cl ass charT, class traits>
friend std::basic_ostrean<charT, traits>&
oper at or <<(std:: basi c_ostream<charT, traits>& os, const id& X);
s

Default constructor

id();
Effects: Constructsaboost : : t hread: : i d instance that represents Not-a-Thread.
Throws: Nothing
oper at or ==

bool operator==(const id& y) const;

Returns: trueif *t hi s andy both represent the same thread of execution, or both represent Not-a-Thread, f al se otherwise.

Throws: Nothing

18

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

operator!=

bool operator!=(const id& y) const;

Returns: trueif *thi s andy represent different threads of execution, or one represents a thread of execution, and the other
represent Not-a-Thread, f al se otherwise.

Throws: Nothing

oper at or <

bool operator<(const id& y) const;

Returns: trueif*thi s! =y ist r ue and theimplementation-defined total order of boost : : t hread: : i d valuesplaces*t hi s
beforey, f al se otherwise.

Throws: Nothing

Note: A boost : : t hread: : i d instance representing Not-a- Thread will always compare less than an instance representing
athread of execution.

oper at or >

bool operator>(const id& y) const;
Returns: y<*this
Throws: Nothing

oper at or <=

bool operator<=(const id& y) const;
Returns: I'(y<*this)
Throws: Nothing

oper at or >=
bool operator>=(const id& y) const;
Returns: I(*this<y)

Throws: Nothing

Friend operat or <<

tenpl at e<cl ass charT, class traits>
friend std::basic_ostream<charT, traits>&
oper at or <<(std::basic_ostream<charT, traits>& os, const id& X);

Effects: Writes arepresentation of theboost : : t hread: : i d instance x to the stream os, such that the representation of two
instances of boost : : t hread: : i d a and b isthe same if a==b, and different if a! =b.

19

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Returns: os
Namespace this_thread
Non-member function get i d()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
thread::id get_id();
}
Returns: Aninstance of boost : : t hread: : i d that represents that currently executing thread.
Throws: boost::thread _resource_error if anerror occurs.

Non-member function interruption_point()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
void interruption_point();
}
Effects: Check to seeif the current thread has been interrupted.
Throws: boost::thread_i nterrupted if boost::this_thread::interruption_enabl ed() and

boost::this_thread::interruption_requested() bothreturntrue.

Non-member function i nterruption_requested()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
bool interruption_requested();
}
Returns: t rue if interruption has been requested for the current thread, f al se otherwise.

Throws: Nothing.

Non-member function i nterruption_enabl ed()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
bool interruption_enabl ed();
}
Returns: t r ue if interruption has been enabled for the current thread, f al se otherwise.

Throws: Nothing.

20

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Non-member function sieep()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
t enpl at e<t ypenane Ti meDur ati on>
voi d sl eep(TimeDuration const& rel _tinme);
voi d sl eep(systemtinme consté& abs_tine)
}
Effects: Suspends the current thread until the time period specified by rel _t i ne has elapsed or the time point specified by
abs_ti me has been reached.
Throws: boost : : t hread_i nt er r upt ed if the current thread of execution is interrupted.
Notes: sl eep() isone of the predefined interruption points.

Non-member function yiei d()

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
void yield();
}
Effects: Gives up the remainder of the current thread's time slice, to allow other threads to run.

Throws: Nothing.

Class disable_interruption

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
cl ass disable_interruption
{
public:
di sabl e_interruption();
~di sabl e_interruption();
s
}

boost : : this_t hread: : di sabl e_i nt errupti on disables interruption for the current thread on construction, and restores the
prior interruption state on destruction. Instances of di sabl e_i nt er r upt i on cannot be copied or moved.

Constructor

di sabl e_interruption();

Effects: Storesthecurrent stateof boost : : t hi s_t hread: : i nterrupti on_enabl ed() anddisablesinterruption
for the current thread.
Postconditions: boost::this_thread::interruption_enabl ed() returnsf al se for the current thread.
21

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Throws: Nothing.

Destructor

~di sabl e_interruption();

Preconditions: Must be called from the same thread from which * t hi s was constructed.

Effects: Restoresthe current state of boost : : t hi s_t hread: : i nterrupti on_enabl ed() forthecurrent thread
to that prior to the construction of *t hi s.

Postconditions: boost::this_thread::interruption_enabl ed() for the current thread returns the value stored in
the constructor of *t hi s.

Throws: Nothing.
Class restore_interruption

#i ncl ude <boost/thread/thread. hpp>

namespace this_thread

{
class restore_interruption
{
publi c:
explicit restore_interruption(disable_interruption& disabler);
~restore_interruption();
}s
}

On construction of aninstance of boost : : t hi s_t hread: : rest ore_i nt er rupt i on, theinterruption state for the current thread
isrestored to theinterruption state stored by the constructor of the supplied instance of boost : : t hi s_t hr ead: : di sabl e_i nter -
rupt i on. When the instance is destroyed, interruption is again disabled. Instances of r est or e_i nt er r upt i on cannot be copied
or moved.

Constructor

explicit restore_interruption(disable_interruption& disabler);

Preconditions: Must be called from the same thread from which di sabl er was constructed.

Effects: Restoresthe current state of boost : : t his_thread: : i nterrupti on_enabl ed() forthecurrent thread
to that prior to the construction of di sabl er .

Postconditions: boost::this_thread::interruption_enabl ed() for the current thread returns the value stored in
the constructor of di sabl er.

Throws: Nothing.

Destructor

~restore_interruption();

Preconditions: Must be called from the same thread from which *t hi s was constructed.
Effects: Disables interruption for the current thread.
22

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Postconditions: boost::this_thread::interruption_enabl ed() for the current thread returnsf al se.

Throws: Nothing.
Non-member function template at_thread_exit ()

#i ncl ude <boost/thread/thread. hpp>

t enpl at e<t ypenane Cal | abl e>
void at_thread_exit(Callable func);

Effects: A copy of func is placed in thread-specific storage. This copy is invoked when the current thread exits
(even if the thread has been interrupted).

Postconditions: A copy of f unc has been saved for invocation on thread exit.

Throws: st d: : bad_al | oc if memory cannot be allocated for the copy of the function, boost: : t hread_re-

source_error if any other error occurs within the thread library. Any exception thrown whilst copying
f unc into internal storage.

Note: This function is not called if the thread was terminated forcefully using platform-specific APIs, or if the
thread is terminated due to acall to exi t (), abort () or std::termninate(). In particular, returning
from main() is equivaent to call to exit(), so will not cal any functions registered with
at _thread_exit()

CIaSS t hread_group

#i ncl ude <boost/thread/thread. hpp>

cl ass thread_group:
private noncopyabl e

{

public:
t hread_group();
~t hread_group();
t enpl at e<t ypenane F>
t hread* create_thread(F threadfunc);
voi d add_t hread(thread* thrd);
voi d renove_t hread(thread* thrd);
void join_all();
void interrupt_all ();
int size() const;

b

t hr ead_gr oup provides for a collection of threads that are related in some fashion. New threads can be added to the group with
add_t hread and cr eat e_t hr ead member functions. t hr ead_gr oup is not copyable or movable.

Constructor

t hread_group();

Effects: Create a new thread group with no threads.

23

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Destructor

~t hread_group():

Effects: Destroy *t hi s and del et e all boost : : t hr ead objectsin the group.

Member function create_thr ead()

t enpl at e<t ypenane F>
t hread* create_thread(F threadfunc);

Effects: Create anew boost : : t hr ead object as-if by new t hr ead(t hr eadf unc) and add it to the group.
Postcondition: t hi s->si ze() isincreased by one, the new thread is running.
Returns: A pointer to the new boost : : t hr ead object.

Member function add_t hread()

voi d add_thread(thread* thrd);

Precondition: The expression del et e t hr d iswell-formed and will not result in undefined behaviour.
Effects: Take ownership of theboost : : t hr ead object pointed to by t hr d and add it to the group.
Postcondition: t hi s->si ze() isincreased by one.

Member function renove_t hread()

voi d renove_thread(thread* thrd);

Effects: If t hr d isamember of the group, remove it without calling del et e.

Postcondition: If t hr d was a member of the group, t hi s- >si ze() isdecreased by one.

Member function join_ali()

void join_all();

Effects: Call j oi n() oneachboost : : t hread object in the group.
Postcondition: Every thread in the group has terminated.
Note; Sincej oi n() isone of the predefined interruption points, j oi n_al | () isalso an interruption point.

Member function i nterrupt_all ()

void interrupt_all ();

Effects: Calinterrupt () oneachboost: :t hread object in the group.

24

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Member function size()

int size();

Returns:

Throws:

The number of threadsin the group.

Nothing.

25

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Synchronization

Mutex Concepts

A mutex object facilitates protection against data races and allows thread-safe synchronization of data between threads. A thread
obtains ownership of a mutex object by calling one of the lock functions and relinquishes ownership by calling the corresponding
unlock function. Mutexes may be either recursive or non-recursive, and may grant simultaneous ownership to one or many threads.
Boost.Thread supplies recursive and non-recursive mutexes with exclusive ownership semantics, along with a shared ownership

(multiple-reader / single-writer) mutex.

Boost.Thread supports four basic concepts for lockable objects: Lockabl e, Ti nedLockabl e, Shar edLockabl e and Upgr ade-

Lockabl e. Each mutex type implements one or more of these concepts, as do the various lock types.

Lockabl e CONCept

The Lockabl e concept models exclusive ownership. A type that implements the Lockabl e concept shall provide the following

member functions:

e void lock();

e bool try_lock();

e void unlock();

Lock ownership acquired through acall tol ock() ortry_I| ock() must be released through acall to unl ock() .

voi d | ock()
Effects:
Postcondition:
Throws:

bool try_lock()
Effects:

Returns:
Postcondition:
Throws:

voi d unl ock()
Precondition:
Effects:
Postcondition:

Throws:

The current thread blocks until ownership can be obtained for the current thread.
The current thread owns *t hi s.

boost ::thread _resource_error if anerror occurs.

Attempt to obtain ownership for the current thread without blocking.
t rue if ownership was obtained for the current thread, f al se otherwise.
If the call returnst r ue, the current thread ownsthe*t hi s.

boost: :thread_resource_error if anerror occurs.

The current thread owns *t hi s.
Releases ownership by the current thread.
The current thread no longer owns * t hi s.

Nothing

Ti medLockabl e CONCeEpPL

The Ti medLockabl e concept refines the Lockabl e concept to add support for timeouts when trying to acquire the lock.

26

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

A typethat implementsthe Ti medLockabl e concept shall meet the requirements of the Lockabl e concept. In addition, the following
member functions must be provided:

* bool tined_|ock(boost::systemtine const& abs_tine);
e tenpl at e<typenane Durati onType> bool tined_| ock(DurationType const& rel _tine);

Lock ownership acquired through acall toti med_I ock() must be released through acall to unl ock().

bool tinmed_| ock(boost::systemtime const& abs_tine)

Effects: Attempt to obtain ownership for the current thread. Blocks until ownership can be obtained, or the specified
time isreached. If the specified time has already passed, behavesastry_| ock().

Returns: t r ue if ownership was obtained for the current thread, f al se otherwise.

Postcondition: If the call returnst r ue, the current thread owns*t hi s.

Throws: boost: :thread_resource_error if anerror occurs.

t enpl at e<t ypenane Durati onType> bool tined_| ock(DurationType const& rel _tine)
Effects: As-if timed_| ock(boost::get_systemtime()+rel _tine).
shar edLockabl e CONCept

TheShar edLockabl e concept isarefinement of the Ti medLockabl e concept that allowsfor shared ownership aswell asexclusive
ownership. This is the standard multiple-reader / single-write model: at most one thread can have exclusive ownership, and if any
thread does have exclusive ownership, no other threads can have shared or exclusive ownership. Alternatively, many threads may
have shared ownership.

For atype to implement the Shar edLockabl e concept, as well as meeting the requirements of the Ti nedLockabl e concept, it
must also provide the following member functions:

* void | ock_shared();

* bool try_lock _shared();

* bool unlock_shared();

* bool tinmed_| ock_shared(boost::systemtine const& abs_tine);

Lock ownership acquired through acall tol ock_shared(),try_|l ock_shared() orti med_| ock_shar ed() must be released
through acall tounl ock_shared().

voi d | ock_shared()

Effects: The current thread blocks until shared ownership can be obtained for the current thread.
Postcondition: The current thread has shared ownership of *t hi s.
Throws: boost: :thread_resource_error if anerror occurs.

bool try_l ock_shared()

Effects: Attempt to obtain shared ownership for the current thread without blocking.
Returns: t r ue if shared ownership was obtained for the current thread, f al se otherwise.
Postcondition: If the call returnst r ue, the current thread has shared ownership of *t hi s.

27

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Throws: boost: :thread_resource_error if anerror occurs.

bool tinmed_| ock_shared(boost::systemtine const& abs_tine)

Effects: Attempt to obtain shared ownership for the current thread. Blocks until shared ownership can be obtained,
or the specified time is reached. If the specified time has already passed, behavesastry_| ock_shared().

Returns: t rue if shared ownership was acquired for the current thread, f al se otherwise.

Postcondition: If the call returnst r ue, the current thread has shared ownership of *t hi s.

Throws: boost: :thread_resource_error if anerror occurs.

voi d unl ock_shared()

Precondition: The current thread has shared ownership of *t hi s.

Effects: Releases shared ownership of *t hi s by the current thread.
Postcondition: The current thread no longer has shared ownership of *t hi s.
Throws: Nothing

Upgr adeLockabl e CO ncept

The Upgr adeLockabl e concept is arefinement of the Shar edLockabl e concept that allows for upgradable ownership aswell as
shared ownership and exclusive ownership. This is an extension to the multiple-reader / single-write model provided by the
Shar edLockabl e concept: asingle thread may have upgradable ownership at the same time as others have shared ownership. The
thread with upgradable ownership may at any time attempt to upgrade that ownership to exclusive ownership. If no other threads
have shared ownership, the upgrade is completed immediately, and the thread now has exclusive owner ship, which must be relinquished
by acall tounl ock(), just asif it had been acquired by acall to | ock() .

If athread with upgradable ownership tries to upgrade whilst other threads have shared ownership, the attempt will fail and the
thread will block until exclusive ownership can be acquired.

Ownership can also be downgraded as well as upgraded: exclusive ownership of an implementation of the Upgr adeLockabl e
concept can be downgraded to upgradable ownership or shared ownership, and upgradable ownership can be downgraded to plain
shared ownership.

For atype to implement the Upgr adeLockabl e concept, as well as meeting the requirements of the Shar edLockabl e concept, it
must aso provide the following member functions:

e void | ock_upgrade();

* bool unl ock_upgrade();

e void unl ock_upgrade_and_l ock();

e void unl ock_and_| ock_upgrade();

* voi d unl ock_upgrade_and_| ock_shared();

Lock ownership acquired through acall to | ock_upgr ade() must be released through acall to unl ock_upgr ade() . If the own-
ership typeis changed through acall to one of the unl ock_xxx_and_I ock_yyy() functions, ownership must be released through
acall to the unlock function corresponding to the new level of ownership.

voi d | ock_upgrade()

Effects: The current thread blocks until upgrade ownership can be obtained for the current thread.

28

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Postcondition: The current thread has upgrade ownership of *t hi s.

Throws: boost: :thread_resource_error if anerror occurs.

voi d unl ock_upgrade()

Precondition: The current thread has upgrade ownership of *t hi s.

Effects: Releases upgrade ownership of *t hi s by the current thread.
Postcondition: The current thread no longer has upgrade ownership of *t hi s.
Throws: Nothing

voi d unl ock _upgrade_and_| ock()

Precondition: The current thread has upgrade ownership of *t hi s.

Effects: Atomically releases upgrade ownership of *t hi s by the current thread and acquires exclusive ownership of
*t hi s. If any other threads have shared ownership, blocks until exclusive ownership can be acquired.

Postcondition: The current thread has exclusive ownership of *t hi s.

Throws: Nothing

voi d unl ock_upgrade_and_| ock_shared()

Precondition: The current thread has upgrade ownership of *t hi s.

Effects: Atomically releases upgrade ownership of *t hi s by the current thread and acquires shared ownership of
*t hi s without blocking.

Postcondition: The current thread has shared ownership of *t hi s.

Throws: Nothing

voi d unl ock_and_| ock_upgrade()

Precondition: The current thread has exclusive ownership of *t hi s.

Effects: Atomically releases exclusive ownership of *t hi s by the current thread and acquires upgrade ownership of
*t hi s without blocking.

Postcondition: The current thread has upgrade ownership of *t hi s.

Throws: Nothing

Lock Types
Lock option tags

#i ncl ude <boost/thread/| ocks. hpp>

struct defer_lock_t {};

struct try_to_lock_t {};

struct adopt_lock_t {};

const defer_lock_t defer_|ock;
const try to_lock_t try_ to_lock;
const adopt _| ock_t adopt _| ock;

29

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

These tags are used in scoped locks constructors to specify a specific behavior.
» defer_| ock_t:isused to construct the scoped lock without locking it.
e try_to_l ock_t:isusedto construct the scoped lock trying to lock it.

e adopt _| ock_t : isused to construct the scoped lock without locking it but adopting ownership.
Class template | ock_guard

#i ncl ude <boost/thread/l ocks. hpp>

t enpl at e<t ypenane Lockabl e>
class | ock_guard

{

public:
explicit |ock_guard(Lockable& m);
| ock_guar d(Lockabl e& m , boost: : adopt | ock t);
~l ock_guard();

¥

boost : : | ock_guar d isvery ssmple: on construction it acquires ownership of theimplementation of the Lockabl e concept supplied
as the constructor parameter. On destruction, the ownership is released. This provides ssmple RAII-style locking of a Lockabl e
object, to facilitate exception-safelocking and unlocking. In addition, thel ock_guar d(Lockabl e & m boost : : adopt _| ock_t)
constructor allowstheboost : : | ock_guar d object to take ownership of alock aready held by the current thread.

| ock_guard(Lockable & m

Effects: Stores areferenceto m Invokesm | ock() .

Throws: Any exception thrown by the call tom | ock() .

| ock_guar d(Lockabl e & m boost: : adopt _| ock_t)

Precondition: The current thread owns alock on mequivalent to one obtained by acall tom | ock() .
Effects: Stores areference to m Takes ownership of the lock state of m
Throws: Nothing.

~l ock_guard()

Effects: Invokesm unl ock() ontheLockabl e object passed to the constructor.

Throws: Nothing.

30

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Class template uni que_l ock

#i ncl ude <boost/thread/| ocks. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass uni que_I ock

{
publi c:
uni que_Il ock();
explicit unique_| ock(Lockable& m);
uni que_| ock(Lockabl e& m , adopt _I ock_t);
uni que_| ock(Lockabl e& m , defer_lock_t);
uni que_| ock(Lockable& m ,try _to_lock_t);
uni que_| ock(Lockabl e& m ,systemtine const& target_tinme);
~uni que_l ock() ;
uni que_| ock(detail::thread_nove_t <uni que_| ock<Lockabl e> > ot her);
uni que_| ock(detail::thread_nove_t <upgrade_| ock<Lockabl e> > ot her);
operator detail::thread_nove_t <uni que_| ock<Lockabl e> >();
detail ::thread_nove_t <uni que_| ock<Lockabl e> > nove();
uni que_| ock& operator=(detail::thread_nove_t <uni que_| ock<Lockabl e> > ot her);
uni que_| ock& operator=(detail::thread_nove_t <upgrade_| ock<Lockabl e> > other);
voi d swap(uni que_l ock& ot her) ;
voi d swap(detail::thread_nove_t <uni que_| ock<Lockabl e> > ot her);
void | ock();
bool try_lock();
t enpl at e<t ypenane Ti meDur ati on>
bool timed | ock(TineDuration const& relative_ tine);
bool tinmed_|l ock(::boost::systemtime const& absolute_tine);
voi d unl ock();
bool owns_| ock() const;
oper at or unspeci fied-bool -type() const;
bool operator!() const;
Lockabl e* mutex() const;
Lockabl e* rel ease();
b

boost : : uni que_| ock ismore complex thanboost : : | ock_guar d: not only doesit provide for RAII-stylelocking, it also allows
for deferring acquiring thelock until thel ock() member functioniscalled explicitly, or trying to acquire thelock in anon-blocking
fashion, or with atimeout. Consequently, unl ock() isonly calledinthedestructor if thelock object haslocked the Lockabl e object,
or otherwise adopted alock on the Lockabl e object.

Specidizations of boost : : uni que_| ock model the Ti medLockabl e concept if the supplied Lockabl e type itself models
Ti nedLockabl e concept (e.g. boost : : uni que_| ock<boost : : ti med_nut ex>), or the Lockabl e concept otherwise (e.g.
boost : : uni que_| ock<boost : : mut ex>).

An instance of boost: : uni que_| ock is said to own the lock state of a Lockabl e mif nut ex() returns a pointer to mand
owns_| ock() returnst r ue. If an object that ownsthelock state of aLockabl e object is destroyed, then the destructor will invoke
nmut ex() - >unl ock() .

The member functions of boost : : uni que_I ock are not thread-safe. In particular, boost : : uni que_| ock isintended to model
the ownership of aLockabl e object by a particular thread, and the member functions that release ownership of the lock state (in-
cluding the destructor) must be called by the same thread that acquired ownership of the lock state.

31

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

uni que_| ock()

Effects:
Postcondition:

Throws:

Creates alock object with no associated mutex.
owns_| ock() returnsf al se. nut ex() returns NULL.

Nothing.

uni que_| ock(Lockabl e & m

Effects:
Postcondition:

Throws:

Stores areferenceto m Invokesm | ock() .
owns_| ock() returnstrue. nut ex() returns&m

Any exception thrown by the call tom | ock() .

uni que_| ock(Lockabl e & m boost:: adopt_| ock_t)

Precondition:
Effects:
Postcondition:

Throws:

The current thread owns an exclusive lock on m
Stores areference to m Takes ownership of the lock state of m
owns_| ock() returnstrue. mut ex() returns &m

Nothing.

uni que_| ock(Lockabl e & m boost::defer_|ock_t)

Effects:
Postcondition:

Throws:

Stores areference tom
owns_| ock() returnsfal se. nut ex() returnsé&m

Nothing.

uni que_| ock(Lockabl e & mboost::try to_lock_t)

Effects:

Postcondition:

Throws:

Stores a reference to m Invokesm try_I ock(), and takes ownership of the lock state if the call returns

true.

mut ex() returns&m If thecall totry_| ock() returnedt r ue, thenowns_| ock() returnstr ue, otherwise

owns_| ock() returnsf al se.

Nothing.

uni que_| ock(Lockabl e & m boost::systemtine const& abs_tine)

Effects:

Postcondition:

Throws:

Stores areference to m Invokes m ti ned_| ock(abs_ti ne), and takes ownership of the lock state if the

cdl returnst r ue.

mut ex() returns&m If thecall toti med_| ock() returnedt r ue, thenowns_| ock() returnst r ue, otherwise

owns_| ock() returnsf al se.

Any exceptions thrown by thecall tom ti med_| ock(abs_tine).

~uni que_l ock()

Effects:

Throws:

Invokes mut ex() - > unl ock() if owns_I ock() returnstrue.

Nothing.

32

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

bool owns_I| ock() const

Returns:

Throws;

true if the*t hi s ownsthelock onthe Lockabl e object associated with *t hi s.

Nothing.

Lockabl e* mutex() const

Returns:

Throws:

A pointer to the Lockabl e object associated with *t hi s, or NULL if there is no such object.

Nothing.

oper at or unspeci fied-bool -type() const

Returns:

Throws:

If owns_

| ock() would returntrue, avaluethat evaluatesto t r ue in boolean contexts, otherwise a value that eval-

uatesto f al se in boolean contexts.

Nothing.

bool operator! () const

Returns:

Throws;

I owns_l ock().

Nothing.

Lockabl e* rel ease()

Effects:

Returns:

Throws;

Postcondition:

The association between *t hi s and the Lockabl e object isremoved, without affecting the lock state of the
Lockabl e object. If owns_| ock() would have returned t r ue, it isthe responsibility of the calling code to
ensure that the Lockabl e is correctly unlocked.

A pointer to the Lockabl e object associated with *t hi s at the point of the call, or NULL if thereis no such
object.

Nothing.

*t hi s isnolonger associated with any Lockabl e object. mut ex() returnsNULL and owns_| ock() returns
fal se.

33

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Class template shared_i ock

#i ncl ude <boost/thread/| ocks. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass shared_| ock

{
publi c:
shared_| ock();
explicit shared_| ock(Lockable& m);
shared_| ock(Lockabl e& m , adopt _| ock_t);
shared | ock(Lockabl e& m , defer_lock t);
shared_| ock(Lockabl e& m ,try_to_l ock_t);
shared_| ock(Lockabl e& m ,systemtime const& target_tine);
shared | ock(detail::thread _nove_ t<shared_ | ock<Lockabl e> > other);
shared_l ock(detail::thread_nove_t <uni que_I| ock<Lockabl e> > ot her);
shared_| ock(detail::thread_nove_t <upgrade_| ock<Lockabl e> > ot her);
~shared_| ock();
operator detail::thread_nove_t <shared_| ock<Lockabl e> >();
detail::thread nove t <shared | ock<Lockabl e> > nove();
shared_| ock& operator=(detail::thread_mnove_t <shared_| ock<Lockabl e> > ot her);
shared_| ock& operator=(detail::thread_move_t <uni que_| ock<Lockabl e> > ot her);
shared_| ock& operator=(detail::thread_nove_t <upgrade_| ock<Lockabl e> > other);
voi d swap(shared_| ock& ot her) ;
void | ock();
bool try_lock();
bool tined_|l ock(boost::systemtine const& target_tinme);
voi d unl ock();
oper at or unspeci fi ed-bool -type() const;
bool operator!() const;
bool owns_| ock() const;
b

Likeboost : : uni que_| ock, boost : : shar ed_| ock modelsthe Lockabl e concept, but rather than acquiring unique ownership
of the supplied Lockabl e object, locking an instance of boost : : shar ed_| ock acquires shared ownership.

Like boost : : uni que_I ock, not only does it provide for RAII-style locking, it also allows for deferring acquiring the lock until
thel ock() member function is called explicitly, or trying to acquire the lock in a non-blocking fashion, or with a timeout. Con-
sequently, unl ock() isonly caledinthe destructor if thelock object haslocked the Lockabl e object, or otherwise adopted alock
onthe Lockabl e object.

An instance of boost: :shared_| ock is said to own the lock state of a Lockabl e mif nut ex() returns a pointer to mand
owns_| ock() returnst r ue. If an object that ownsthelock state of aLockabl e object is destroyed, then the destructor will invoke
nmut ex() - >unl ock_shared() .

The member functions of boost : : shar ed_I ock are not thread-safe. In particular, boost : : shar ed_| ock isintended to model
the shared ownership of aLockabl e object by aparticular thread, and the member functions that release ownership of the lock state
(including the destructor) must be called by the same thread that acquired ownership of the lock state.

shared_| ock()

Effects: Creates alock object with no associated mutex.
Postcondition: owns_| ock() returnsf al se. mut ex() returns NULL.
Throws: Nothing.

34

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

shared_| ock(Lockable & m

Effects: Stores areferenceto m Invokesm | ock_shared().
Postcondition: owns_| ock() returnst rue. nut ex() returns &m
Throws: Any exception thrown by the call tom | ock_shar ed() .

shared_| ock(Lockabl e & m boost: : adopt _| ock_t)

Precondition: The current thread owns an exclusive lock on m

Effects: Stores areference to m Takes ownership of the lock state of m
Postcondition: owns_| ock() returnst rue. mut ex() returns &m

Throws: Nothing.

shared_| ock(Lockabl e & m boost::defer_|ock_t)

Effects: Stores areference tom
Postcondition: owns_| ock() returnsf al se. mut ex() returns &m
Throws: Nothing.

shared_| ock(Lockable & mboost::try to_lock_t)

Effects: Stores areferencetom Invokesm try_| ock_shar ed() , and takes ownership of the lock state if the call
returnstr ue.

Postcondition: mut ex() returns&m If thecal totry_| ock_shared() returnedt r ue, then owns_I ock() returnstr ue,
otherwise owns_I ock() returnsf al se.

Throws: Nothing.
shared_| ock(Lockabl e & m boost::systemtine const& abs_tine)

Effects: Stores areference to m Invokes m ti med_| ock(abs_ti ne), and takes ownership of the lock state if the
call returnst r ue.

Postcondition: mut ex() returns&m If thecall tot i med_| ock_shar ed() returnedt r ue, thenowns_I ock() returnstr ue,
otherwise owns_I ock() returnsf al se.

Throws: Any exceptions thrown by thecall tom ti med_| ock(abs_tine).
~shar ed_| ock()

Effects: Invokes nut ex() - > unl ock_shared() if owns_| ock() returnstrue.
Throws: Nothing.

bool owns_I| ock() const

Returns: true if the*t hi s ownsthelock onthe Lockabl e object associated with*t hi s.

Throws: Nothing.

35

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Lockabl e* nutex() const

Returns:

Throws;

A pointer to the Lockabl e object associated with *t hi s, or NULL if there is no such object.

Nothing.

oper ator unspeci fi ed-bool -type() const

Returns:

Throws:

If owns_

I ock() wouldreturntr ue, avaluethat evaluatesto t r ue in boolean contexts, otherwise a value that eval-

uatesto f al se in boolean contexts.

Nothing.

bool operator! () const

Returns:

Throws:

I owns_| ock().

Nothing.

Lockabl e* rel ease()

Effects:

Returns:

Throws:

Postcondition:

The association between *t hi s and the Lockabl e object isremoved, without affecting the lock state of the
Lockabl e object. If owns_| ock() would havereturned t r ue, it isthe responsibility of the calling code to
ensure that the Lockabl e is correctly unlocked.

A pointer to the Lockabl e object associated with *t hi s at the point of the call, or NULL if there is no such
object.

Nothing.

*t hi s isnolonger associated with any Lockabl e object. mut ex() returnsNULL and owns_| ock() returns
fal se.

36

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Class template upgr ade_| ock

#i ncl ude <boost/thread/| ocks. hpp>

t enpl at e<t ypenane Lockabl e>
cl ass upgrade_| ock

{
publi c:
explicit upgrade_|l ock(Lockabl e& m);
upgr ade_l ock(detail ::thread_nove_t <upgrade_| ock<Lockabl e> > ot her);
upgr ade_l ock(detail ::thread_nopve_t <uni que_| ock<Lockabl e> > ot her);
~upgr ade_|I ock();
operator detail::thread_nove_t <upgrade_| ock<Lockabl e> >();
detail ::thread_nove_t <upgrade_| ock<Lockabl e> > nove();
upgr ade_| ock& operator=(detail::thread_mnove_t <upgrade_| ock<Lockabl e> > ot her);
upgr ade_| ock& operator=(detail::thread_nove_t <uni que_| ock<Lockabl e> > other);
voi d swap(upgrade_| ock& ot her);
void | ock();
voi d unl ock();
oper at or unspeci fied-bool -type() const;
bool operator!() const;
bool owns_| ock() const;
b

Likeboost : : uni que_I ock, boost : : upgrade_| ock modelstheLockabl e concept, but rather than acquiring unique ownership
of the supplied Lockabl e object, locking an instance of boost : : upgr ade_| ock acquires upgrade ownership.

Like boost : : uni que_I ock, not only does it provide for RAII-style locking, it also allows for deferring acquiring the lock until
thel ock() member function is called explicitly, or trying to acquire the lock in a non-blocking fashion, or with a timeout. Con-
sequently, unl ock() isonly caled inthe destructor if thelock object haslocked the Lockabl e object, or otherwise adopted alock
onthe Lockabl e object.

An instance of boost : : upgrade_I ock is said to own the lock state of a Lockabl e mif nmut ex() returns a pointer to mand
owns_| ock() returnst r ue. If an object that ownsthelock state of aLockabl e object is destroyed, then the destructor will invoke
nmut ex() - >unl ock_upgr ade() .

The member functions of boost : : upgr ade_| ock are not thread-safe. In particular, boost : : upgr ade_| ock isintended to model
the upgrade ownership of aLockabl e object by a particular thread, and the member functions that release ownership of the lock
state (including the destructor) must be called by the same thread that acquired ownership of the lock state.

37

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Class template upgr ade_t o_uni que_| ock

#i ncl ude <boost/thread/| ocks. hpp>

tenpl ate <cl ass Lockabl e>
cl ass upgrade_t o_uni que_Il ock

{
publi c:
explicit upgrade_to_uni que_| ock(upgrade_| ock<Lockabl e>& m);
~upgr ade_t o_uni que_I ock() ;
upgrade_t o_uni que_l ock(detail ::thread_nove_t <upgrade_t o_uni que_I| ock<Lockabl e> > ot her);
upgr ade_t o_uni que_| ock& operator=(detail::thread_nove_t <upgrade_t o_uni que_I| ock<Lockabl e> > ot h[I
er);
voi d swap(upgrade_to_uni que_| ock& ot her);
oper at or unspeci fi ed-bool -type() const;
bool operator!() const;
bool owns_| ock() const;
b

boost : : upgrade_t o_uni que_| ock alows for a temporary upgrade of an boost : : upgrade_| ock to exclusive ownership.
When constructed with a reference to an instance of boost : : upgr ade_| ock, if that instance has upgrade ownership on some
Lockabl e object, that ownership is upgraded to exclusive ownership. When the boost : : upgr ade_t o_uni que_| ock instanceis
destroyed, the ownership of the Lockabl e is downgraded back to upgrade ownership.

Mutex-specific class scoped_try_l ock

cl ass Mut exType: : scoped_try_Il ock
{ .
private:
Mut exType: : scoped_try_| ock(Miut exType: : scoped_try_| ock<Mut exType>& ot her) ;
Mut exType: : scoped_try_| ock& operat or=(Mut exType: : scoped_try_| ock<Mut exType>& ot her) ;
public:
Mut exType: : scoped_try_l ock();
explicit MitexType::scoped_try_| ock(MitexType& m ;
Mut exType: : scoped_try_| ock(Miut exType& m_, adopt _| ock_t);
Mut exType: : scoped_try_| ock(Miut exType& m_, defer_lock_t);
Mut exType: : scoped_try_| ock(Mut exType& m_,try to_lock_t);

Mut exType: : scoped_try_| ock(Miut exType: : scoped_try_| ock<Mut exType>&& ot her) ;
Mut exType: : scoped_try_| ock& operat or=(Mit exType: : scoped_try_| ock<Miut exType>&& ot her);

voi d swap(Mut exType: : scoped_try_| ock&& ot her);

void | ock();

bool try_lock();

voi d unl ock();

bool owns_| ock() const;

Mut exType* mutex() const;
Mut exType* rel ease();
bool operator!() const;

t ypedef unspecified-bool -type bool _type;
oper ator bool _type() const;

38

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Themember typedef scoped_try_| ock isprovided for each distinct Mut ex Ty pe asatypedef to aclasswith the preceding definition.
The semantics of each constructor and member function areidentical to thoseof boost : : uni que_| ock<Mut ex Type> for the same
Mut ex Type, except that the constructor that takes a single referenceto amutex will call mtry_| ock() rather thanm | ock() .

Lock functions

Non-member function 1 ock(Lockabl e1, Lockabl e2, . . .)

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2>
voi d | ock(Lockabl el& | 1, Lockabl e2& | 2);

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenane Lockabl e3>
voi d | ock(Lockabl el& | 1, Lockabl e2& | 2, Lockabl e3& | 3);

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenane Lockabl e3, t ypename Lockabl e4>
voi d | ock(Lockabl el& | 1, Lockabl e2& | 2, Lockabl e3& | 3, Lockabl e4& 1 4);

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenanme Lockabl e3, t ypenane Lockabl e4, t ypenane Lock[

abl e5>

voi d | ock(Lockabl el& | 1, Lockabl e2& | 2, Lockabl e3& | 3, Lockabl e4& | 4, Lockabl e5& 15);

Effects:

Throws:

Postcondition:

Locksthe Lockabl e objects supplied as argumentsin an unspecified and indeterminate order in away that
avoids deadlock. It is safeto call this function concurrently from multiple threads with the same mutexes (or
other lockable objects) in different orders without risk of deadlock. If any of thel ock() ortry_I ock()
operations on the supplied Lockabl e objects throws an exception any locks acquired by the function will
be released before the function exits.

Any exceptions thrown by calling | ock() ortry_l ock() onthesupplied Lockabl e objects.

All the supplied Lockabl e objects are locked by the calling thread.

Non-member function 1 ock(begi n, end)

t enpl at e<t ypenane Forwardlterator>
voi d | ock(Forwardlterator begin, Forwardlterator end);

Preconditions:

Effects:

Throws:

Postcondition:

Theval ue_t ype of Forwar dl t er at or must implement the Lockabl e concept

Locks all the Lockabl e objects in the supplied range in an unspecified and indeterminate order in a way
that avoids deadlock. It issafeto call thisfunction concurrently from multiple threads with the same mutexes
(or other lockable objects) in different orders without risk of deadlock. If any of thel ock() ortry_| ock()
operations on the Lockabl e objects in the supplied range throws an exception any locks acquired by the
function will be released before the function exits.

Any exceptions thrown by calling | ock() ortry_Il ock() onthesupplied Lockabl e objects.

All the Lockabl e objectsin the supplied range are locked by the calling thread.

render

39

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Non-member function try_I ock(Lockabl e1, Lockabl e2, . . .)

t enpl at e<t ypenanme Lockabl el, t ypenanme Lockabl e2>
int try | ock(Lockablel& |1, Lockabl e2& |2);

t enpl at e<t ypenane Lockabl el, t ypenanme Lockabl e2, t ypenane Lockabl e3>
int try_ | ock(Lockablel& |1, Lockabl e2& | 2, Lockabl e3& | 3);

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenane Lockabl e3,typenane Lockabl e4>
int try_|ock(Lockabl el& |1, Lockabl e2& |2, Lockabl e3& | 3, Lockabl e4& 14);

t enpl at e<t ypenane Lockabl el, t ypenane Lockabl e2, t ypenane Lockabl e3, t ypenane Lockabl e4, t ypename LockO

abl e5>

int try_ | ock(Lockabl el& |1, Lockabl e2& | 2, Lockabl e3& | 3, Lockabl e4& |4, Lockabl e5& 15);

Effects:

Returns:

Throws:

Postcondition:

Callstry_l ock() oneachof theLockabl e objectssupplied asarguments. If any of thecallstot ry_I| ock()
returnsf al se then all locks acquired are released and the zero-based index of the failed lock is returned.

If any of thet ry_| ock() operationsonthesupplied Lockabl e objectsthrowsan exception any locksacquired
by the function will be released before the function exits.

-1 if al the supplied Lockabl e objects are now locked by the calling thread, the zero-based index of the
object which could not be locked otherwise.

Any exceptions thrown by callingtry_| ock() onthe supplied Lockabl e objects.

If the function returns- 1, all the supplied Lockabl e objects are locked by the calling thread. Otherwise any
locks acquired by this function will have been rel eased.

Non-member function try I ock(begi n, end)

t enpl at e<t ypenane Forwardlterator>
Forwardlterator try_ | ock(Forwardlterator begin, Forwardlterator end);

Preconditions:

Effects:

Returns:

Throws:

Postcondition:

Theval ue_t ype of Forwar dl t er at or must implement the Lockabl e concept

Calstry_I ock() oneachof theLockabl e objectsinthesupplied range. If any of thecallstot ry_I ock()
returnsf al se then all locks acquired are released and an iterator referencing the failed lock is returned.

If any of thet ry_| ock() operationsonthesupplied Lockabl e objectsthrowsan exception any locksacquired
by the function will be released before the function exits.

end if al the supplied Lockabl e objects are now locked by the calling thread, an iterator referencing the
object which could not be locked otherwise.

Any exceptions thrown by callingtry_| ock() onthe supplied Lockabl e objects.

If the function returns end then all the Lockabl e objects in the supplied range are locked by the calling
thread, otherwise all locks acquired by the function have been released.

render

40

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Mutex Types
Class mut ex

#i ncl ude <boost/thread/ mut ex. hpp>

cl ass nutex:
boost : : noncopyabl e

{
publi c:
nmut ex() ;
~mut ex() ;
void | ock();
bool try_lock();
voi d unl ock();

t ypedef platform specific-type native_handl e_type;
native_handl e_type native_handl e();

t ypedef uni que_l| ock<mut ex> scoped_| ock;
t ypedef unspecified-type scoped_try_| ock;

boost : : nut ex implementsthe Lockabl e concept to provide an exclusive-ownership mutex. At most one thread can own the lock
on agiven instance of boost : : nut ex at any time. Multiple concurrent callsto| ock(),try_Il ock() andunl ock() shall be per-
mitted.

Member function native_handl e()

typedef platform specific-type native_handl e_type;
native_handl e_type native_handl e();

Effects: Returnsaninstance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying implementation. If no such instance exists, nati ve_handl e() andnati ve_handl e_t ype are not present.

Throws: Nothing.

Typedef try_mitex

#i ncl ude <boost/t hread/ nut ex. hpp>

typedef nutex try_nutex;

boost::try_nutex isatypedef toboost: : mut ex, provided for backwards compatibility with previous releases of boost.

41

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Class ti med_nut ex

#i ncl ude <boost/thread/ mut ex. hpp>

class tined _nmutex:
boost : : noncopyabl e

{

publi c:
timed_mutex();
~timed_mutex();

void | ock();

voi d unl ock();

bool try_lock();

bool tined_|l ock(systemtine const & abs_tine);

t enpl at e<t ypenane Ti meDur ati on>
bool tinmed | ock(TineDuration const & relative tine);

t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type native_handl e();

t ypedef uni que_l ock<tined_nutex> scoped_ti nmed_| ock;

t ypedef unspecified-type scoped_try_| ock;
t ypedef scoped_timed_| ock scoped_| ock;

boost : : ti med_nut ex implements the Ti medLockabl e concept to provide an exclusive-ownership mutex. At most one thread
can own the lock on a given instance of boost : : ti med_nut ex at any time. Multiple concurrent callsto | ock(),try_Il ock(),
timed_l ock(),timed_| ock() andunl ock() shal be permitted.

Member function native_handl e()

t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type native_handl e();

Effects: Returnsan instance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying implementation. If no such instance exists, nati ve_handl e() andnati ve_handl e_t ype are not present.

Throws: Nothing.

42

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Class recursive_mutex

#i ncl ude <boost/thread/ recursive_mnutex. hpp>

cl ass recursive_mnutex:
boost : : noncopyabl e

{

publi c:
recursive_nutex();
~recursive_nutex();

void | ock();
bool try_lock();
voi d unl ock();

t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type native_handl e();

t ypedef uni que_l ock<recursive_nutex> scoped_| ock;
t ypedef unspecified-type scoped_try_| ock;

boost : : recur si ve_mut ex implements the Lockabl e concept to provide an exclusive-ownership recursive mutex. At most one
thread can own the lock on a given instance of boost : : recur si ve_nut ex at any time. Multiple concurrent calls to | ock(),
try_l ock() andunl ock() shall bepermitted. A thread that aready has exclusive ownership of agivenboost : : r ecur si ve_mut ex
instance can call | ock() ortry_l ock() toacquire an additional level of ownership of the mutex. unl ock() must be called once
for each level of ownership acquired by a single thread before ownership can be acquired by another thread.

Member function native_handl e()

t ypedef platform specific-type native_handl e_type;
nati ve_handl e_type native_handl e();

Effects: Returnsaninstance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying implementation. If no such instance exists, nati ve_handl e() andnati ve_handl e_t ype are not present.

Throws: Nothing.

Typed ef recursi ve_try_nmutex

#i ncl ude <boost/thread/recursive_mnutex. hpp>

typedef recursive_mutex recursive_try_nutex;

boost::recursive_try_mutex isatypedef toboost: : recursive_nut ex, provided for backwards compatibility with pre-
vious releases of boost.

43

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Class recursive_tinmed_nut ex

#i ncl ude <boost/thread/ recursive_mnutex. hpp>

class recursive_tined nutex:
boost : : noncopyabl e

{
publi c:
recursive_timed nutex();
~recursive_tinmed nmutex();
void | ock();
bool try_lock();
voi d unl ock();
bool tined_|l ock(systemtine const & abs_tine);
t enpl at e<t ypenane Ti meDur ati on>
bool tinmed | ock(TineDuration const & relative tine);
t ypedef platformspecific-type native_handl e_type;
nati ve_handl e_type native_handl e();
t ypedef uni que_l ock<recursive_timed_mutex> scoped_| ock;
t ypedef unspecified-type scoped_try_| ock;
t ypedef scoped_l ock scoped_timed_| ock;
b

boost : : recursi ve_ti med_nut ex implementsthe Ti medLockabl e concept to provide an exclusive-ownership recursive mutex.
At most one thread can own the lock on a given instance of boost : : recur si ve_t i ned_nut ex at any time. Multiple concurrent
calstol ock(),try_lock(),timed_l ock(),timed_|l ock() andunl ock() shal be permitted. A thread that already has ex-
clusive ownership of agiven boost : : recursi ve_ti med_nut ex instance can call | ock(),ti med_| ock(),timed_| ock() or
try_l ock() toacquire an additional level of ownership of the mutex. unl ock() must be called once for each level of ownership
acquired by asingle thread before ownership can be acquired by another thread.

Member function native_handl e()

t ypedef platformspecific-type native_handl e_type;
native_handl e_type native_handl e();

Effects: Returnsan instance of nat i ve_handl e_t ype that can be used with platform-specific APIs to manipul ate the under-
lying implementation. If no such instance exists, nati ve_handl e() andnati ve_handl e_t ype are not present.

Throws: Nothing.

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Class shared_mut ex

#i ncl ude <boost/thread/ shared_mnut ex. hpp>

cl ass shared_nut ex

{

publi c:
shared_mutex();
~shared_nutex();

voi d | ock_shared();

bool try_l ock_shared();

bool tinmed_|l ock_shared(systemtine const& timeout);
voi d unl ock_shared();

void | ock();

bool try_lock();

bool tined_|l ock(systemtinme const& timeout);
voi d unl ock();

voi d | ock_upgrade();
voi d unl ock_upgrade();

voi d unl ock_upgrade_and_| ock() ;

voi d unl ock_and_| ock_upgrade() ;

voi d unl ock_and | ock_shared();

voi d unl ock_upgrade_and_| ock_shared();

The class boost : : shar ed_nut ex provides an implementation of a multiple-reader / single-writer mutex. It implements the Up-
gr adeLockabl e concept.

Multiple concurrent calls to 1ock(), try_lock(), tined_lock(), lock_shared(), try_lock_shared() and
ti med_| ock_shar ed() shall be permitted.

Condition Variables

Synopsis

Theclassescondi ti on_vari abl e and condi ti on_vari abl e_any provide a mechanism for one thread to wait for notification
from another thread that a particular condition has become true. The general usage pattern is that one thread locks a mutex and then
callswai t on an instance of condi ti on_vari abl e or condi ti on_vari abl e_any. When the thread is woken from the wait,
then it checks to see if the appropriate condition is now true, and continues if so. If the condition is not true, then the thread then
callswai t again to resume waiting. In the simplest case, this condition isjust a boolean variable:

boost: : condition_variabl e cond;
boost : : nutex mut;

bool data_ready;

voi d process_data();

void wait_for_data_to_process()

{
boost: : uni que_Il ock<boost: : mutex> | ock(mut);
whi | e(! dat a_r eady)
{
cond. wai t (| ock) ;
}
process_data();
}

45

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Notice that thel ock ispassed towai t : wai t will atomically add the thread to the set of threads waiting on the condition variable,
and unlock the mutex. When the thread is woken, the mutex will be locked again before the call to wai t returns. This allows other
threads to acquire the mutex in order to update the shared data, and ensures that the data associated with the condition is correctly
synchronized.

In the mean time, another thread sets the condition to t r ue, and then calls either noti fy_one or noti fy_al | on the condition
variable to wake one waiting thread or all the waiting threads respectively.

void retrieve_data();
voi d prepare_data();

voi d prepare_data for_processing()

{
retrieve_data();
prepare_data();
{
boost: : | ock_guar d<boost:: nutex> | ock(nut);
dat a_ready=true;
}
cond. notify_one();
}

Note that the same mutex is locked before the shared data is updated, but that the mutex does not have to be locked across the call
tonotify_one.

This example uses an object of typecondi ti on_vari abl e, but would work just aswell with an object of typecondi ti on_vari -
abl e_any:condi ti on_vari abl e_any ismoregenera, and will work with any kind of lock or mutex, whereascondi ti on_vari -
abl e requires that the lock passed to wai t is an instance of boost : : uni que_| ock<boost : : mut ex>. This enables condi -
ti on_vari abl e to make optimizations in some cases, based on the knowledge of the mutex type; condi ti on_vari abl e_any
typically has a more complex implementation than condi ti on_vari abl e.

46

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Class condition_variabl e

#i ncl ude <boost/thread/ condition_variabl e. hpp>
namespace boost

{

class condition_variabl e

{

public:
condition_variable();
~condi tion_variable();

void notify_one();
void notify all();

voi d wait (boost: :uni que_l ock<boost: : nut ex>& | ock);

t enpl at e<t ypenane predi cate_type>
voi d wait (boost: :uni que_| ock<boost:: nutex>& | ock, predi cate_type predicate);

bool tined_wait (boost: : uni que_| ock<boost: : mutex>& | ock, boost::systemtine const& abs_tine);

t enpl at e<t ypenane duration_type>
bool tinmed_wait (boost:: unique_| ock<boost:: nutex>& | ock, duration_type const& rel _tine);

t enpl at e<t ypenane predi cate_type>
bool tinmed_wait (boost: :uni que_| ock<boost:: nmutex>& | ock, boost::sysl
temtime const& abs_tine, predicate_type predicate);
t enpl at e<t ypenane duration_type,typenane predicate_type>
bool tined_wait(boost: :unique_| ock<boost: :mutex>& | ock, duration_type const& rel _time, pred
di cate_type predicate);
/'l backwards conpatibility
bool tined_wait (boost:: unique_| ock<boost:: nmutex>& | ock, boost: : xtime const& abs_tinme);
t enpl at e<t ypenane predi cate_type>
bool timed_wait (boost::unique_| ock<boost:: nutex>& | ock, boost:: xtime const& abs_time, preld

di cate_type predicate);

}

condi tion_vari abl e()

Effects: Constructs an object of classcondi ti on_vari abl e.

Throws: boost::thread _resource_error if anerror occurs.

~condi ti on_vari abl e()

Precondition: All threadswaitingon*t hi s havebeennotifiedby acall tonoti fy_oneornotify_al | (thoughtherespective
callstowai t orti med_wai t need not have returned).

Effects: Destroys the object.

Throws: Nothing.

voi d notify_one()

Effects: If any threadsare currently blocked waitingon*t hi s inacall towai t orti med_wai t , unblocksone of thosethreads.

47

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Throws: Nothing.
void notify_all()

Effects: If any threads are currently blocked waiting on*t hi s inacall towai t orti med_wai t , unblocksall of thosethreads.

Throws: Nothing.
voi d wait (boost: : unique_| ock<boost: : mut ex>& | ock)

Precondition: I ock islocked by the current thread, and either no other thread is currently waitingon*t hi s, or the execution
of the nut ex() member function on the | ock objects supplied inthe callstowai t ortimed_wait inall
thethreads currently waiting on*t hi s would returnthe samevalueasl! ock- >nut ex() forthiscal towai t .

Effects: Atomically cal | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
calltot his->notify_one() orthis->notify_all(),orspuriousy. When thethread is unblocked (for
whatever reason), thelock isreacquired by invoking | ock. | ock() beforethecall towai t returns. Thelock
isalso reacquired by invoking | ock. | ock() if the function exits with an exception.

Postcondition: | ock islocked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost : : t hread_i nterrupt ed if the wait was
interrupted by acall toi nterrupt () ontheboost: : t hr ead object associated with the current thread of
execution.

t enpl at e<t ypenane predi cate_type> void wait (boost:: uni que_| ock<boost:: mutex>& | ock, predicate_type
pred)

Effects: Asif

while(!pred())
{

}

wai t (1 ock);

bool tinmed_wait(boost::uni que_| ock<boost:: nutex>& | ock, boost::systemtine const& abs_tine)

Precondition: I ock islocked by the current thread, and either no other thread is currently waitingon*t hi s, or the execution
of the nut ex() member function on the | ock objects supplied in the callstowai t orti med_wait inal
thethreads currently waiting on*t hi s would return the samevalueas! ock- >nut ex() forthiscal towai t .

Effects: Atomically call | ock. unl ock() and blocksthe current thread. The thread will unblock when notified by a
cal to this->notify _one() or this->notify_ all(), when the time as reported by
boost : : get _system ti me() would beequal to or later than the specified abs_t i me, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by invoking | ock. | ock() beforethe
call towai t returns. The lock isalso reacquired by invoking | ock. | ock() if the function exits with an ex-

ception.

Returns: f al se if thecall isreturning because the time specified by abs_t i me was reached, t r ue otherwise.

Postcondition: | ock islocked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost : : t hread_i nt errupt ed if the wait was
interrupted by acall toi nt errupt () ontheboost: : t hr ead object associated with the current thread of
execution.

48

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

t enpl at e<t ypenane duration_type> bool timed wait(boost:: unique_ | ock<boost:: mutex>& | ock, duration_type

const& rel _tine)

Precondition:

Effects:

Returns:

Postcondition:

Throws;

K

Note

I ock islocked by the current thread, and either no other thread is currently waitingon*t hi s, or the execution
of the nut ex() member function on the | ock objects supplied inthe callstowai t ortimed_wait inall
thethreads currently waiting on*t hi s would returnthe samevalueasl! ock- >nut ex() forthiscal towai t .

Atomically cal | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
caltot his->notify_one() orthis->notify_all(),aftertheperiodof timeindicated by therel _ti me
argument has el apsed, or spuriously. When the thread is unblocked (for whatever reason), thelock isreacquired
by invoking | ock. | ock() before the call to wait returns. The lock is also reacquired by invoking
I ock. | ock() if the function exits with an exception.

f al se if the call isreturning because the time period specified by r el _t i me has elapsed, t r ue otherwise.
| ock islocked by the current thread.

boost: :thread_resource_error if an error occurs. boost : : t hread_i nt er rupt ed if the wait was
interrupted by acall toi nterrupt () ontheboost: : t hr ead object associated with the current thread of
execution.

Theduration overload of timed_wait isdifficult to use correctly. The overload taking a predicate should be preferred
in most cases.

t enpl at e<t ypenane predicate_type> bool timed wait(boost:: unique_ | ock<boost:: nutex>& | ock,
boost::systemtinme const& abs_tine, predicate _type pred)

Effects:

Asif

while(!pred())
{

}

if(!'tinmed wait(lock,abs tinme))

{
}

return pred();

return true;

49

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Class condition_variabl e_any

#i ncl ude <boost/thread/ condition_variabl e. hpp>

namespace boost

{
cl ass condition_variabl e_any
{
public:
condi tion_variabl e_any();
~condi ti on_vari abl e_any();
void notify_one();
void notify_all();
t enpl at e<t ypenane | ock_t ype>
void wait(lock_type& | ock);
t enpl at e<t ypenane | ock_t ype, t ypenane predicate_type>
void wait(lock_type& | ock, predi cate_type predicate);
t enpl at e<t ypenane | ock_t ype>
bool tinmed_wait(lock_type& | ock, boost::systemtinme const& abs_tine);
t enpl at e<t ypenane | ock_type, typenanme duration_type>
bool tinmed_wait(lock_type& |ock,duration_type const& rel _tinme);
t enpl at e<t ypenane | ock_t ype, t ypenane predicate_type>
bool tined_wait(lock_type& | ock, boost::systemtime const& abs_time, predi cate_type predicO
ate);
t enpl at e<t ypenane | ock_type, t ypenane duration_type,typenane predi cate_type>
bool timed_wait(lock_type& | ock, duration_type const& rel _tine, predicate_type predicate);
/'l backwards conpatibility
t enpl at e<t ypenane | ock_t ype>
bool tinmed_wait(lock_type>& | ock, boost::xtinme const& abs_tine);
t enpl at e<t ypenane | ock_t ype, t ypenane predicate_type>
bool tined_wait(lock_type& | ock, boost::xtime const& abs_time, predi cate_type predicate);
b
}

condi tion_vari abl e_any()

Effects: Constructs an object of classcondi ti on_vari abl e_any.

Throws: boost::thread _resource_error if anerror occurs.

~condi ti on_vari abl e_any()

Precondition: All threadswaitingon*t hi s havebeennotifiedby acall tonoti fy_oneornotify_al | (thoughtherespective
callstowai t orti med_wai t need not have returned).

Effects: Destroys the object.

Throws: Nothing.

50

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

void notify one()

Effects: If any threads are currently blocked waitingon*t hi s inacall towai t orti med_wai t , unblocksone of thosethreads.

Throws: Nothing.

void notify_all()

Effects: If any threads are currently blocked waitingon*t hi s inacall towai t orti med_wai t , unblocksall of thosethreads.

Throws: Nothing.

tenpl at e<typenane | ock_type> void wait (Il ock_type& | ock)

Effects: Atomically cal | ock. unl ock() and blocks the current thread. The thread will unblock when notified by a
calltot his->notify_one() orthis->notify_all(),orspuriousy. When thethread is unblocked (for

whatever reason), thelock isreacquired by invoking | ock. | ock() beforethecall towai t returns. Thelock
isalso reacquired by invoking | ock. | ock() if the function exits with an exception.

Postcondition: | ock islocked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost : : t hread_i nterrupt ed if the wait was
interrupted by acall toi nterrupt () ontheboost: : t hr ead object associated with the current thread of
execution.

t enpl at e<t ypenane | ock_type, typenane predicate_type> void wait(lock _type& | ock, predicate_type
pred)

Effects: Asif

while(!pred())
{

}

wai t (1 ock);

tenpl at e<t ypenane | ock_type> bool tinmed_wait(lock type& |ock, boost::systemtine const& abs_tine)

Effects: Atomically cal | ock. unl ock() and blocksthe current thread. The thread will unblock when notified by a
cal to this->notify _one() or this->notify_ all(), when the time as reported by
boost : : get _system ti me() would beequal to or later than the specified abs_t i me, or spuriously. When
the thread is unblocked (for whatever reason), the lock is reacquired by invoking | ock. | ock() beforethe
call towai t returns. The lock isalso reacquired by invoking | ock. | ock() if the function exits with an ex-

ception.

Returns: f al se if the call isreturning because the time specified by abs_t i me was reached, t r ue otherwise.

Postcondition: | ock islocked by the current thread.

Throws: boost: :thread_resource_error if an error occurs. boost : : t hread_i nt er rupt ed if the wait was
interrupted by acall toi nterrupt () ontheboost: : t hr ead object associated with the current thread of
execution.

t enpl at e<t ypenane | ock_t ype, typenane duration_type> bool tined_wait(lock_type& | ock,duration_type
const& rel _tine)

Effects: Atomically cal | ock. unl ock() and blocksthe current thread. The thread will unblock when notified by a
cal tot hi s->notify_one() orthis->notify_all(),aftertheperiodof timeindicated by therel _ti me

51

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

argument has elapsed, or spuriously. When the thread is unblocked (for whatever reason), thelock isreacquired
by invoking | ock. | ock() before the call to wait returns. The lock is aso reacquired by invoking
I ock. | ock() if the function exits with an exception.

Returns: f al se if thecall isreturning because the time period specified by rel _ti me has elapsed, t r ue otherwise.

Postcondition: | ock islocked by the current thread.

Throws: boost::thread_resource_error if an error occurs. boost : : t hread_i nterrupt ed if the wait was
interrupted by acall toi nterrupt () ontheboost: : t hr ead object associated with the current thread of
execution.

S Note
Theduration overload of timed_wait isdifficult to use correctly. The overload taking a predicate should be preferred
in most cases.

t enpl at e<t ypenane | ock_type, typenane predicate_type> bool tined_wait(lock_type& | ock, boost::sys-
temtime const& abs_tinme, predicate_type pred)

Effects: Asif

while(!pred())
{

if(!'tinmed_wait(lock, abs_tine))

{
}

return pred();

}

return true;

Typedef condition

#i ncl ude <boost/thread/ condition. hpp>

t ypedef condition_variabl e_any condition;
The typedef condi t i on isprovided for backwards compatibility with previous boost releases.

One-time Initialization

boost : : cal | _once provides a mechanism for ensuring that an initialization routine is run exactly once without data races or
deadlocks.

Typedef once_fiag

#i ncl ude <boost/thread/ once. hpp>

typedef platform specific-type once_fl ag;
#define BOOST_ONCE_INIT platformspecific-initializer

Objects of type boost : : once_f | ag shal beinitialized with BOOST_ONCE_I NI T:

boost: :once_flag f=BOOST_ONCE_I| NI T;

52

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Non-member function cal 1 _once

#i ncl ude <boost/thread/ once. hpp>

t enpl at e<t ypenane Cal | abl e>
void call _once(once_flag& flag, Cal |l abl e func);

Requires:

Effects:

Synchronization:

Throws:

Note:

Cal | abl e is CopyConst ruct i bl e. Copying f unc shall have no side effects, and the effect of calling
the copy shall be equivalent to calling the original.

Callsto cal I _once on the same once_f | ag object are serialized. If there has been no prior effective
cal | _once onthesameonce_f | ag object, the argument f unc (or a copy thereof) is called as-if by in-
voking f unc() , and the invocation of cal | _once iseffective if and only if f unc() returns without ex-
ception. If an exception isthrown, the exception is propagated to the caller. If there hasbeen aprior effective
cal | _once onthesameonce_f | ag object, thecal | _once returns without invoking f unc.

The completion of an effective cal | _once invocation on aonce_f | ag object, synchronizes with all
subsequent cal | _once invocations on the sameonce_f | ag object.

t hread_r esour ce_er r or whenthe effects cannot be achieved. or any exception propagated fromf unc.

The function passed to cal | _once must not also call cal | _once passing the same once_f | ag object.
This may cause deadlock, or invoking the passed function a second time. The alternative is to allow the
second call to return immediately, but that assumes the code knowsit has been called recursively, and can
proceed even though the call to cal | _once didn't actually call the function, in which case it could also
avoid calling cal | _once recursively.

void call _once(void (*func)(),once_flag& flag);

This second overload is provided for backwards compatibility. The effects of cal | _once(func, f1 ag) shal be the same as those
of cal | _once(fl ag, func).

Barriers

A barrier is a simple concept. Also known as a rendezvous, it is a synchronization point between multiple threads. The barrier is
configured for a particular number of threads (n), and as threads reach the barrier they must wait until al n threads have arrived.
Once the n-th thread has reached the barrier, al the waiting threads can proceed, and the barrier is reset.

Class barrier

#i ncl ude <boost/thread/ barrier. hpp>

class barrier

barrier(unsigned int count);

{

public:
~barrier();
bool wait();

}

Instances of boost : : barri er arenot copyable or movable.

53

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Constructor

barrier(unsigned int count);

Effects: Construct a barrier for count threads.
Throws: boost::thread_resource_error if anerror occurs.
Destructor
~barrier();
Precondition: No threads are waiting on *t hi s.
Effects: Destroys*t hi s.
Throws: Nothing.

Member function wai t

bool wait();

Effects: Block until count threads have calledwai t on*t hi s. When the count -th thread callswai t , all waiting threads are
unblocked, and the barrier is reset.

Returns: t r ue for exactly one thread from each batch of waiting threads, f al se otherwise.

Throws: boost: :thread_resource_error if anerror occurs.

Futures

Overview

The futures library provides a means of handling synchronous future values, whether those values are generated by another thread,
or on asingle thread in response to external stimuli, or on-demand.

This is done through the provision of four class templates: boost : : uni que_f ut ur e and boost : : shar ed_f ut ur e which are
used to retrieve the asynchronous results, and boost : : proni se and boost : : packaged_t ask which are used to generate the
asynchronous results.

Aninstanceof boost : : uni que_f ut ur e holdsthe oneand only referenceto aresult. Ownership can betransferred between instances
using the move constructor or move-assignment operator, but at most one instance holds a reference to a given asynchronous result.
When the result is ready, it is returned from boost : : uni que_f ut ur e<R>: : get () by rvalue-reference to allow the result to be
moved or copied as appropriate for the type.

On the other hand, many instances of boost : : shar ed_f ut ur e may reference the same result. Instances can be freely copied and
assigned, and boost : : shar ed_f ut ure<R>: : get () returns aconst reference so that multiple calls to boost : : shar ed_f u-
tur e<R>: : get () aresafe. You can move aninstance of boost : : uni que_f ut ur e into aninstance of boost : : shared_future,
thus transferring ownership of the associated asynchronous result, but not vice-versa.

You canwait for futureseither individually or with oneof theboost : : wai t _for_any() andboost::wait_for_all () functions.
Creating asynchronous values
You can set the value in a future with either aboost : : proni se or aboost : : packaged_t ask. A boost : : packaged_t ask is

a callable object that wraps a function or callable object. When the packaged task is invoked, it invokes the contained function in
turn, and popul ates afuture with the return value. Thisisan answer to the perennial question: "how do | return avalue from athread?":

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

package thefunction youwishtorunasaboost : : packaged_t ask and passthe packaged task to the thread constructor. Thefuture
retrieved from the packaged task can then be used to obtain the return value. If the function throws an exception, that is stored in the
future in place of the return value.

int calculate_the_answer_to_l|ife_the_universe_and_everything()

{
}

return 42;

boost : : packaged_t ask<i nt> pt(cal cul ate_the_answer_to_l|ife_the_universe_and_everything);
boost: :unique_future<int> fi=pt.get_future();

boost::thread task(boost::move(pt)); // launch task on a thread
fi.wait(); // wait for it to finish

assert(fi.is_ready());

assert (fi.has_value());

assert(!fi.has_exception());

assert(fi.get_state()==boost::future_state::ready);
(

fi
assert (fi.get()==42);

A boost : : proni se isabit morelow level: it just providesexplicit functionsto store aval ue or an exception in the associated future.
A promise can therefore be used where the value may come from more than one possible source, or where a single operation may
produce multiple values.

boost: : prom se<int> pi;
boost: :unique_future<int> fi;
fi=pi.get_future();

pi . set_val ue(42);

assert(fi.is_ready());

assert (fi.has_value());

assert (! fi.has_exception());
assert(fi.get_state()==boost::future_state::ready);
assert (fi.get()==42);

Wait Callbacks and Lazy Futures

Both boost : : proni se and boost : : packaged_t ask support wait callbacks that are invoked when athread blocks in a call to
wai t () ortimed_wait () onafuturethat iswaiting for the result from the boost : : promni se or boost : : packaged_t ask, in
the thread that is doing the waiting. These can be set usingtheset _wai t _cal | back() member function ontheboost : : proni se
or boost : : packaged_t ask in question.

This allows lazy futures where the result is not actually computed until it is needed by some thread. In the example below, the call
tof. get () invokesthecallback i nvoke_l azy_t ask, which runsthe task to set the value. If you removethecall tof . get (), the
task is not ever run.

55

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

int calculate_the_answer_to_|ife_the_universe_and_everything()

{
return 42;
}
voi d i nvoke_l azy_t ask(boost: : packaged_t ask<i nt >& t ask)
{
try
{
task();
}
catch(boost::task_al ready_started&)
{}
}
int main()
{
boost : : packaged_t ask<i nt> task(cal cul ate_the_answer_to_life_the_universe_and_everything);
task. set _wait_cal |l back(invoke_l azy_task);
boost: :unique_future<int> f(task.get _future());
assert (f.get()==42);
}

Futures Reference

state enum

nanmespace future_state

{
}

enum state {uninitialized, waiting, ready};

56

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

uni que_future class template

tenpl ate <typenane R>
cl ass uni que_future
{
uni que_future(unique_future & rhs);// = delete;
uni que_future& operator=(unique_future& rhs);// = delete;

public:
typedef future_state::state state;

uni que_future();
~uni que_future();

/1l nove support
uni que_future(uni que_future && other);
uni que_f uture& operator=(uni que_future && other);

voi d swap(uni que_future& other);

/'l retrieving the val ue
R&& get () ;

/1 functions to check state
state get_state() const;
bool is_ready() const;

bool has_exception() const;
bool has_val ue() const;

/1 waiting for the result to be ready

void wait() const;

t enpl at e<t ypenane Durati on>

bool tinmed wait(Duration const& rel tinme) const;

bool tinmed_wait_until (boost::systemtime const& abs_tine) const;

I
Default Constructor

uni que_future();

Effects: Constructs an uninitialized future.

Postconditions: t hi s->i s_ready returnsf al se.t hi s->get _state() returnsboost::future_state::uninitial-
i zed.

Throws: Nothing.

Destructor

~uni que_future();

Effects: Destroys*t hi s.

Throws: Nothing.

57

render
> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Move Constructor

uni que_future(uni que_future && other);

Effects:

Postconditions:

Throws:

Notes:

Constructs a new future, and transfers ownership of the asynchronous result associated with ot her to
*t hi s.

t hi s- >get _st at e() returnsthevalueof ot her - >get _st at e() priortothecall. ot her - >get _st at e()
returnshoost : : future_state::uninitialized.lIf ot her wasassociated with an asynchronousresult,
that result is now associated with *t hi s. ot her isnot associated with any asynchronous result.

Nothing.

If the compiler does not support rvalue-references, thisisimplemented using the boost.thread move emulation.

Move Assighment Operator

uni que_future& operator=(uni que_future && other);

Effects:

Postconditions:

Throws:

Notes:

Transfers ownership of the asynchronous result associated with ot her to*t hi s.

t hi s->get _st at e() returnsthevalueof ot her - >get _st at e() priortothecall. ot her - >get _st at e()
returnsboost : : future_state: : uninitialized.If ot her wasassociated with an asynchronousresult,
that result is now associated with *t hi s. ot her is not associated with any asynchronous result. If *t hi s
was associated with an asynchronous result prior to the call, that result no longer has an associated
boost : : uni que_f ut ur e instance.

Nothing.

If the compiler does not support rvalue-references, thisisimplemented using the boost.thread move emulation.

Member function swap()

voi d swap(uni que_future & other);

Effects:

Postconditions:

Throws:

Swaps ownership of the asynchronous results associated with ot her and *t hi s.

t hi s- >get _st at e() returnsthevalueof ot her - >get _st at e() priortothecall. ot her - >get _st at e()

returnsthevalue of t hi s- >get _st at e() prior tothecall. If ot her was associated with an asynchronous
result, that result is now associated with *t hi s, otherwise *t hi s has no associated result. If *t hi s was
associated with an asynchronous result, that result is now associated with ot her , otherwise ot her hasno
associated result.

Nothing.

Member function get ()

R&& get () ;

R& uni que_future<R&>: :get();
voi d uni que_future<voi d>::get();

Effects:

Returns:

If *thi s is associated with an asynchronous result, waits until the result is ready as-if by a call to
boost : : uni que_f ut ure<R>: : wai t (), and retrievestheresult (whether that isavalue or an exception).

If theresult type Risareference, returnsthe stored reference. If Risvoi d, thereisno return value. Otherwise,
returns an rvalue-reference to the value stored in the asynchronous result.

58

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Postconditions: thi s->i s_ready() returnstrue.this->get _state() returnsboost::future_state: :ready.

Throws: boost::future_uninitialized if *this is not associated with an asynchronous result.
boost : : t hread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the cal,
and the current thread is interrupted. Any exception stored in the asynchronous result in place of avalue.

Notes: get () isaninterruption point.

Member function wai t ()

void wait();
Effects: If *t hi s isassociated with an asynchronous result, waits until the result is ready. If the result is not ready
on entry, and the result has await callback set, that callback isinvoked prior to waiting.

Throws: boost::future_uninitialized if *this is not associated with an asynchronous result.
boost : : t hread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the call,
and the current thread isinterrupted. Any exception thrown by thewait callback if such acallback is called.

Postconditions: this->i s_ready() returnstrue.t his->get state() returnsboost:: future_state::ready.
Notes: wai t () isaninterruption point.

Member function ti med_wai t ()

t enpl at e<t ypenane Duration>
bool tinmed_wait (Duration const& wait_duration);

Effects: If *t hi s isassociated with an asynchronous result, waits until the result is ready, or the time specified by
wai t _dur ati on haselapsed. If theresult is not ready on entry, and the result has await callback set, that
callback isinvoked prior to waiting.

Returns: true if *t hi s isassociated with an asynchronous result, and that result is ready before the specified time
has elapsed, f al se otherwise.

Throws: boost::future_uninitialized if *this is not associated with an asynchronous result.
boost : : t hread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the cal,
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback iscalled.

Postconditions: If this call returned true, then this->i s _ready() retunstrue and t hi s->get _state() returns
boost::future_state::ready.

Notes: timed_wait () isaninterruption point. Dur at i on must be a type that meets the Boost.DateTime time
duration requirements.

Member function ti med_wai t ()

bool tined_wait(boost::systemtine const& wait_tineout);

Effects: If *t hi s isassociated with an asynchronous result, waits until the result isready, or the time point specified
by wai t _ti neout haspassed. If the result is not ready on entry, and the result has await callback set, that
callback isinvoked prior to waiting.

Returns: true if *t hi s isassociated with an asynchronous result, and that result is ready before the specified time
has passed, f al se otherwise.

59

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Throws: boost::future_uninitialized if *this is not associated with an asynchronous result.
boost : : thread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the call,
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback iscalled.

Postconditions: If this call returned true, then t hi s->i s_ready() returnstrue and t hi s->get _state() returns
boost::future_state::ready.

Notes: timed_wait () isaninterruption point.

Member function i s_ready()

bool is_ready();

Effects: Checksto see if the asynchronous result associated with *t hi s is set.
Returns: true if *t hi s isassociated with an asynchronous result, and that result is ready for retrieval, f al se otherwise.
Throws: Nothing.

Member function has_val ue()

bool has_val ue();

Effects: Checks to seeif the asynchronous result associated with *t hi s is set with avalue rather than an exception.

Returns: true if *t hi s is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
valug, f al se otherwise.

Throws: Nothing.

Member function has_excepti on()

bool has_exception();

Effects: Checksto see if the asynchronous result associated with *t hi s is set with an exception rather than avalue.

Returns: true if *t hi s is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
exception, f al se otherwise.

Throws: Nothing.

Member function get _state()

future_state::state get_state();

Effects: Determine the state of the asynchronous result associated with *t hi s, if any.

Returns: boost::future_state::uninitializedif*this isnotassociated with an asynchronous result. boost : : f u-
ture_state::ready if the asynchronous result associated with *thi s is ready for retrieval, boost: : fu-
ture_state::waiting otherwise.

Throws: Nothing.

60

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

shared_future class template

tenpl ate <typenane R>
class shared future

{
publi c:
typedef future_state::state state;
shared future();
~shared future();
/'l copy support
shared future(shared future const& other);
shared_f uture& operator=(shared_future const& other);
/'l nove support
shared future(shared future && other);
shared_f ut ure(uni que_future<R> && other);
shared_future& operator=(shared_future && other);
shared_f ut ure& operator=(uni que_future<R> && ot her);
voi d swap(shared_future& other);
/'l retrieving the val ue
R get();
/1 functions to check state, and wait for ready
state get_state() const;
bool is_ready() const;
bool has_exception() const;
bool has_val ue() const;
/1 waiting for the result to be ready
void wait() const;
t enpl at e<t ypenane Durati on>
bool tinmed wait(Duration const& rel tinme) const;
bool tinmed_wait_until (boost::systemtime const& abs_tine) const;
b

Default Constructor

shared_future();

Effects: Constructs an uninitialized future.

Postconditions: t hi s->i s_ready returnsf al se.t hi s->get _stat e() returnsboost::future_state::uninitial-
i zed.

Throws: Nothing.

Member function get ()

const R& get();

Effects: If *this is associated with an asynchronous result, waits until the result is ready as-if by a cal to
boost : : shared_future<R>::wait(),andreturnsaconst reference to the result.

Returns: If theresult type Risareference, returnsthe stored reference. If Risvoi d, thereisno return value. Otherwise, returns
aconst reference to the value stored in the asynchronous result.

61

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Throws: boost::future_uninitializedif*this isnotassociated with an asynchronous result. boost : : t hread_i n-
t er r upt ed if theresult associated with * t hi s isnot ready at the point of the call, and the current thread isinterrupted.

Notes: get () isaninterruption point.

Member function wai t ()

void wait();
Effects: If *t hi s isassociated with an asynchronous result, waits until the result is ready. If the result is not ready
on entry, and the result has await callback set, that callback isinvoked prior to waiting.

Throws: boost::future_uninitialized if *this is not associated with an asynchronous result.
boost : : thread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the call,
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback iscalled.

Postconditions: this->i s_ready() returnstrue.this->get_state() returnsboost:: future_state: :ready.
Notes: wai t () isaninterruption point.

Member function ti ned_wai t ()

t enpl at e<t ypenane Durati on>
bool tinmed_wait(Duration const& wait_duration);

Effects: If *t hi s isassociated with an asynchronous result, waits until the result is ready, or the time specified by
wai t _dur ati on has elapsed. If the result is not ready on entry, and the result has await callback set, that
callback is invoked prior to waiting.

Returns: true if *t hi s isassociated with an asynchronous result, and that result is ready before the specified time
has elapsed, f al se otherwise.

Throws: boost::future_uninitialized if *this is not associated with an asynchronous result.
boost : : thread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the call,
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback iscalled.

Postconditions: If this call returned true, then t hi s->i s_ready() returnstrue and t hi s->get _state() returns
boost::future_state::ready.

Notes: timed_wait () isaninterruption point. Dur at i on must be a type that meets the Boost.DateTime time
duration requirements.

Member function ti ned_wai t ()

bool tined_wait(boost::systemtine const& wait_tineout);

Effects: If *t hi s isassociated with an asynchronous result, waits until the result isready, or the time point specified
by wai t _ti neout haspassed. If the result is not ready on entry, and the result has await callback set, that
callback is invoked prior to waiting.

Returns: true if *t hi s isassociated with an asynchronous result, and that result is ready before the specified time
has passed, f al se otherwise.

Throws: boost::future_uninitialized if *this is not associated with an asynchronous result.
boost: : thread_i nt errupt ed if the result associated with *t hi s is not ready at the point of the call,
and the current thread is interrupted. Any exception thrown by the wait callback if such a callback iscalled.

62

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Postconditions: If this call returned true, then t hi s->i s _ready() returnstrue and t hi s- >get _state() returns
boost::future_state::ready.

Notes: timed_wait () isaninterruption point.

Member function i s_ready()

bool is_ready();

Effects: Checksto seeif the asynchronous result associated with *t hi s is set.
Returns: true if *t hi s isassociated with an asynchronous result, and that result is ready for retrieval, f al se otherwise.
Throws: Nothing.

Member function has_val ue()

bool has_val ue();

Effects: Checksto see if the asynchronous result associated with * t hi s is set with avalue rather than an exception.

Returns: true if *t hi s is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
value, f al se otherwise.

Throws: Nothing.

Member function has_excepti on()

bool has_exception();

Effects: Checks to seeif the asynchronous result associated with *t hi s is set with an exception rather than avalue.

Returns: true if *t hi s is associated with an asynchronous result, that result is ready for retrieval, and the result is a stored
exception, f al se otherwise.

Throws: Nothing.

Member function get _state()

future_state::state get_state();

Effects: Determine the state of the asynchronous result associated with *t hi s, if any.

Returns: boost::future_state::uninitializedif*this isnotassociated with an asynchronous result. boost : : f u-
ture_state::ready if the asynchronous result associated with *this is ready for retrieval, boost: : fu-
ture_state::waiting otherwise.

Throws: Nothing.

63

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

proni se class template

tenpl ate <typenane R>
cl ass prom se

{

prom se(promise & rhs);// = delete;
prom se & operator=(promse & rhs);// = delete;
public:
/'l template <class Allocator> explicit promnise(Allocator a);

prom se();
~prom se();

/1 Move support

prom se(pronise & rhs);

prom se & operator=(prom se&& rhs);

voi d swap(prom se& ot her);

/1 Result retrieval

uni que_future<R> get _future();

/1 Set the val ue

void set_value(R& r);

void set value(R&& r);

voi d set _exception(boost::exception_ptr e);

t enpl at e<t ypenane F>
void set_wait_call back(F f);

Default Constructor

prom se();

Effects: Constructs anew boost : : pr oni se with no associated resullt.
Throws: Nothing.

Move Constructor

prom se(prom se && other);

Effects: Constructs anew boost : : pr oni se, and transfers ownership of the result associated with ot her to *t hi s, leaving
ot her with no associated result.

Throws: Nothing.
Notes: If the compiler does not support rvalue-references, thisisimplemented using the boost.thread move emulation.

Move Assignment Operator

prom se& operator=(prom se & other);

Effects: Transfers ownership of the result associated with ot her to *t hi s, leaving ot her with no associated result. If there
was already aresult associated with *t hi s, and that result was not ready, sets any futures associated with that result
toready with aboost : : br oken_pr oni se exception as the result.

Throws: Nothing.

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Notes: If the compiler does not support rvalue-references, thisisimplemented using the boost.thread move emulation.
Destructor

~prom se();
Effects: Destroys*t hi s. If there was aresult associated with *t hi s, and that result is not ready, sets any futures associated

with that task to ready with aboost : : br oken_pr oni se exception as the result.
Throws: Nothing.

Member Function get _future()

uni que_future<R> get_future();

Effects: If *t hi s was not associated with aresult, allocate storage for a new asynchronous result and associate it with * t hi s.
Returnsaboost : : uni que_f ut ur e associated with the result associated with *t hi s.

Throws: boost::future_already_retrieved if the future associated with the task has already been retrieved.
st d: : bad_al | oc if any memory necessary could not be allocated.

Member Function set _val ue()

void set value(R&& r);

voi d set _value(const R& r);

voi d prom se<R&>::set_value(R& r);
voi d promni se<voi d>::set_val ue();

Effects: If *t hi s was not associated with a result, allocate storage for a new asynchronous result and associate it
with *t hi s. Store the value r in the asynchronous result associated with *t hi s. Any threads blocked
waiting for the asynchronous result are woken.

Postconditions: All futureswaiting on the asynchronousresult areready and boost : : uni que_f ut ur e<R>: : has_val ue()
or boost : : shared_f ut ure<R>: : has_val ue() for those futures shal returnt r ue.

Throws: boost::prom se_already_satisfied if the result associated with *this is already ready.
st d: : bad_al | oc if the memory required for storage of the result cannot be allocated. Any exception
thrown by the copy or move-constructor of R.

Member Function set _excepti on()

voi d set_exception(boost::exception_ptr e);

Effects: If *t hi s was not associated with a result, allocate storage for a new asynchronous result and associate it
with *t hi s. Store the exception e in the asynchronous result associated with *t hi s. Any threads blocked
waiting for the asynchronous result are woken.

Postconditions: All futureswaiting on the asynchronousresult areready and boost : : uni que_f ut ur e<R>: : has_excep-
tion() orboost::shared_future<R>::has_exception() for thosefuturesshall returntr ue.

Throws: boost:: prom se_al ready_satisfied if the result associated with *this is already ready.
st d: : bad_al | oc if the memory required for storage of the result cannot be allocated.

65

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Member Function set _wai t _cal | back()

t enpl at e<t ypenane F>
void set_wait_call back(F f);

Preconditions: The expression f (t) wheret isalvalue of type boost : : pr oni se shall be well-formed. Invoking a copy
of f shall have the same effect asinvoking f

Effects: Store a copy of f with the asynchronous result associated with *t hi s as await callback. This will replace
any existing wait callback store alongside that result. If athread subsequently calls one of the wait functions
on aboost: : uni que_future or boost::shared_future associated with this result, and the result is
not ready, f (*t hi s) shall beinvoked.

Throws: std: : bad_al I oc if memory cannot be allocated for the required storage.

packaged_t ask class template

t enpl at e<t ypenane R>
cl ass packaged_t ask
{
packaged_t ask(packaged_t ask&);// = del ete;
packaged_t ask& oper at or =(packaged_t ask&);// = del ete;

public:
/'l construction and destruction
tenpl ate <cl ass F>
explicit packaged_task(F consté& f);

explicit packaged_task(R(*f)());

tenpl ate <cl ass F>
explicit packaged_task(F&& f);

/'l tenmplate <class F, class Allocator>

/1 explicit packaged task(F const& f, Allocator a);
/'l tenplate <class F, class Allocator>

/'l explicit packaged_ task(F&& f, Allocator a);

~packaged_t ask()
{}

/1l move support
packaged_t ask(packaged_t ask&& ot her);
packaged_t ask& oper at or =(packaged_t ask&& ot her) ;

voi d swap(packaged_t ask& ot her);
/1 result retrieval
uni que_future<R> get _future();

/'l execution
voi d operator()();

t enpl at e<t ypenane F>
void set_wait_call back(F f);

66

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Task Constructor

t enpl at e<t ypenane F>
packaged_t ask(F const &f);

packaged_task(R(*f)());

t enpl at e<t ypenane F>
packaged_t ask(F&&f) ;

Preconditions: f () isavalid expression with a return type convertible to R. Invoking a copy of f shall behave the same as
invoking f .

Effects: Constructsanew boost : : packaged_t ask with acopy of f stored as the associated task.

Throws: Any exceptionsthrown by the copy (or move) constructor of f . st d: : bad_al | oc if memory for theinternal

data structures could not be allocated.

Move Constructor

packaged_t ask(packaged_t ask && other);

Effects: Constructs a new boost : : packaged_t ask, and transfers ownership of the task associated with ot her to *t hi s,
leaving ot her with no associated task.

Throws: Nothing.
Notes: If the compiler does not support rvalue-references, thisisimplemented using the boost.thread move emulation.

Move Assighment Operator

packaged_t ask& operat or =(packaged_t ask && ot her);

Effects: Transfers ownership of the task associated with ot her to*t hi s, leaving ot her with no associated task. If there was
aready atask associated with *t hi s, and that task has not been invoked, sets any futures associated with that task to
ready with aboost : : br oken_pr oni se exception as the result.

Throws: Nothing.
Notes: If the compiler does not support rvalue-references, thisisimplemented using the boost.thread move emulation.

Destructor

~packaged_t ask() ;

Effects: Destroys*t hi s. If there was atask associated with * t hi s, and that task has not been invoked, sets any futures asso-
ciated with that task to ready with aboost : : br oken_pr oni se exception as the result.

Throws: Nothing.

Member Function get _future()

uni que_future<R> get_future();

Effects: Returns aboost : : uni que_f ut ur e associated with the result of the task associated with *t hi s.

67

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Throws: boost : : task_noved if ownership of the task associated with *t hi s has been moved to another instance of
boost : : packaged_t ask.boost: : future_al ready_retrieved if thefutureassociated with thetask has already
been retrieved.

Member Function operat or () ()

voi d operator()();

Effects:

Postconditions:

Throws:

Invoke the task associated with *t hi s and store the result in the corresponding future. If the task returns
normally, the return value is stored as the asynchronous result, otherwise the exception thrown is stored.
Any threads blocked waiting for the asynchronous result associated with this task are woken.

All futures waiting on the asynchronous result are ready

boost : : t ask_noved if ownership of the task associated with *t hi s has been moved to another instance
of boost : : packaged_t ask. boost : : task_al ready_st art ed if the task has already been invoked.

Member Function set _wai t _cal | back()

t enpl at e<t ypenane F>
voi d set_wait_cal | back(F f);

Preconditions:

Effects:

Throws:

The expressionf (t) wheret isalvalue of typeboost : : packaged_t ask shall be well-formed. Invoking
acopy of f shall have the same effect as invoking f

Store acopy of f with the task associated with *t hi s asawait callback. Thiswill replace any existing wait
callback store alongside that task. If a thread subsequently calls one of the wait functions on a
boost : : uni que_f ut ure orboost : : shared_f ut ur e associated with thistask, and the result of the task
isnot ready, f (*t hi s) shall beinvoked.

boost : : t ask_noved if ownership of the task associated with *t hi s has been moved to another instance
of boost : : packaged_t ask.

Non-member function wait_for_any()

t enpl at e<t ypenane |terator>
Iterator wait_for_any(lterator begin, Iterator end);

t enpl at e<t ypenane F1,typename F2>
unsi gned wait _for_any(Fl& f1, F2& f2);

tenpl at e<t ypenane F1,typenane F2,typenanme F3>
unsi gned wait_for_any(Fl& f1, F2& f2, F3& f3);

t enpl at e<t ypenanme F1,typenanme F2,typenane F3,typenane F4>
unsi gned wait_for_any(F1& f1, F2& f2, F3& f3, F4& f4);

tenpl at e<t ypenane F1,typenanme F2,typenane F3,typenane F4,typenanme F5>
unsi gned wait_for_any(Fl& f1, F2& f2, F3& f3, F4& f4, F5& f5);

Preconditions:

Effects:

The types Fn shall be speciaizations of boost: : uni que_future or boost::shared_future, and
Iterator shal be a forward iterator with a value_type which is a specidization of
boost: : uni que_future orboost::shared_future.

Waits until at least one of the specified futuresis ready.

68

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Returns: The range-based overload returnsan | t er at or identifying the first future in the range that was detected as
ready. The remaining overloads return the zero-based index of the first future that was detected as ready
(first parameter => 0, second parameter => 1, etc.).

Throws: boost :: thread_i nterrupted if the current thread is interrupted. Any exception thrown by the wait
callback associated with any of the futures being waited for. st d: : bad_al | oc if memory could not be a-
located for the internal wait structures.

Notes: wai t _for_any() isaninterruption point.

Non-member function wait for_all ()

t enpl at e<t ypenane |terator>
void wait_for_all(lterator begin,lterator end);

t enpl at e<t ypenane F1,typenane F2>
void wait_for_all (Fl& f1, F2& f2);

t enpl at e<t ypenane F1,typenane F2,typename F3>
void wait_for_all (Fl& f1, F2& f2, F3& f3);

t enpl at e<t ypenanme F1,typename F2,typenane F3,typenane F4>
void wait_for_all (Fl& f1, F2& f2,F3& f3,F4& f4);

tenpl at e<t ypenane F1,typenane F2,typenane F3,typenane F4,typename F5>
void wait_for_all (F1& f1, F2& f2, F3& f3, F4& f4, F5& f5);

Preconditions: The types Fn shall be speciaizations of boost: : uni que_future or boost::shared_future, and
Iterator shal be a forward iterator with a value_type which is a specidization of
boost: : uni que_future orboost::shared_future.

Effects: Waits until al of the specified futures are ready.
Throws: Any exceptions thrown by acall towai t () on the specified futures.
Notes: wai t _for_all () isaninterruption point.

69

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Thread Local Storage
Synopsis

Thread local storage allows multi-threaded applications to have a separate instance of a given data item for each thread. Where a
single-threaded application would use static or global data, this could lead to contention, deadlock or data corruption in a multi-
threaded application. One exampleisthe C er r no variable, used for storing the error code related to functions from the Standard C
library. It is common practice (and required by POSIX) for compilers that support multi-threaded applications to provide a separate
instance of er r no for each thread, in order to avoid different threads competing to read or update the value.

Though compilers often provide this facility in the form of extensionsto the declaration syntax (such as__decl spec(t hr ead) or
__thread annotations on st at i ¢ or namespace-scope variable declarations), such support is non-portable, and is often limited in
some way, such as only supporting POD types.

Portable thread-local storage With boost : : t hread_specific_ptr

boost : : thread_specific_ptr provides a portable mechanism for thread-local storage that works on all compilers supported
by Boost.Thread. Each instance of boost : : t hr ead_speci fi c_pt r representsapointer to an object (such aser r no) where each
thread must have a distinct value. The value for the current thread can be obtained using the get () member function, or by using
the* and - > pointer deference operators. Initially the pointer has avalue of NULL in each thread, but the value for the current thread
can be set using ther eset () member function.

If the value of the pointer for the current thread ischanged usingr eset () , thenthe previousvalueis destroyed by calling the cleanup
routine. Alternatively, the stored value can be reset to NULL and the prior value returned by calling ther el ease() member function,
allowing the application to take back responsibility for destroying the object.

Cleanup at thread exit

When a thread exits, the objects associated with each boost : : t hread_speci fi c_ptr instance are destroyed. By default, the
object pointed to by a pointer p is destroyed by invoking del ete p, but this can be overridden for a specific instance of
boost : : thread_speci fic_ptr by providing acleanup routineto the constructor. In this case, the object is destroyed by invoking
func(p) wheref unc isthe cleanup routine supplied to the constructor. The cleanup functions are called in an unspecified order.
If acleanup routine sets the value of associated with aninstance of boost : : t hread_speci fi ¢_pt r that hasalready been cleaned
up, that value is added to the cleanup list. Cleanup finishes when there are no outstanding instances of boost : : t hr ead_speci f -

i c_ptr with values.

Note: on some platforms, cleanup of thread-specific data is not performed for threads created with the platform's native API. On
those platforms such cleanup is only done for threads that are started with boost : : t hr ead unlessboost : : on_t hread_exi t ()
is called manually from that thread.

70

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

ClaSS thread_specific_ptr

#i ncl ude <boost/thread/tss. hpp>

tenpl ate <typenane T>
class thread_specific_ptr

{
public:
thread_specific_ptr();
explicit thread_specific_ptr(void (*cleanup_function)(T*));
~t hread_specific_ptr();
T* get() const;
T* operator->() const;
T& operator*() const;
T* rel ease();
voi d reset (T* new_val ue=0);
b

thread_specific_ptr();

Requires: del ete this->get () iswel-formed.

Effects: Construct at hr ead_speci fi c_pt r object for storing a pointer to an object of type T specific to each thread. The
default del et e-based cleanup function will be used to destroy any thread-local objectswhenr eset () iscaled, or
the thread exits.

Throws: boost::thread _resource_error if anerror occurs.

explicit thread_specific_ptr(void (*cleanup_function)(T*));

Requires: cl eanup_function(this->get()) doesnot throw any exceptions.

Effects: Construct at hr ead_speci fi c_pt r object for storing a pointer to an object of type T specific to each thread. The
suppliedcl eanup_f unct i on will beused to destroy any thread-local objectswhenr eset () iscalled, or thethread
exits.

Throws: boost::thread _resource_error if anerror occurs.

~t hread_specific_ptr();
Effects: Callst hi s->reset () toclean up the associated value for the current thread, and destroys*t hi s.

Throws: Nothing.

S Note
Care needsto betaken to ensure that any threads till running after aninstance of boost : : t hread_speci fic_ptr
has been destroyed do not call any member functions on that instance.

T* get() const;

Returns: The pointer associated with the current thread.

Throws: Nothing.

71

render
httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

S Note
Theinitia value associated with an instance of boost : : t hread_speci fi c_ptr iSNULL for each thread.

T* operator->() const;

Returns: t hi s->get ()

Throws: Nothing.

T& operator*() const;

Requires: t hi s->get isnot NULL.
Returns: *(this->get())
Throws: Nothing.

voi d reset(T* new_val ue=0);

Effects: If this->get()!=new value and this->get() isS non-NULL, invoke del ete this->get() or
cl eanup_function(this->get()) asappropriate. Store new_val ue asthe pointer associated with the
current thread.

Postcondition: t hi s- >get () ==new_val ue

Throws: boost::thread _resource_error if anerror occurs.

T* rel ease();

Effects: Returnt hi s- >get () and store NULL as the pointer associated with the current thread without invoking the
cleanup function.

Postcondition: this->get () ==

Throws: Nothing.

72

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Date and Time Requirements

Asof Boost 1.35.0, the Boost.Thread library usesthe Boost.Date_Timelibrary for all operationsthat require atime out. Theseinclude
(but are not limited to):

* boost::this_thread::sleep()
* tinmed_join()
e tinmed_wait()
e timed_|ock()

For the overloads that accept an absolute time parameter, an object of type boost : : syst em ti ne isrequired. Typically, this will
be obtained by adding a duration to the current time, obtained with acall to boost : : get _system ti me() . eg.

boost: : systemtinme const tineout=boost::get_systemtine() + boost::posix_time::mlliseconds(500);
extern bool done;

extern boost::mutex m

extern boost::condition_variable cond;

boost: : uni que_I| ock<boost:: nmutex> I k(m;

whi | e(! done)
{
if(!lcond. timed wait(lk,tineout))
{
throw "tined out";
}

For the overloads that accept a TimeDuration parameter, an object of any type that meets the Boost.Date_Time Time Duration re-
guirements can be used, e.g.

boost::this_thread:: sl eep(boost::posix_time::mlliseconds(25));

boost::mutex m
if(mtinmed_| ock(boost: : posix_tinme::nanoseconds(100)))

{
}

I

Typed ef systemtine

#i ncl ude <boost/thread/thread_tine. hpp>

t ypedef boost::posix_tinme::ptinme systemtine;

See the documentation for boost : : posi x_t i me: : pti ne inthe Boost.Date_Time library.

73

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Non-member function get_systemtine()

#i ncl ude <boost/thread/thread_tine. hpp>

systemtime get_systemtine();

Returns: The current time.

Throws: Nothing.

74

render

> httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Acknowledgments

The original implementation of Boost.Thread was written by William Kempf, with contributions from numerous others. This new
version initially grew out of an attempt to rewrite Boost.Thread to William Kempf's design with fresh code that could be released
under the Boost Software License. However, as the C++ Standards committee have been actively discussing standardizing a thread
library for C++, thislibrary has evolved to reflect the proposals, whilst retaining as much backwards-compatibility as possible.

Particular thanks must be given to Roland Schwarz, who contributed a lot of time and code to the original Boost.Thread library,
and who has been actively involved with the rewrite. The scheme for dividing the platform-specific implementations into separate
directories was devised by Roland, and his input has contributed greatly to improving the quality of the current implementation.

Thanks also must go to Peter Dimov, Howard Hinnant, Alexander Terekhov, Chris Thomasson and others for their comments on
the implementation details of the code.

75

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Compliance with standard
C++11 standard Thread library

76

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

render

Thread

Table 1. Compliance C++11 standard

Section

30

30.1

30.2

30.2.1

30.2.2

30.2.3

30.24

30.2.5

30.25.1

30.25.2

30.25.3

30.25.4

30.2.6

30.3

30.3.1

30.3.1.1

30.3.1.2

30.3.1.3

30.3.14

30.3.1.5

30.3.1.6

30.3.1.7

30.3.2

Description

Thread support library
General

Requirements

Template
names

parameter

Exceptions
Native handles
Timing specifications

Requirementsfor Lock-
able types

In general

BasicL ockablerequire-
ments

L ockable requirements

TimedLockablerequire-
ments

decay_copy
Threads
Class thread

Class thread::id

thread constructors

thread destructor
thread assignment

thread members

thread static members

thread specialized al-
gorithms

Namespace this_thread

Status

Partial

No

Yes

No

Partial

No

yes

Partial

Partial

Partial

Partial

Pertial

Yes

Partial

Partial

Partial

Yes

Partial

Comments

chrono

Missing noexcept, tem-
plate <> struct
hash<thread::id>

Missing noexcept and
move semantics

move semantics

Missing
chrono

noexcept,

Missing noexcept

chrono

Ticket

#12

#6195

#13

#6195

#3,#4

#3,#6194

#3,#6195

#3,#6195

#6195

77

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Section

304

304.1

304.1.1

30.4.1.2

304.1.2.1

30.4.1.2.2

30.4.1.3

304.1.3.1

304.1.31

30.4.2

30.4.2.1

30.4.2.2

304.22.1

30.4.2.2.2

30.4.2.2.3

304.2.2.4

30.4.3

30.4.4

304.4.1

30.4.4.2

30.5

30.56-10

Description

Mutua exclusion
Mutex reguirements
In general

Mutex types

Class mutex

Class recursive_mutex
Timed mutex types
Classtimed mutex

Class recurs-
ive_timed mutex

Locks

Class template
lock_guard

Class template
unique_lock

unique_lock construct-
ors, destructor, and as-
signment

unique_lock locking
unique_lock modifiers

unique_lock observers

Generic locking a-
gorithms

Call once

Struct once flag
Function call_once
Condition variables

Function noti-
fy al_at thread_exit

Status

Partial

Partial

Pertial

Partial

Partial

Partial

Partial

Partial

Partial

Pertial

Partial

Partial

Partial

Partial

Yes

Partial

Pertial

Partial

Yes

Yes

Partial

No

Comments

noexcept,delete
noexcept,delete
noexcept,delete
noexcept,chrono,del ete
noexcept,chrono,del ete
noexcept,chrono,del ete
n o e X -
cept,chrono,move,de-
lete,bool

cons/dest delete
noexcept, chrono,
move, delete

noexcept, chrono,

move, delete

chrono

explicit operator bool

Variadic,

move,variadic

chrono,cv_status,noti-
fy_all_at_thread_exit

Ticket

#3,#5
#3,#5
#3,#5
#3,#6195#5
#3,#6195#5

#3,#6195#5

#3,#6195,#5,#6

#3,#6195 #5,#6

#3,#6195,#5,#6

#6195,

#6

#7

#6194,#7

#6195,#8,#9

#9

render

78

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Section Description Status Comments Ticket

305.1 Class condition vari- Partial chrono,cv_status #6195,#8
able

30.5.2 Class condition_vari- Partial chrono,cv_status #6195#8
able any

30.6 Futures Partial - -

30.6.1 Overview Partial - -

30.6.2 Error handling No - -

30.6.3 Class future_error No - -

30.6.4 Shared state No - -

30.6.5 Classtemplate promise Partial allocator,move,delete #10,#6194,#5

30.6.6 Classtemplate future No unique future is the #11

closest to future

30.6.7 Class template Partia alocator,movedelete #10#6194,#5
shared future

30.6.8 Function template No async #4710
async

30.6.8 Class template pack- Partia - -
aged_task

Table 2. Extension

Section Description Comments
30.3.1.5.x interrupt -
30.3.1.5y operator==,operator!= -
30.3.2.x Interruprion -
30.3.2y at_thread_exit -
30.4.3.x Generic locking algorithms begin/end -
30.x Barriers -
30y Thread Loca Storage -
30.z Class thread_group -
79

render

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread

Shared Mutex library extension

Table 3. Clock Requirements

Section Description Status Comments
XXXX DDDD SSSS CCCC
XXXX DDDD SSSS Ccccc

80

httpo://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Thread
	Table of Contents
	Overview
	Changes since
	Future
	Thread Management
	Class thread
	Default Constructor
	Move Constructor
	Move assignment operator
	Thread Constructor
	Thread Constructor with arguments
	Thread Destructor
	Member function joinable()
	Member function join()
	Member function timed_join()
	Member function detach()
	Member function get_id()
	Member function interrupt()
	Static member function hardware_concurrency()
	Member function native_handle()
	operator==
	operator!=
	Static member function sleep()
	Static member function yield()
	Member function swap()
	Non-member function swap()
	Non-member function move()
	Class boost::thread::id
	Default constructor
	operator==
	operator!=
	operator<
	operator>
	operator<=
	operator>=
	Friend operator<<

	Namespace this_thread
	Non-member function get_id()
	Non-member function interruption_point()
	Non-member function interruption_requested()
	Non-member function interruption_enabled()
	Non-member function sleep()
	Non-member function yield()
	Class disable_interruption
	Constructor
	Destructor

	Class restore_interruption
	Constructor
	Destructor

	Non-member function template at_thread_exit()

	Class thread_group
	Constructor
	Destructor
	Member function create_thread()
	Member function add_thread()
	Member function remove_thread()
	Member function join_all()
	Member function interrupt_all()
	Member function size()

	Synchronization
	Mutex Concepts
	Lockable Concept
	void lock()
	bool try_lock()
	void unlock()

	TimedLockable Concept
	bool timed_lock(boost::system_time const& abs_time)
	template<typename DurationType> bool timed_lock(DurationType const& rel_time)

	SharedLockable Concept
	void lock_shared()
	bool try_lock_shared()
	bool timed_lock_shared(boost::system_time const& abs_time)
	void unlock_shared()

	UpgradeLockable Concept
	void lock_upgrade()
	void unlock_upgrade()
	void unlock_upgrade_and_lock()
	void unlock_upgrade_and_lock_shared()
	void unlock_and_lock_upgrade()

	Lock Types
	Lock option tags
	Class template lock_guard
	lock_guard(Lockable & m)
	lock_guard(Lockable & m,boost::adopt_lock_t)
	~lock_guard()

	Class template unique_lock
	unique_lock()
	unique_lock(Lockable & m)
	unique_lock(Lockable & m,boost::adopt_lock_t)
	unique_lock(Lockable & m,boost::defer_lock_t)
	unique_lock(Lockable & m,boost::try_to_lock_t)
	unique_lock(Lockable & m,boost::system_time const& abs_time)
	~unique_lock()
	bool owns_lock() const
	Lockable* mutex() const
	operator unspecified-bool-type() const
	bool operator!() const
	Lockable* release()

	Class template shared_lock
	shared_lock()
	shared_lock(Lockable & m)
	shared_lock(Lockable & m,boost::adopt_lock_t)
	shared_lock(Lockable & m,boost::defer_lock_t)
	shared_lock(Lockable & m,boost::try_to_lock_t)
	shared_lock(Lockable & m,boost::system_time const& abs_time)
	~shared_lock()
	bool owns_lock() const
	Lockable* mutex() const
	operator unspecified-bool-type() const
	bool operator!() const
	Lockable* release()

	Class template upgrade_lock
	Class template upgrade_to_unique_lock
	Mutex-specific class scoped_try_lock

	Lock functions
	Non-member function lock(Lockable1,Lockable2,...)
	Non-member function lock(begin,end)
	Non-member function try_lock(Lockable1,Lockable2,...)
	Non-member function try_lock(begin,end)

	Mutex Types
	Class mutex
	Member function native_handle()

	Typedef try_mutex
	Class timed_mutex
	Member function native_handle()

	Class recursive_mutex
	Member function native_handle()

	Typedef recursive_try_mutex
	Class recursive_timed_mutex
	Member function native_handle()

	Class shared_mutex

	Condition Variables
	Class condition_variable
	condition_variable()
	~condition_variable()
	void notify_one()
	void notify_all()
	void wait(boost::unique_lock<boost::mutex>& lock)
	template<typename predicate_type> void wait(boost::unique_lock<boost::mutex>& lock, predicate_type pred)
	bool timed_wait(boost::unique_lock<boost::mutex>& lock,boost::system_time const& abs_time)
	template<typename duration_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock,duration_type const& rel_time)
	template<typename predicate_type> bool timed_wait(boost::unique_lock<boost::mutex>& lock, boost::system_time const& abs_time, predicate_type pred)

	Class condition_variable_any
	condition_variable_any()
	~condition_variable_any()
	void notify_one()
	void notify_all()
	template<typename lock_type> void wait(lock_type& lock)
	template<typename lock_type,typename predicate_type> void wait(lock_type& lock, predicate_type pred)
	template<typename lock_type> bool timed_wait(lock_type& lock,boost::system_time const& abs_time)
	template<typename lock_type,typename duration_type> bool timed_wait(lock_type& lock,duration_type const& rel_time)
	template<typename lock_type,typename predicate_type> bool timed_wait(lock_type& lock, boost::system_time const& abs_time, predicate_type pred)

	Typedef condition

	One-time Initialization
	Typedef once_flag
	Non-member function call_once

	Barriers
	Class barrier

	Futures
	Overview
	Creating asynchronous values
	Wait Callbacks and Lazy Futures
	Futures Reference
	state enum
	unique_future class template
	Default Constructor
	Destructor
	Move Constructor
	Move Assignment Operator
	Member function swap()
	Member function get()
	Member function wait()
	Member function timed_wait()
	Member function timed_wait()
	Member function is_ready()
	Member function has_value()
	Member function has_exception()
	Member function get_state()

	shared_future class template
	Default Constructor
	Member function get()
	Member function wait()
	Member function timed_wait()
	Member function timed_wait()
	Member function is_ready()
	Member function has_value()
	Member function has_exception()
	Member function get_state()

	promise class template
	Default Constructor
	Move Constructor
	Move Assignment Operator
	Destructor
	Member Function get_future()
	Member Function set_value()
	Member Function set_exception()
	Member Function set_wait_callback()

	packaged_task class template
	Task Constructor
	Move Constructor
	Move Assignment Operator
	Destructor
	Member Function get_future()
	Member Function operator()()
	Member Function set_wait_callback()

	Non-member function wait_for_any()
	Non-member function wait_for_all()

	Thread Local Storage
	Class thread_specific_ptr
	thread_specific_ptr();
	explicit thread_specific_ptr(void (*cleanup_function)(T*));
	~thread_specific_ptr();
	T* get() const;
	T* operator->() const;
	T& operator*() const;
	void reset(T* new_value=0);
	T* release();

	Date and Time Requirements
	Typedef system_time
	Non-member function get_system_time()

	Acknowledgments
	Compliance with standard
	C++11 standard Thread library
	Shared Mutex library extension

