
Boost.Chrono 1.2.1
Howard Hinnant

Beman Dawes

Vicente J. Botet Escriba
Copyright © 2008 Howard Hinnant
Copyright © 2006, 2008 Beman Dawes
Copyright © 2009-2011 Vicente J. Botet Escriba

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at ht-
tp://www.boost.org/LICENSE_1_0.txt)

Table of Contents
Overview .. 2

Motivation .. 2
Description ... 2

User's Guide ... 4
Getting Started .. 4
Tutorial .. 6
Examples .. 19
External Resources ... 32

Reference ... 33
Header <boost/chrono/include.hpp> .. 33
Included on the C++11 Recommendation .. 33
Chrono I/O .. 58
Chrono Rounding Utilities ... 60
Other Clocks ... 61

Appendices ... 68
Appendix: History .. 68
Appendix: Rationale ... 70
Appendix: Implementation Notes .. 70
Appendix: FAQ .. 71
Appendix: Acknowledgements .. 71
Appendix: Future plans ... 72

]

]

1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/LICENSE_1_0.txt
http://www.boost.org/LICENSE_1_0.txt
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Overview
“What is time, then? If nobody asks me, I know; if I have to explain it to someone who has asked me, I do not
know."”

-- Augustine

How to Use This Documentation

This documentation makes use of the following naming and formatting conventions.

• Code is in fixed width font and is syntax-highlighted.

• Replaceable text that you will need to supply is in italics.

• Free functions are rendered in the code font followed by (), as in free_function().

• If a name refers to a class template, it is specified like this: class_template<>; that is, it is in code font and its name is followed
by <> to indicate that it is a class template.

• If a name refers to a function-like macro, it is specified like this: MACRO(); that is, it is uppercase in code font and its name is
followed by () to indicate that it is a function-like macro. Object-like macros appear without the trailing ().

• Names that refer to concepts in the generic programming sense are specified in CamelCase.

Note

In addition, notes such as this one specify non-essential information that provides additional background or rationale.

Finally, you can mentally add the following to any code fragments in this document:

// Include all of Chrono files
#include <boost/chrono.hpp>

Motivation

Time

We all deal with time every day of our lives. We've intuitively known it since birth. Thus we are all very familiar with it and believe
it to be a simple matter. The modeling of time in computer programs should be similarly simple. The unfortunate truth is that this
perceived simplicity is only skin deep. Fortunately, we do not need a terribly complicated solution to meet the bulk of our needs.
However, overly simplistic solutions can be dangerous and inefficient, and won't adapt as the computer industry evolves.

Boost.Chrono aims to implement the new time facilities in C++0x, as proposed in N2661 - A Foundation to Sleep On. That document
provides background and motivation for key design decisions and is the source of a good deal of information in this documentation.

Wall clock versus system and user time

To make the timing facilities of Boost.Chrono more generally useful, the library provides a number of clocks that are thin wrappers
around the operating system's process time API, thereby allowing the extraction of wall clock time, user CPU time, and system CPU
time of the process. Wall clock time is the sum of CPU time and system CPU time. (On POSIX-like systems, this relies on times().
On Windows, it relies on GetProcessTimes().)

Description
The Boost.Chrono library provides:

2

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2661.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Standard

• A means to represent time durations: managed by the generic duration class . Examples of time durations include days, minutes,
seconds and nanoseconds, which can be represented with a fixed number of clock ticks per unit. All of these units of time
duration are united with a generic interface by the duration facility.

• A type for representing points in time: time_point. A time_point represents an epoch plus or minus a duration. The library
leaves epochs unspecified. A time_point is associated with a clock.

• Several clocks, some of which may not be available on a particular platform: system_clock, steady_clock and high_resol-
ution_clock. A clock is a pairing of a time_point and duration, and a function which returns a time_point representing
now.

Other clocks

To make the timing facilities more generally useful, Boost.Chrono provides a number of clocks that are thin wrappers around the
operating system's time APIs, thereby allowing the extraction of wall clock time, user CPU time, system CPU time spent by the
process,

• process_real_cpu_clock, captures wall clock CPU time spent by the current process.

• process_user_cpu_clock, captures user-CPU time spent by the current process.

• process_system_cpu_clock, captures system-CPU time spent by the current process.

• A tuple-like class process_cpu_clock, that captures real, user-CPU, and system-CPU process times together.

• A thread_clock thread steady clock giving the time spent by the current thread (when supported by a platform).

Lastly, Boost.Chrono includes typeof registration for duration and time_point to permit using emulated auto with C++03
compilers.

I/O

It provides I/O for duration and time_point. It builds on <boost/ratio/ratio_io.hpp> to provide readable and flexible
formatting and parsing for types in <boost/chrono.hpp>. The duration unit names can be customized through a new facet:
duration_punct.

Rounding utilities

A few simple rounding utility functions for working with durations.

Caveat Emptor

The underlying clocks provided by operating systems are subject to many seemingly arbitrary policies and implementation irregular-
ities. That's a polite way of saying they tend to be flakey, and each operating system or even each clock has its own cruel and unusual
forms of flakiness. Don't bet the farm on their accuracy, unless you have become deeply familiar with exactly what the specific op-
erating system is guaranteeing, which is often very little.

3

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/libs/typeof
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

User's Guide

Getting Started

Installing Chrono

Getting Boost.Chrono

Boost.Chrono is in the latest Boost release in the folder /boost/chrono. Documentation, tests and examples folder are at
boost/libs/chrono/.

You can also access the latest (unstable?) state from the Boost trunk directories boost/chrono and libs/chrono. Just go to here and
follow the instructions there for anonymous SVN access.

Where to install Boost.Chrono?

The simple way is to decompress (or checkout from SVN) the files in your BOOST_ROOT directory.

Building Boost.Chrono

Boost.Chrono can be configured as a header-only library. When BOOST_CHRONO_HEADER_ONLY is defined the Boost.Chrono is a
header-only library. Otherwise is not a header only library and you need to compile it and build the library before use, for example
using:

bjam libs/chrono/build

Requirements

In particular, Boost.Chrono depends on:

Boost.Config for configuration purposes, ...

Boost.Exception for throw_exception, ...

Boost.Integer for cstdint conformance, ...

Boost.MPL for MPL Assert and bool, logical ...

Boost.Operators for operators, ...

Boost.Ratio for ratio, milli, micro, ...

Boost.System for error_code, ...

Boost.TypeTraits for is_base, is_convertible, common_type, ...

Boost.Utility/EnableIf for enable_if, ...

Building an Executable that Uses Boost.Chrono

In addition to link with the Boost.Chrono library you need also to link with the Boost.System library. Once Boost.System will be
configurable to be a header only using BOOST_SYSTEM_INLINED you will no need to link with it.

Exception safety

All functions in the library are exception-neutral and provide strong guarantee of exception safety as long as the underlying parameters
provide it.

4

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

https://svn.boost.org/svn/boost-trunk
http://svn.boost.org/trac/boost/wiki/BoostSubversion
http://www.boost.org/libs/config
http://www.boost.org/libs/exception
http://www.boost.org/libs/integer
http://www.boost.org/libs/mpl
http://www.boost.org/libs/operators
http://www.boost.org/libs/ratio
http://www.boost.org/libs/system
http://www.boost.org/libs/type_traits
http://www.boost.org/libs/utility
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Thread safety

All functions in the library are thread-unsafe except when noted explicitly.

As Boost.Chrono doesn't use mutable global variables the thread-safety analysis is limited to the access to each instance variable. It
is not thread safe to use a function that modifies the access to a user variable if another can be reading or writing it.

Tested compilers

The implementation will eventually work with most C++03 conforming compilers. Currently I use to test with on:

Windows with

• MSVC 10.0

Cygwin 1.7 with

• GCC 4.3.4

MinGW with

• GCC 4.5.0

• GCC 4.5.0 -std=c++0x

• GCC 4.5.2

• GCC 4.5.2 -std=c++0x

• GCC 4.6.0

• GCC 4.6.0 -std=c++0x

OsX with

• GCC 4.1.2

• clang 1.6

• clang 2.9

• clang 2.9 -std=c++0x

The committed code is tested with much more compilers. There are two compilers (VACPP and Borland) that don't provide the
needed features. Other as Intel and Sun have some issues with i/o. While everything compiles and link correctly, there are some
runtime issues I have not cached yet. See the regression tests for details.

Note

Please let us know how this works on other platforms/compilers.

Note

Please send any questions, comments and bug reports to boost <at> lists <dot> boost <dot> org.

Hello World!

If all you want to do is to time a program's execution, here is a complete program:

5

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/chrono.hpp>
#include <cmath>

int main()
{

boost::chrono::system_clock::time_point start = boost::chrono::system_clock::now();

for (long i = 0; i < 10000000; ++i)
std::sqrt(123.456L); // burn some time

boost::chrono::duration<double> sec = boost::chrono::system_clock::now() - start;
std::cout << "took " << sec.count() << " seconds\n";
return 0;

}

Output was:

took 0.832 seconds

Tutorial

Duration

The duration is the heart of this library. The interface that the user will see in everyday use is nearly identical to that of
Boost.DateTime time durations authored by Jeff Garland, both in syntax and in behavior. This has been a very popular boost
library for 7 years. There is an enormous positive history with this interface.

The library consists of six units of time duration:

• hours

• minutes

• seconds

• milliseconds

• microseconds

• nanoseconds

These units were chosen as a subset of the boost library because they are the most common units used when sleeping, waiting on a
condition variable, or waiting to obtain the lock on a mutex. Each of these units is nothing but a thin wrapper around a signed integral
count. That is, when you construct minutes(3), all that happens is a 3 is stored inside minutes. When you construct micro-
seconds(3), all that happens is a 3 is stored inside microseconds.

The only context in which these different types differ is when being converted to one another. At this time, unit-specific compile-
time conversion constants are used to convert the source unit to the target unit. Only conversions from coarser units to finer units
are allowed (in Boost). This restriction ensures that all conversions are always exact. That is, microseconds can always represent
any value minutes has.

In Boost.DateTime, these units are united via inheritance. Boost.Chrono instead unites these units through the class template dur-
ation. That is, in Boost.Chrono all six of the above units are nothing but typedefs to different instantiations of duration. This
change from Boost.DateTime has a far reaching positive impact, while not changing the syntax of the everyday use at all.

The most immediate positive impact is that the library can immediately generate any unit, with any precision it needs. This is
sometimes necessary when doing comparisons or arithmetic between durations of differing precision, assuming one wants the
comparison and arithmetic to be exact.

6

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A secondary benefit is that by publishing the class template duration interface, user code can very easily create durations with
any precision they desire. The ratio utility is used to specify the precision, so as long as the precision can be expressed by a rational
constant with respect to seconds, this framework can exactly represent it (one third of a second is no problem, and neither is one
third of a femto second). All of this utility and flexibility comes at no cost just by making use of the no-run-time-overhead ratio
facility.

In Boost.DateTime, hours does not have the same representation as nanoseconds. The former is usually represented with a long
whereas a long long is required for the latter. The reason for this is simply range. You don't need many hours to cover an extremely
large range of time. But this isn't true of nanoseconds. Being able to reduce the sizeof overhead for some units when possible, can
be a significant performance advantage.

Boost.Chrono continues, and generalizes that philosophy. Not only can one specify the precision of a duration, one can also
specify its representation. This can be any integral type, or even a floating-point type. Or it can be a user-defined type which emulates
an arithmetic type. The six predefined units all use signed integral types as their representation. And they all have a minimum range
of ± 292 years. nanoseconds needs 64 bits to cover that range. hours needs only 23 bits to cover that range.

So What Exactly is a duration and How Do I Use One?

A duration has a representation and a tick period (precision).

template <class Rep, class Period = ratio<1> > class duration;

The representation is simply any arithmetic type, or an emulation of such a type. The representation stores a count of ticks. This
count is the only data member stored in a duration. If the representation is floating-point, it can store fractions of a tick to the
precision of the representation. The tick period is represented by a ratio and is encoded into the duration's type, instead of stored.
The tick period only has an impact on the behavior of the duration when a conversion between different durations is attempted.
The tick period is completely ignored when simply doing arithmetic among like durations.

Example:

typedef boost::chrono::duration<long, boost::ratio<60> > minutes;
minutes m1(3); // m1 stores 3
minutes m2(2); // m2 stores 2
minutes m3 = m1 + m2; // m3 stores 5

typedef boost::chrono::duration<long long, boost::micro> microseconds;
microseconds us1(3); // us1 stores 3
microseconds us2(2); // us2 stores 2
microseconds us3 = us1 + us2; // us3 stores 5

microseconds us4 = m3 + us3; // us4 stores 300000005

In the final line of code above, there is an implicit conversion from minutes to microseconds, resulting in a relatively large number
of microseconds.

If you need to access the tick count within a duration, there is a member count() which simply returns the stored tick count.

long long tc = us4.count(); // tc is 300000005

These duration's have very simple, very predictable, and very observable behavior. After all, this is really nothing but the time-
tested interface of Jeff's boost time duration library (unified with templates instead of inheritance).

What Happens if I Assign m3 + us3 to minutes Instead of microseconds?

minutes m4 = m3 + us3;

7

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

It won't compile! The rationale is that implicit truncation error should not be allowed to happen. If this were to compile, then m4
would hold 5, the same value as m3. The value associated with us3 has been effectively ignored. This is similar to the problem of
assigning a double to an int: the fractional part gets silently discarded.

But What if the Truncation Behavior is What I Want to Do?

There is a duration_cast facility to explicitly ask for this behavior:

minutes m4 = boost::chrono::duration_cast<minutes>(m3 + us3); // m4.count() == 5

In general, one can perform duration arithmetic at will. If duration_cast isn't used, and it compiles, the arithmetic is exact. If
one wants to override this exact arithmetic behavior, duration_cast can be used to explicitly specify that desire. The dura-
tion_cast has the same efficiency as the implicit conversion, and will even be exact as often as it can.

You can use duration_cast<> to convert the duration into whatever units you desire. This facility will round down (truncate)
if an exact conversion is not possible. For example:

boost::chrono::nanoseconds start;
boost::chrono::nanoseconds end;
typedef boost::chrono::milliseconds ms;
ms d = boost::chrono::duration_cast<ms>(end - start);

// d now holds the number of milliseconds from start to end.

std::cout << ms.count() << "ms\n";

We can convert to nanoseconds, or some integral-based duration which nanoseconds will always exactly convert to, then dura-
tion_cast<> is unnecessary:

typedef boost::chrono::nanoseconds ns;
ns d = end - start;
std::cout << ns.count() << "ns\n";

If you need seconds with a floating-point representation you can also eliminate the duration_cast<>:

typedef boost::chrono::duration<double> sec; // seconds, stored with a double
sec d = end - start;
std::cout << sec.count() << "s\n";

If you're not sure if you need duration_cast<> or not, feel free to try it without. If the conversion is exact, or if the destination
has a floating-point representation, it will compile: else it will not compile.

If you need to use duration_cast<>, but want to round up, instead of down when the conversion is inexact, here is a handy little
helper function to do so. Writing it is actually a good starter project for understanding Boost.Chrono:

8

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class ToDuration, class Rep, class Period>
ToDuration
round_up(boost::chrono::duration<Rep, Period> d)
{

// first round down
ToDuration result = boost::chrono::duration_cast<ToDuration>(d);
if (result < d) // comparisons are *always* exact

++result; // increment by one tick period
return result;

}

typedef boost::chrono::milliseconds ms;
ms d = round_up<ms>(end - start);
// d now holds the number of milliseconds from start to end, rounded up.
std::cout << ms.count() << "ms\n";

Rounding functions

Boost.Chrono provides few simple rounding utility functions for working with durations.

// round down
template <class To, class Rep, class Period>
To
floor(const duration<Rep, Period>& d)
{

return duration_cast<To>(d);
}

// round to nearest, to even on tie
template <class To, class Rep, class Period>
To
round(const duration<Rep, Period>& d)
{

To t0 = duration_cast<To>(d);
To t1 = t0;
++t1;
BOOST_AUTO(diff0, d - t0);
BOOST_AUTO(diff1, t1 - d);
if (diff0 == diff1)
{

if (t0.count() & 1)
return t1;

return t0;
}
else if (diff0 < diff1)

return t0;
return t1;

}
// round up
template <class To, class Rep, class Period>
To
ceil(const duration<Rep, Period>& d)
{

To t = duration_cast<To>(d);
if (t < d)

++t;
return t;

}

The beauty of the chrono library is the ease and accuracy with which such conversions can be made. For example to convert from
milliseconds (1/1000 of a second), to 1/30 of a second, one must multiply the milliseconds by 0.03. It is common knowledge

9

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

that you can't exactly represent 0.03 in a computer. Nevertheless round will exactly (with no round off error) detect a tie and round
to even when this happens. The differences diff0 and diff1 are not approximate, but exact differences, even when d has the units
of millisecond and To is 1/30 of a second. The unit of diff0 and diff1 is 1/3000 of a second which both millisecond and 1/30
of a second exactly convert to (with no truncation error).

Similarly, the comparison t < d in ceil is exact, even when there is no exact conversion between t and d. Example use of
rounding functions

#include <iostream>
#include <boost/chrono/chrono_io.hpp>
#include <boost/chrono/floor.hpp>
#include <boost/chrono/round.hpp>
#include <boost/chrono/ceil.hpp>

int main()
{

using namespace boost::chrono;
milliseconds ms(2500);
std::cout << floor<seconds>(ms) << '\n';
std::cout << round<seconds>(ms) << '\n';
std::cout << ceil<seconds>(ms) << '\n';
ms = milliseconds(2516);
typedef duration<long, boost::ratio<1, 30> > frame_rate;
std::cout << floor<frame_rate>(ms) << '\n';
std::cout << round<frame_rate>(ms) << '\n';
std::cout << ceil<frame_rate>(ms) << '\n';

return 0;
}

The output of this program should be

2 seconds
2 seconds
3 seconds
75 [1/30]seconds
75 [1/30]seconds
76 [1/30]seconds

Trafficking in floating-point Durations

I don't want to deal with writing duration_cast all over the place. I'm content with the precision of my floating-point representation.

Not a problem. When the destination of a conversion has floating-point representation, all conversions are allowed to happen implicitly.

typedef boost::chrono::duration<double, ratio<60> > dminutes;
dminutes dm4 = m3 + us3; // dm4.count() == 5.000000083333333

How Expensive is All of this?

If you were writing these conversions by hand, you could not make it more efficient. The use of ratio ensures that all conversion
constants are simplified as much as possible at compile-time. This usually results in the numerator or denominator of the conversion
factor simplifying to 1, and being subsequently ignored in converting the run-time values of the tick counts.

How Complicated is it to Build a Function Taking a duration Parameter?

There are several options open to the user:

10

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• If the author of the function wants to accept any duration, and is willing to work in floating-point durations, he can simply
use any floating-point duration as the parameter:

void f(boost::chrono::duration<double> d) // accept floating-point seconds
{

// d.count() == 3.e-6 when passed boost::chrono::microseconds(3)
}

f(boost::chrono::microseconds(3));

• If the author of the function wants to traffic only in integral durations, and is content with handling nothing finer than say
nanoseconds (just as an example), he can simply specify nanoseconds as the parameter:

void f(boost::chrono::nanoseconds d)
{

// d.count() == 3000 when passed boost::chrono::microseconds(3)
}

f(boost::chrono::microseconds(3));

In this design, if the client wants to pass in a floating-point duration, or a duration of finer precision than nanoseconds, then the
client is responsible for choosing his own rounding mode in the conversion to nanoseconds.

boost::chrono::duration<double> s(1./3); // 1/3 of a second
f(boost::chrono::duration_cast<boost::chrono::nanoseconds>(s)); // round towards zero in conver↵
sion to nanoseconds

In the example above, the client of f has chosen "round towards zero" as the desired rounding mode to nanoseconds. If the client has
a duration that won't exactly convert to nanoseconds, and fails to choose how the conversion will take place, the compiler will
refuse the call:

f(s); // does not compile

• If the author of the function wants to accept any duration, but wants to work with integral representations and wants to control
the rounding mode internally, then he can template the function:

template <class Rep, class Period>
void f(boost::chrono::duration<Rep, Period> d)
{

// convert d to nanoseconds, rounding up if it is not an exact conversion
boost::chrono::nanoseconds ns = boost::chrono::duration_cast<boost::chrono::nanoseconds>(d);
if (ns < d)

++ns;
// ns.count() == 333333334 when passed 1/3 of a floating-point second

}

f(boost::chrono::duration<double>(1./3));

• If the author in the example does not want to accept floating-point based durations, he can enforce that behavior like so:

11

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class Period>
void f(boost::chrono::duration<long long, Period> d)
{

// convert d to nanoseconds, rounding up if it is not an exact conversion
boost::chrono::nanoseconds ns = boost::chrono::duration_cast<nanoseconds>(d);
if (ns < d)

++ns;
// ns.count() == 333333334 when passed 333333333333 picoseconds

}
// About 1/3 of a second worth of picoseconds
f(boost::chrono::duration<long long, boost::pico>(333333333333));

Clients with floating-point durations who want to use f will now have to convert to an integral duration themselves before
passing the result to f.

In summary, the author of f has quite a bit of flexibility and control in the interface he wants to provide his clients with, and easy
options for manipulating that duration internal to his function.

Is it possible for the user to pass a duration to a function with the units being ambiguous?

No. No matter which option the author of f chooses above, the following client code will not compile:

f(3); // Will not compile, 3 is not implicitly convertible to any __duration

Can Durations Overflow?

This depend on the representation. The default typedefs uses a representation that don't handle overflows. The user can define his
own representation that manage overflow as required by its application.

Clocks

While durations only have precision and representation to concern themselves, clocks and time_points are intimately related
and refer to one another. Because clocks are simpler to explain, we will do so first without fully explaining time_points. Once
clocks are introduced, it will be easier to then fill in what a time_point is.

A clock is a concept which bundles 3 things:

1. A concrete duration type.

2. A concrete time_point type.

3. A function called now() which returns the concrete time_point.

The standard defines three system-wide clocks that are associated to the computer time.

• system_clock represents system-wide realtime clock that can be synchronized with an external clock.

• steady_clock can not be changed explicitly and the time since the initial epoch increase in a steady way.

• high_resolution_clock intend to use the system-wide clock provided by the platform with the highest resolution.

Boost.Chrono provides them when supported by the underlying platform. A given platform may not be able to supply all three of
these clocks.

The library adds some clocks that are specific to a process or a thread, that is there is a clock per process or per thread.

The user is also able to easily create more clocks.

Given a clock named Clock, it will have:

12

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class Clock {
public:

typedef an arithmetic-like type rep;
typedef an instantiation of ratio period;
typedef boost::chrono::duration<rep, period> duration;
typedef boost::chrono::time_point<Clock> time_point;
static constexpr bool is_steady = true or false;

static time_point now();
};

One can get the current time from Clock with:

Clock::time_point t1 = Clock::now();

And one can get the time duration between two time_points associated with Clock with:

Clock::duration d = Clock::now() - t1;

And one can specify a past or future time_point with:

Clock::time_point t2 = Clock::now() + d;

Note how even if a particular clock becomes obsolete, the next clock in line will have the same API. There is no new learning curve
to come up. The only source code changes will be simply changing the type of the clock. The same duration and time_point
framework continues to work as new clocks are introduced. And multiple clocks are safely and easily handled within the same program.

Time Point

A time_point represents a point in time, as opposed to a duration of time. Another way of saying the same thing, is that a
time_point represents an epoch plus or minus a duration. Examples of time_points include:

• 3 minutes after the computer booted.

• 03:14:07 UTC on Tuesday, January 19, 2038

• 20 milliseconds after I started that timer.

In each of the examples above, a different epoch is implied. Sometimes an epoch has meaning for several millennia. Other times the
meaning of an epoch is lost after a while (such as the start of a timer, or when the computer booted). However, if two time_points
are known to share the same epoch, they can be subtracted, yielding a valid duration, even if the definition of the epoch no longer
has meaning.

In Boost.Chrono, an epoch is a purely abstract and unspecified concept. There is no type representing an epoch. It is simply an idea
that relates (or doesn't) time_points to a clock, and in the case that they share a clock, time_points to one another. time_points
associated with different clocks are generally not interoperable unless the relationship between the epochs associated with each clock
is known.

So What Exactly is a time_point and How Do I Use One?

A time_point has a clock and a duration.

template <class Clock, class Duration = typename Clock::duration> class time_point;

The time_point's clock is not stored. It is simply embedded into the time_point's type and serves two purposes:

13

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

1. Because time_points originating from different clocks have different types, the compiler can be instructed to fail if incompatible
time_points are used in inappropriate ways.

2. Given a time_point, one often needs to compare that time_point to "now". This is very simple as long as the time_point
knows what clock it is defined with respect to.

A time_point's duration is stored as the only data member of the time_point. Thus time_points and their corresponding
duration have exactly the same layout. But they have very different meanings. For example, it is one thing to say I want to sleep
for 3 minutes. It is a completely different thing to say I want to sleep until 3 minutes past the time I started that timer (unless you
just happened to start that timer now). Both meanings (and options for sleeping) have great practical value in common use cases for
sleeping, waiting on a condition variable, and waiting for a mutex's lock. These same concepts and tools are found (for example) in
Ada.

A timer example:

void f()
{

boost::chrono::steady_clock::time_point start = boost::chrono::steady_clock::now();
g();
h();
duration<double> sec = boost::chrono::steady_clock::now() - start;
cout << "f() took " << sec.count() << " seconds\n";

}

Note that if one is using the duration between two clock time_points in a way where the precision of the duration matters, it
is good practice to convert the clock's duration to a known duration. This insulates the code from future changes which may be
made to the clock's precision in the future. For example steady_clock could easily be based on the clock speed of the cpu. When
you upgrade to a faster machine, you do not want your code that assumed a certain tick period of this clock to start experiencing
run-time failures because your timing code has silently changed meaning.

A delay loop example:

// delay for at least 500 nanoseconds:
auto go = boost::chrono::steady_clock::now() + boost::chrono::nanoseconds(500);
while (boost::chrono::steady_clock::now() < go)

;

The above code will delay as close as possible to half a microsecond, no matter what the precision of steady_clock is. The more
precise steady_clock becomes, the more accurate will be the delay to 500 nanoseconds.

Specific Clocks

system_clock

system_clock is useful when you need to correlate the time with a known epoch so you can convert it to a calendar time. Note the
specific functions in the system_clock class.

steady_clock

steady_clock is useful when you need to wait for a specific amount of time. steady_clock time can not be reset. As other steady
clocks, it is usually based on the processor tick.

Here is a polling solution, but it will probably be too inefficient:

boost::chrono::steady_clock::time_point start= chrono::steady_clock::now();
boost::chrono::steady_clock::duration delay= chrono::seconds(5);
while (boost::chrono::steady_clock::now() - start <= delay) {}

14

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

high_resolution_clock

When available, high_resolution_clock is usually more expensive than the other system-wide clocks, so they are used only
when the provided resolution is required to the application.

process_cpu_clock

Process and thread clocks are used usually to measure the time spent by code blocks, as a basic time-spent profiling of different
blocks of code (Boost.Stopwatch is a clear example of this use).

thread_clock

You can use thread_clock whenever you want to measure the time spent by the current thread. For example:

boost::chrono::thread_clock::time_point start=boost::chrono::thread_clock::now();
// ... do something ...

typedef boost::chrono::milliseconds ms;
ms d = boost::chrono::thread_clock::now() - start;
// d now holds the number of milliseconds from start to end.
std::cout << ms.count() << "ms\n";

If you need seconds with a floating-point representation you can do:

typedef boost::chrono::duration<double> sec; // seconds, stored with a double.
sec d = end - start;
std::cout << sec.count() << "s\n";

If you would like to programmatically inspect thread_clock::duration, you can get the representation type with
thread_clock::rep, and the tick period with thread_clock::period (which should be a type ratio which has nested values
ratio::num and ratio::den). The tick period of thread_clock is thread_clock::period::num /

thread_clock::period::den seconds: 1/1000000000 in this case (1 billionth of a second), stored in a long long.

I/O

Any duration can be streamed out to a basic_ostream. The run-time value of the duration is formatted according to the rules
and current format settings for duration::rep. This is followed by a single space and then the compile-time unit name of the
duration. This unit name is built on the string returned from ratio_string<> and the data used to construct the duration_punct
which was inserted into the stream's locale. If a duration_punct has not been inserted into the stream's locale, a default constructed
duration_punct will be added to the stream's locale.

duration unit names come in two varieties: long and short. The default constructed duration_punct provides names in the long
format. These names are English descriptions. Other languages are supported by constructing a duration_punct with the proper
spellings for "hours", "minutes" and "seconds", and their abbreviations (for the short format). The short or long format can be easily
chosen by streaming a duration_short() or duration_long() manipulator respectively.

A time_point is formatted by outputting its internal duration followed by a string that describes the time_point::clock
epoch. This string will vary for each distinct clock, and for each implementation of the supplied clocks.

Example:

15

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <iostream>
#include <boost/chrono/chrono_io.hpp>

int main()
{

using namespace std;
using namespace boost;

cout << "milliseconds(3) + microseconds(10) = "
<< boost::chrono::milliseconds(3) + boost::chrono::microseconds(10) << '\n';

cout << "hours(3) + minutes(10) = "
<< boost::chrono::hours(3) + boost::chrono::minutes(10) << '\n';

typedef boost::chrono::duration<long long, boost::ratio<1, 2500000000> > ClockTick;
cout << "ClockTick(3) + boost::chrono::nanoseconds(10) = "

<< ClockTick(3) + boost::chrono::nanoseconds(10) << '\n';

cout << "\nSet cout to use short names:\n";
cout << boost::chrono::duration_short;

cout << "milliseconds(3) + microseconds(10) = "
<< boost::chrono::milliseconds(3) + boost::chrono::microseconds(10) << '\n';

cout << "hours(3) + minutes(10) = "
<< boost::chrono::hours(3) + boost::chrono::minutes(10) << '\n';

cout << "ClockTick(3) + nanoseconds(10) = "
<< ClockTick(3) + boost::chrono::nanoseconds(10) << '\n';

cout << "\nsystem_clock::now() = " << boost::chrono::system_clock::now() << '\n';
#ifdef BOOST_CHRONO_HAS_CLOCK_STEADY

cout << "steady_clock::now() = " << boost::chrono::steady_clock::now() << '\n';
#endif

cout << "\nSet cout to use long names:\n"
<< boost::chrono::duration_long
<< "high_resolution_clock::now() = "
<< boost::chrono::high_resolution_clock::now() << '\n';

return 0;
}

The output could be

milliseconds(3) + microseconds(10) = 3010 microseconds
hours(3) + minutes(10) = 190 minutes
ClockTick(3) + nanoseconds(10) = 56 [1/5000000000]seconds

Set cout to use short names:
milliseconds(3) + microseconds(10) = 3010 [mu]s
hours(3) + minutes(10) = 190 m
ClockTick(3) + nanoseconds(10) = 56 [1/5000000000]s

system_clock::now() = 129387415616250000 [1/10000000]s since Jan 1, 1970
monotonic_clock::now() = 37297387636417 ns since boot

Set cout to use long names:
high_resolution_clock::now() = 37297387655134 nanoseconds since boot

Parsing a duration follows rules analogous to the duration converting constructor. A value and a unit (short or long) are read
from the basic_istream. If the duration has an integral representation, then the value parsed must be exactly representable in
the target duration (after conversion to the target duration units), else failbit is set. durations based on floating-point rep-
resentations can be parsed using any units that do not cause overflow.

16

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

For example a stream containing "5000 milliseconds" can be parsed into seconds, but if the stream contains "5001 milliseconds",
parsing into seconds will cause failbit to be set.

Example:

#include <boost/chrono/chrono_io.hpp>
#include <sstream>
#include <cassert>

int main()
{

using namespace std;

istringstream in("5000 milliseconds 4000 ms 3001 ms");
boost::chrono::seconds d(0);
in >> d;
assert(in.good());
assert(d == seconds(5));
in >> d;
assert(in.good());
assert(d == seconds(4));
in >> d;
assert(in.fail());
assert(d == seconds(4));

return 0;
}

Note that a duration failure may occur late in the parsing process. This means that the characters making up the failed parse in the
stream are usually consumed despite the failure to successfully parse.

Parsing a time_point involves first parsing a duration and then parsing the epoch string. If the epoch string does not match that
associated with time_point::clock then failbit will be set.

Example:

17

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#include <boost/chrono/chrono_io.hpp>
#include <sstream>
#include <iostream>
#include <cassert>

int main()
{

using namespace std;

boost::chrono::high_resolution_clock::time_point t0 = boost::chrono::high_resolu↵
tion_clock::now();

stringstream io;
io << t0;
boost::chrono::high_resolution_clock::time_point t1;
io >> t1;
assert(!io.fail());
cout << io.str() << '\n';
cout << t0 << '\n';
cout << t1 << '\n';
boost::chrono::high_resolution_clock::time_point t = boost::chrono::high_resolu↵

tion_clock::now();
cout << t << '\n';

cout << "That took " << t - t0 << '\n';
cout << "That took " << t - t1 << '\n';

return 0;
}

The output could be:

50908679121461 nanoseconds since boot
That took 649630 nanoseconds

Here's a simple example to find out how many hours the computer has been up (on this platform):

#include <boost/chrono/chrono_io.hpp>
#include <iostream>

int main()
{

using namespace std;
using namespace boost;

typedef boost::chrono::time_point<boost::chrono::steady_clock, boost::chrono::dura↵
tion<double, boost::ratio<3600> > > T;

T tp = boost::chrono::steady_clock::now();
std::cout << tp << '\n';
return 0;

}

The output could be:

17.8666 hours since boot

18

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Examples

Duration

How you Override the Duration's Default Constructor

Next we show how to override the duration's default constructor to do anything you want (in this case set it to zero). All we need
to do is to change the representation

namespace I_dont_like_the_default_duration_behavior {

template <class R>
class zero_default
{
public:

typedef R rep;

private:
rep rep_;

public:
zero_default(rep i = 0) : rep_(i) {}
operator rep() const {return rep_;}

zero_default& operator+=(zero_default x) {rep_ += x.rep_; return *this;}
zero_default& operator-=(zero_default x) {rep_ -= x.rep_; return *this;}
zero_default& operator*=(zero_default x) {rep_ *= x.rep_; return *this;}
zero_default& operator/=(zero_default x) {rep_ /= x.rep_; return *this;}

zero_default operator+ () const {return *this;}
zero_default operator- () const {return zero_default(-rep_);}
zero_default& operator++() {++rep_; return *this;}
zero_default operator++(int) {return zero_default(rep_++);}
zero_default& operator--() {--rep_; return *this;}
zero_default operator--(int) {return zero_default(rep_--);}

friend zero_default operator+(zero_default x, zero_default y) {return x += y;}
friend zero_default operator-(zero_default x, zero_default y) {return x -= y;}
friend zero_default operator*(zero_default x, zero_default y) {return x *= y;}
friend zero_default operator/(zero_default x, zero_default y) {return x /= y;}

friend bool operator==(zero_default x, zero_default y) {return x.rep_ == y.rep_;}
friend bool operator!=(zero_default x, zero_default y) {return !(x == y);}
friend bool operator< (zero_default x, zero_default y) {return x.rep_ < y.rep_;}
friend bool operator<=(zero_default x, zero_default y) {return !(y < x);}
friend bool operator> (zero_default x, zero_default y) {return y < x;}
friend bool operator>=(zero_default x, zero_default y) {return !(x < y);}

};

typedef boost::chrono::duration<zero_default<long long>, boost::nano > nanoseconds;
typedef boost::chrono::duration<zero_default<long long>, boost::micro > microseconds;
typedef boost::chrono::duration<zero_default<long long>, boost::milli > milliseconds;
typedef boost::chrono::duration<zero_default<long long> > seconds;
typedef boost::chrono::duration<zero_default<long long>, boost::ratio<60> > minutes;
typedef boost::chrono::duration<zero_default<long long>, boost::ratio<3600> > hours;
}

Usage

19

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

using namespace I_dont_like_the_default_duration_behavior;

milliseconds ms;
std::cout << ms.count() << '\n';

See the source file example/i_dont_like_the_default_duration_behavior.cpp

Saturating

A "saturating" signed integral type is developed. This type has +/- infinity and a NaN (like IEEE floating-point) but otherwise obeys
signed integral arithmetic. This class is subsequently used as the template parameter Rep in boost::chrono::duration to demonstrate
a duration class that does not silently ignore overflow.

See the source file example/saturating.cpp

xtime Conversions

Example round_up utility: converts d to To, rounding up for inexact conversions Being able to easily write this function is a major
feature!

#include <boost/chrono.hpp>
#include <boost/type_traits.hpp>

#include <iostream>

template <class To, class Rep, class Period>
To
round_up(boost::chrono::duration<Rep, Period> d)
{

To result = boost::chrono::duration_cast<To>(d);
if (result < d)

++result;
return result;

}

To demonstrate interaction with an xtime-like facility:

20

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/chrono/doc/html/../../../../libs/chrono/example/i_dont_like_the_default_duration_behavior.cpp
http://www.boost.org/doc/libs/release/libs/chrono/doc/html/../../../../libs/chrono/example/saturating.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

struct xtime
{

long sec;
unsigned long usec;

};

template <class Rep, class Period>
xtime
to_xtime_truncate(boost::chrono::duration<Rep, Period> d)
{

xtime xt;
xt.sec = static_cast<long>(boost::chrono::duration_cast<seconds>(d).count());
xt.usec = static_cast<long>(boost::chrono::duration_cast<micro↵

seconds>(d - seconds(xt.sec)).count());
return xt;

}

template <class Rep, class Period>
xtime
to_xtime_round_up(boost::chrono::duration<Rep, Period> d)
{

xtime xt;
xt.sec = static_cast<long>(boost::chrono::duration_cast<seconds>(d).count());
xt.usec = static_cast<unsigned long>(round_up<boost::chrono::micro↵

seconds>(d - boost::chrono::seconds(xt.sec)).count());
return xt;

}

microseconds
from_xtime(xtime xt)
{

return boost::chrono::seconds(xt.sec) + boost::chrono::microseconds(xt.usec);
}

void print(xtime xt)
{

std::cout << '{' << xt.sec << ',' << xt.usec << "}\n";
}

Usage

xtime xt = to_xtime_truncate(seconds(3) + boost::chrono::milliseconds(251));
print(xt);
boost::chrono::milliseconds ms = boost::chrono::duration_cast<boost::chrono::milli↵
seconds>(from_xtime(xt));
std::cout << ms.count() << " milliseconds\n";
xt = to_xtime_round_up(ms);
print(xt);
xt = to_xtime_truncate(boost::chrono::seconds(3) + nanoseconds(999));
print(xt);
xt = to_xtime_round_up(boost::chrono::seconds(3) + nanoseconds(999));
print(xt);

See the source file xtime.cpp

Clocks

Cycle count

Users can easily create their own clocks, with both points in time and time durations which have a representation and precision of
their own choosing. For example if there is a hardware counter which simply increments a count with each cycle of the cpu, one can

21

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/chrono/doc/html/../../../../libs/chrono/example/xtime.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

very easily build clocks, time points and durations on top of that, using only a few tens of lines of code. Such systems can be used
to call the time-sensitive threading API's such as sleep, wait on a condition variable, or wait for a mutex lock. The API proposed
herein is not sensitive as to whether this is a 300MHz clock (with a 3 1/3 nanosecond tick period) or a 3GHz clock (with a tick
period of 1/3 of a nanosecond). And the resulting code will be just as efficient as if the user wrote a special purpose clock cycle
counter.

#include <boost/chrono.hpp>
#include <boost/type_traits.hpp>
#include <iostream>

template <long long speed>
struct cycle_count
{

typedef typename boost::__ratio_multiply__<boost::ratio<speed>, boost::mega>::type
frequency; // Mhz

typedef typename boost::__ratio_divide__<boost::ratio<1>, frequency>::type period;
typedef long long rep;
typedef boost::chrono::duration<rep, period> duration;
typedef boost::chrono::time_point<cycle_count> time_point;

static time_point now()
{

static long long tick = 0;
// return exact cycle count
return time_point(duration(++tick)); // fake access to clock cycle count

}
};

template <long long speed>
struct approx_cycle_count
{

static const long long frequency = speed * 1000000; // MHz
typedef nanoseconds duration;
typedef duration::rep rep;
typedef duration::period period;
static const long long nanosec_per_sec = period::den;
typedef boost::chrono::time_point<approx_cycle_count> time_point;

static time_point now()
{

static long long tick = 0;
// return cycle count as an approximate number of nanoseconds
// compute as if nanoseconds is only duration in the std::lib
return time_point(duration(++tick * nanosec_per_sec / frequency));

}
};

See the source file cycle_count.cpp

xtime_clock

This example demonstrates the use of a timeval-like struct to be used as the representation type for both duration and time_point.

22

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/chrono/doc/html/../../../../libs/chrono/example/cycle_count.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

class xtime {
private:

long tv_sec;
long tv_usec;

void fixup() {
if (tv_usec < 0) {

tv_usec += 1000000;
--tv_sec;

}
}

public:
explicit xtime(long sec, long usec) {

tv_sec = sec;
tv_usec = usec;
if (tv_usec < 0 || tv_usec >= 1000000) {

tv_sec += tv_usec / 1000000;
tv_usec %= 1000000;
fixup();

}
}

explicit xtime(long long usec) {
tv_usec = static_cast<long>(usec % 1000000);
tv_sec = static_cast<long>(usec / 1000000);
fixup();

}

// explicit
operator long long() const {return static_cast<long long>(tv_sec) * 1000000 + tv_usec;}

xtime& operator += (xtime rhs) {
tv_sec += rhs.tv_sec;
tv_usec += rhs.tv_usec;
if (tv_usec >= 1000000) {

tv_usec -= 1000000;
++tv_sec;

}
return *this;

}

xtime& operator -= (xtime rhs) {
tv_sec -= rhs.tv_sec;
tv_usec -= rhs.tv_usec;
fixup();
return *this;

}

xtime& operator %= (xtime rhs) {
long long t = tv_sec * 1000000 + tv_usec;
long long r = rhs.tv_sec * 1000000 + rhs.tv_usec;
t %= r;
tv_sec = static_cast<long>(t / 1000000);
tv_usec = static_cast<long>(t % 1000000);
fixup();
return *this;

}

friend xtime operator+(xtime x, xtime y) {return x += y;}
friend xtime operator-(xtime x, xtime y) {return x -= y;}
friend xtime operator%(xtime x, xtime y) {return x %= y;}

23

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

friend bool operator==(xtime x, xtime y)
{ return (x.tv_sec == y.tv_sec && x.tv_usec == y.tv_usec); }

friend bool operator<(xtime x, xtime y) {
if (x.tv_sec == y.tv_sec)

return (x.tv_usec < y.tv_usec);
return (x.tv_sec < y.tv_sec);

}

friend bool operator!=(xtime x, xtime y) { return !(x == y); }
friend bool operator> (xtime x, xtime y) { return y < x; }
friend bool operator<=(xtime x, xtime y) { return !(y < x); }
friend bool operator>=(xtime x, xtime y) { return !(x < y); }

friend std::ostream& operator<<(std::ostream& os, xtime x)
{return os << '{' << x.tv_sec << ',' << x.tv_usec << '}';}

};

Clock based on timeval-like struct.

class xtime_clock
{
public:

typedef xtime rep;
typedef boost::micro period;
typedef boost::chrono::duration<rep, period> duration;
typedef boost::chrono::time_point<xtime_clock> time_point;

static time_point now()
{
#if defined(BOOST_CHRONO_WINDOWS_API)

time_point t(duration(xtime(0)));
gettimeofday((timeval*)&t, 0);
return t;

#elif defined(BOOST_CHRONO_MAC_API)

time_point t(duration(xtime(0)));
gettimeofday((timeval*)&t, 0);
return t;

#elif defined(BOOST_CHRONO_POSIX_API)
//time_point t(0,0);

timespec ts;
::clock_gettime(CLOCK_REALTIME, &ts);

xtime xt(ts.tv_sec, ts.tv_nsec/1000);
return time_point(duration(xt));

#endif // POSIX
}

};

Usage of xtime_clock

24

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

std::cout << "sizeof xtime_clock::time_point = " << sizeof(xtime_clock::time_point) << '\n';
std::cout << "sizeof xtime_clock::duration = " << sizeof(xtime_clock::duration) << '\n';
std::cout << "sizeof xtime_clock::rep = " << sizeof(xtime_clock::rep) << '\n';
xtime_clock::duration delay(boost::chrono::milliseconds(5));
xtime_clock::time_point start = xtime_clock::now();
while (xtime_clock::now() - start <= delay) {}
xtime_clock::time_point stop = xtime_clock::now();
xtime_clock::duration elapsed = stop - start;
std::cout << "paused " << boost::chrono::::nanoseconds(elapsed).count() << " nanoseconds\n";

See the source file example/timeval_demo.cpp

Time Point

min Utility

The user can define a function returning the earliest time_point as follows:

template <class Clock, class Duration1, class Duration2>
typename boost::common_type<time_point<Clock, Duration1>,

time_point<Clock, Duration2> >::type
min(time_point<Clock, Duration1> t1, time_point<Clock, Duration2> t2)
{

return t2 < t1 ? t2 : t1;
}

Being able to easily write this function is a major feature!

BOOST_AUTO(t1, system_clock::now() + seconds(3));
BOOST_AUTO(t2, system_clock::now() + nanoseconds(3));
BOOST_AUTO(t3, min(t1, t2));

See the source file example/min_time_point.cpp

25

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/chrono/doc/html/../../../../libs/chrono/example/timeval_demo.cpp
http://www.boost.org/doc/libs/release/libs/chrono/doc/html/../../../../libs/chrono/example/min_time_point.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

A Tiny Program that Times How Long Until a Key is Struck

#include <boost/chrono.hpp>
#include <iostream>
#include <iomanip>

using namespace boost::chrono;

template< class Clock >
class timer
{
typename Clock::time_point start;

public:
timer() : start(Clock::now()) {}
typename Clock::duration elapsed() const
{
return Clock::now() - start;

}
double seconds() const
{
return elapsed().count() * ((double)Clock::period::num/Clock::period::den);

}
};

int main()
{
timer<system_clock> t1;
timer<steady_clock> t2;
timer<high_resolution_clock> t3;

std::cout << "Type the Enter key: ";
std::cin.get();

std::cout << std::fixed << std::setprecision(9);
std::cout << "system_clock-----------: "

<< t1.seconds() << " seconds\n";
std::cout << "steady_clock--------: "

<< t2.seconds() << " seconds\n";
std::cout << "high_resolution_clock--: "

<< t3.seconds() << " seconds\n";

system_clock::time_point d4 = system_clock::now();
system_clock::time_point d5 = system_clock::now();

std::cout << "\nsystem_clock latency-----------: " << (d5 - d4).count() << std::endl;

steady_clock::time_point d6 = steady_clock::now();
steady_clock::time_point d7 = steady_clock::now();

std::cout << "steady_clock latency--------: " << (d7 - d6).count() << std::endl;

high_resolution_clock::time_point d8 = high_resolution_clock::now();
high_resolution_clock::time_point d9 = high_resolution_clock::now();

std::cout << "high_resolution_clock latency--: " << (d9 - d8).count() << std::endl;

std::time_t now = system_clock::to_time_t(system_clock::now());

std::cout << "\nsystem_clock::now() reports UTC is "
<< std::asctime(std::gmtime(&now)) << "\n";

return 0;
}

26

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The output of this program run looks like this:

See the source file example/await_keystroke.cpp

24 Hours Display

In the example above we take advantage of the fact that time_points convert as long as they have the same clock, and as long as
their internal durations convert. We also take advantage of the fact that a duration with a floating-point representation will
convert from anything. Finally the I/O system discovers the more readable "hours" unit for our duration<double, ratio<3600>>.

There are many other ways to format durations and time_points. For example see ISO 8601. Instead of coding every possibility
into operator<<, which would lead to significant code bloat for even the most trivial uses, this document seeks to inform the
reader how to write custom I/O when desired.

As an example, the function below streams arbitrary durations to arbitrary basic_ostreams using the format:

[-]d/hh:mm:ss.cc

Where:

• d is the number of days

• h is the number of hours

• m is the number of minutes

• ss.cc is the number of seconds rounded to the nearest hundreth of a second

1. include <boost/chrono/chrono_io.hpp>

2. include <ostream>

3. include <iostream>

27

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/chrono/doc/html/../../../../libs/chrono/example/await_keystroke.cpp
http://en.wikipedia.org/wiki/ISO_8601#Durations
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

// format duration as [-]d/hh::mm::ss.cc
template <class CharT, class Traits, class Rep, class Period>
std::basic_ostream<CharT, Traits>&
display(std::basic_ostream<CharT, Traits>& os,

boost::chrono::duration<Rep, Period> d)
{

using namespace std;
using namespace boost;

typedef boost::chrono::duration<long long, boost::ratio<86400> > days;
typedef boost::chrono::duration<long long, boost:centi> centiseconds;

// if negative, print negative sign and negate
if (d < boost::chrono::duration<Rep, Period>(0))
{

d = -d;
os << '-';

}
// round d to nearest centiseconds, to even on tie
centiseconds cs = boost::chrono::duration_cast<centiseconds>(d);
if (d - cs > boost::chrono::milliseconds(5)

|| (d - cs == boost::chrono::milliseconds(5) && cs.count() & 1))
++cs;

// separate seconds from centiseconds
boost::chrono::seconds s = boost::chrono::duration_cast<boost::chrono::seconds>(cs);
cs -= s;
// separate minutes from seconds
boost::chrono::minutes m = boost::chrono::duration_cast<boost::chrono::minutes>(s);
s -= m;
// separate hours from minutes
boost::chrono::hours h = boost::chrono::duration_cast<boost::chrono::hours>(m);
m -= h;
// separate days from hours
days dy = boost::chrono::duration_cast<days>(h);
h -= dy;
// print d/hh:mm:ss.cc
os << dy.count() << '/';
if (h < boost::chrono::hours(10))

os << '0';
os << h.count() << ':';
if (m < boost::chrono::minutes(10))

os << '0';
os << m.count() << ':';
if (s < boost::chrono::seconds(10))

os << '0';
os << s.count() << '.';
if (cs < boost::chrono::centiseconds(10))

os << '0';
os << cs.count();
return os;

}

int main()
{

using namespace std;
using namespace boost;

display(cout, boost::chrono::steady_clock::now().time_since_epoch()
+ boost::chrono::duration<long, boost::mega>(1)) << '\n';

display(cout, -boost::chrono::milliseconds(6)) << '\n';
display(cout, boost::chrono::duration<long, boost::mega>(1)) << '\n';
display(cout, -boost::chrono::duration<long, boost::mega>(1)) << '\n';

}

28

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

The output could be:

12/06:03:22.95
-0/00:00:00.01
11/13:46:40.00
-11/13:46:40.00

Simulated Thread Interface Demonstration Program

The C++0x standard library's multi-threading library requires the ability to deal with the representation of time in a manner consistent
with modern C++ practices. Next is a simulation of this interface.

The non-member sleep functions can be emulated as follows:

namespace boost { namespace this_thread {

template <class Rep, class Period>
void sleep_for(const chrono::duration<Rep, Period>& d) {

chrono::microseconds t = chrono::duration_cast<chrono::microseconds>(d);
if (t < d)

++t;
if (t > chrono::microseconds(0))

std::cout << "sleep_for " << t.count() << " microseconds\n";
}

template <class Clock, class Duration>
void sleep_until(const chrono::time_point<Clock, Duration>& t) {

using namespace chrono;
typedef time_point<Clock, Duration> Time;
typedef system_clock::time_point SysTime;
if (t > Clock::now()) {

typedef typename common_type<typename Time::duration,
typename SysTime::duration>::type D;

/* auto */ D d = t - Clock::now();
microseconds us = duration_cast<microseconds>(d);
if (us < d)

++us;
SysTime st = system_clock::now() + us;
std::cout << "sleep_until ";
detail::print_time(st);

std::cout << " which is " << (st - system_clock::now()).count() << " microseconds away\n";
}

}

}}

Next is the boost::thread::timed_mutex modified fuctions

29

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
struct timed_mutex {

// ...

template <class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& d) {

chrono::microseconds t = chrono::duration_cast<chrono::microseconds>(d);
if (t <= chrono::microseconds(0))

return try_lock();
std::cout << "try_lock_for " << t.count() << " microseconds\n";
return true;

}

template <class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& t)
{

using namespace chrono;
typedef time_point<Clock, Duration> Time;
typedef system_clock::time_point SysTime;
if (t <= Clock::now())

return try_lock();
typedef typename common_type<typename Time::duration,
typename Clock::duration>::type D;

/* auto */ D d = t - Clock::now();
microseconds us = duration_cast<microseconds>(d);
SysTime st = system_clock::now() + us;
std::cout << "try_lock_until ";
detail::print_time(st);
std::cout << " which is " << (st - system_clock::now()).count()
<< " microseconds away\n";

return true;
}

};
}

boost::thread::condition_variable time related function are modified as follows:

30

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
struct condition_variable
{

// ...

template <class Rep, class Period>
bool wait_for(mutex&, const chrono::duration<Rep, Period>& d) {

chrono::microseconds t = chrono::duration_cast<chrono::microseconds>(d);
std::cout << "wait_for " << t.count() << " microseconds\n";
return true;

}

template <class Clock, class Duration>
bool wait_until(mutex&, const chrono::time_point<Clock, Duration>& t) {

using namespace boost::chrono;
typedef time_point<Clock, Duration> Time;
typedef system_clock::time_point SysTime;
if (t <= Clock::now())

return false;
typedef typename common_type<typename Time::duration,
typename Clock::duration>::type D;

/* auto */ D d = t - Clock::now();
microseconds us = duration_cast<microseconds>(d);
SysTime st = system_clock::now() + us;
std::cout << "wait_until ";

detail::print_time(st);
std::cout << " which is " << (st - system_clock::now()).count()
<< " microseconds away\n";

return true;
}

};
}

Next follows how simple is the usage of this functions:

boost::mutex m;
boost::timed_mutex mut;
boost::condition_variable cv;

using namespace boost;

this_thread::sleep_for(chrono::seconds(3));
this_thread::sleep_for(chrono::nanoseconds(300));
chrono::system_clock::time_point time_limit = chrono::sys↵
tem_clock::now() + chrono::__seconds_(4) + chrono::milliseconds(500);
this_thread::sleep_until(time_limit);

mut.try_lock_for(chrono::milliseconds(30));
mut.try_lock_until(time_limit);

cv.wait_for(m, chrono::minutes(1)); // real code would put this in a loop
cv.wait_until(m, time_limit); // real code would put this in a loop

// For those who prefer floating-point
this_thread::sleep_for(chrono::duration<double>(0.25));
this_thread::sleep_until(chrono::system_clock::now() + chrono::duration<double>(1.5));

See the source file example/simulated_thread_interface_demo.cpp

31

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/chrono/doc/html/../../../../libs/chrono/example/simulated_thread_interface_demo.cpp
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

IO

French Output

Example use of output in French

#include <boost/chrono/chrono_io.hpp>
#include <iostream>
#include <locale>

int main()
{

using namespace std;
using namespace boost;
using namespace boost::chrono;

cout.imbue(locale(locale(), new duration_punct<char>
(

duration_punct<char>::use_long,
"secondes", "minutes", "heures",
"s", "m", "h"

)));
hours h(5);
minutes m(45);
seconds s(15);
milliseconds ms(763);
cout << h << ", " << m << ", " << s << " et " << ms << '\n';

}

Output is:

5 heures, 45 minutes, 15 secondes et 763 millisecondes

See the source file example/french.cpp

External Resources

C++ Standards Committee's cur-
rent Working Paper

The most authoritative reference material for the library is the C++ Standards Committee's
current Working Paper (WP). 20.11 Time utilities "time"

N2661 - A Foundation to Sleep On From Howard E. Hinnant, Walter E. Brown, Jeff Garland and Marc Paterno. Is very inform-
ative and provides motivation for key design decisions

LGW 934. duration is missing op-
erator%

From Terry Golubiewski. Is very informative and provides motivation for key design decisions

LGW 935. clock error handling
needs to be specified

From Beman Dawes. This issue has been stated as NAD Future.

32

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.boost.org/doc/libs/release/libs/chrono/doc/html/../../../../libs/chrono/example/french.cpp
http://www.open-std.org/jtc1/sc22/wg21
http://www.open-std.org/jtc1/sc22/wg21
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2661.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3134.html#934
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3134.html#934
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3135.html#935
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3135.html#935
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Reference
As constexpr will not be supported by some compilers, it is replaced in the code by BOOST_CHRONO_CONSTEXPR for cons-
texpr functions and BOOST_CHRONO_STATIC_CONSTEXPR for struct/class static fields. The same applies to noexecpt which
is replaced by BOOST_CHRONO_NOEXCEPT in the code.

The documentation doesn't use these macros.

Header <boost/chrono/include.hpp>

Include all the chrono header files.

#include <boost/chrono/chrono.hpp>
#include <boost/chrono/chrono_io.hpp>
#include <boost/chrono/process_cpu_clocks.hpp>
#include <boost/chrono/thread_clocks.hpp>
#include <boost/chrono/ceil.hpp>
#include <boost/chrono/floor.hpp>
#include <boost/chrono/round.hpp>

Included on the C++11 Recommendation

Header <boost/chrono.hpp>

Include only the standard files.

#include <boost/chrono/chrono.hpp>

Header <boost/chrono.hpp>

Include only the standard files.

#include <boost/chrono/duration.hpp>
#include <boost/chrono/time_point.hpp>
#include <boost/chrono/system_clocks.hpp>
#include <boost/chrono/typeof/boost/chrono/chrono.hpp>

Limitations and Extensions

Next follows some limitation respect to the C++0x recomendations:

The current implementation provides in addition:

• clock error handling as specified in clock error handling needs to be specified.

• process and thread clocks.

Configuration Macros

How Assert Behaves?

When BOOST_NO_STATIC_ASSERT is defined, the user can select the way static assertions are reported. Define

• BOOST_CHRONO_USES_STATIC_ASSERT: define it if you want to use Boost.StaticAssert.

• BOOST_CHRONO_USES_MPL_ASSERT: define it if you want to use Boost.MPL static asertions.

33

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3135.html#935
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• BOOST_CHRONO_USES_ARRAY_ASSERT: define it if you want to use internal static asertions.

The default behavior is as BOOST_CHRONO_USES_ARRAY_ASSERT was defined.

When BOOST_CHRONO_USES_MPL_ASSERT is not defined the following symbols are defined as

#define BOOST_CHRONO_A_DURATION_REPRESENTATION_CAN_NOT_BE_A_DURATION \
"A duration representation can not be a duration"

#define BOOST_CHRONO_SECOND_TEMPLATE_PARAMETER_OF_DURATION_MUST_BE_A_STD_RATIO \
"Second template parameter of duration must be a boost::ratio"

#define BOOST_CHRONO_DURATION_PERIOD_MUST_BE_POSITIVE \
"duration period must be positive"

#define BOOST_CHRONO_SECOND_TEMPLATE_PARAMETER_OF_TIME_POINT_MUST_BE_A_BOOST_CHRONO_DURATION \
"Second template parameter of time_point must be a boost::chrono::duration"

Depending on the static assertion used system you will have an hint of the failing assertion either through the symbol or through the
text.

Don't provide Hybrid Error Handling

When BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING is defined the lib don't provides the hybrid error handling
prototypes:

Clock::time_point Clock::now(system::error_code&ec=boost::thows());

This allow to be closer to the standard and to avoid the Boost.System dependency, making possible to have Boost.Chrono as a
header-only library.

How to Build Boost.Chrono as a Header Only Library?

When BOOST_CHRONO_HEADER_ONLY is defined the lib is header-only.

If in addition BOOST_USE_WINDOWS_H is defined <windows.h> is included, otherwise files in boost/detail/win are used to
reduce the impact of including <windows.h>.

However, you will either need to define BOOST_CHRONO_DONT_PROVIDE_HYBRID_ERROR_HANDLING or link with Boost.System.

Header <boost/chrono/duration.hpp>

This file contains duration specific classes and non-member functions.

34

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace chrono {

template <class Rep, class Period = ratio<1> > class duration;

}
template <class Rep1, class Period1, class Rep2, class Period2>
struct common_type<duration<Rep1, Period1>,

duration<Rep2, Period2> >;

namespace chrono {

// customization traits
template <class Rep> struct treat_as_floating_point;
template <class Rep> struct duration_values;

// duration arithmetic
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type
operator+(

const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type
operator-(

const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period, class Rep2>
constexpr
duration<typename common_type<Rep1, Rep2>::type, Period>
operator*(

const duration<Rep1, Period>& d,
const Rep2& s);

template <class Rep1, class Period, class Rep2>
constexpr
duration<typename common_type<Rep1, Rep2>::type, Period>
operator*(

const Rep1& s,
const duration<Rep2, Period>& d);

template <class Rep1, class Period, class Rep2>
constexpr
duration<typename common_type<Rep1, Rep2>::type, Period>
operator/(

const duration<Rep1, Period>& d,
const Rep2& s);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr
typename common_type<Rep1, Rep2>::type
operator/(

const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

#ifdef BOOST_CHRONO_EXTENSIONS
// Used to get frecuency of events
template <class Rep1, class Rep2, class Period>
constexpr

35

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

double operator/(
const Rep1& s,
const duration<Rep2, Period>& d);

#endif

// duration comparisons
template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator==(

const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator!=(

const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool __duration__op_le_1(

const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator<=(

const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>(

const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr bool operator>=(

const duration<Rep1, Period1>& lhs,
const duration<Rep2, Period2>& rhs);

// duration_cast

template <class ToDuration, class Rep, class Period>
constexpr
ToDuration duration_cast(const duration<Rep, Period>& d);

// convenience typedefs
typedef duration<boost::int_least64_t, nano> nanoseconds; // at least 64 bits needed
typedef duration<boost::int_least64_t, micro> microseconds; // at least 55 bits needed
typedef duration<boost::int_least64_t, milli> milliseconds; // at least 45 bits needed
typedef duration<boost::int_least64_t> seconds; // at least 35 bits needed
typedef duration<boost::int_least32_t, ratio< 60> > minutes; // at least 29 bits needed
typedef duration<boost::int_least32_t, ratio<3600> > hours; // at least 23 bits needed

}
}

Time-related Traits

Metafunction treat_as_floating_point<>

template <class Rep> struct treat_as_floating_point
: boost::is_floating_point<Rep> {};

The duration template uses the treat_as_floating_point trait to help determine if a duration with one tick period can be
converted to another duration with a different tick period. If treat_as_floating_point<Rep>::value is true, then Rep is
a floating-point type and implicit conversions are allowed among durations. Otherwise, the implicit convertibility depends on the

36

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

tick periods of the durations. If Rep is a class type which emulates a floating-point type, the author of Rep can specialize
treat_as_floating_point so that duration will treat this Rep as if it were a floating-point type. Otherwise Rep is assumed
to be an integral type, or a class emulating an integral type.

Class Template duration_values

template <class Rep>
struct duration_values
{
public:

static constexpr Rep zero();
static constexpr Rep max();
static constexpr Rep min();

};

The duration template uses the duration_values trait to construct special values of the duration's representation (Rep). This
is done because the representation might be a class type with behavior which requires some other implementation to return these
special values. In that case, the author of that class type should specialize duration_values to return the indicated values.

Static Member Function zero()

static constexpr Rep zero();

Returns: Rep(0). Note: Rep(0) is specified instead of Rep() since Rep() may have some other meaning, such as an uninitialized
value.

Remarks: The value returned corresponds to the additive identity.

Static Member Function max()

static constexpr Rep max();

Returns: numeric_limits<Rep>::max().

Remarks: The value returned compares greater than zero().

Static Member Function min()

static constexpr Rep min();

Returns: numeric_limits<Rep>::lowest().

Remarks: The value returned compares less than or equal to zero().

common_type Specialization

template <class Rep1, class Period1, class Rep2, class Period2>
struct common_type<chrono::duration<Rep1, Period1>, chrono::duration<Rep2, Period2> >
{

typedef chrono::duration<typename common_type<Rep1, Rep2>::type, see bellow> type;
};

The period of the duration indicated by this specialization of common_type is the greatest common divisor of Period1 and
Period2. This can be computed by forming a ratio of the greatest common divisor of Period1::num and Period2::num, and
the least common multiple of Period1::den and Period2::den.

37

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Note: The typedef type is the duration with the largest tick period possible where both duration arguments will convert to it
without requiring a division operation. The representation of this type is intended to be able to hold any value resulting from this
conversion, with the possible exception of round-off error when floating-point durations are involved (but not truncation error).

Class Template duration<>

A duration measures time between two points in time (time_point). A duration has a representation which holds a count of
ticks, and a tick period. The tick period is the amount of time which occurs from one tick to another in units of a second. It is expressed
as a rational constant using ratio.

namespace boost { namespace chrono {

template <class Rep, class Period>
class duration {
public:

typedef Rep rep;
typedef Period period;

private:
rep rep_; // exposition only

public:
constexpr duration();
template <class Rep2>
constexpr explicit duration(const Rep2& r);

template <class Rep2, class Period2>
constexpr duration(const duration<Rep2, Period2>& d);

duration& operator=(const duration&) = default;

constexpr rep count() const;

constexpr duration __duration__op_plus();
constexpr duration __duration__op_minus();
duration& operator++();
duration operator++(int);
duration& operator--();
duration operator--(int);

duration& operator+=(const duration& d);
duration& operator-=(const duration& d);

duration& operator*==(const rep& rhs);
duration& operator/=(const rep& rhs);
duration& operator%=(const rep& rhs);
duration& operator%=(const duration& rhs);

static constexpr duration zero();
static constexpr duration min();
static constexpr duration max();

};

}}

Rep must be an arithmetic type, or a class emulating an arithmetic type, compile diagnostic otherwise. If duration is instantiated
with the type of Rep being a duration, compile diagnostic is issued.

Period must be an instantiation of ratio, compile diagnostic otherwise.

Period::num must be positive, compile diagnostic otherwise.

Examples:

38

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• duration<long, ratio<60> > holds a count of minutes using a long.

• duration<long long, milli> holds a count of milliseconds using a long long.

• duration<double, ratio<1, 30> > holds a count using a double with a tick period of 1/30 second (a tick frequency of 30
Hz).

The following members of duration do not throw an exception unless the indicated operations on the representations throw an
exception.

Constructor duration()

constexpr duration();

Effects: Constructs an object of type duration from duration_values<rep>::zero().

Constructor duration(const Rep2&)

template <class Rep2>
constexpr explicit duration(const Rep2& r);

Remarks: Rep2 is implicitly convertible to rep, and

• treat_as_floating_point<rep>::value is true, or

• !treat_as_floating_point<rep>::value && !treat_as_floating_point<Rep2>::value is true.

If these constraints are not met, this constructor will not participate in overload resolution. Note: This requirement prevents construction
of an integral-based duration with a floating-point representation. Such a construction could easily lead to confusion about the
value of the duration.

Example:

duration<int, milli> d(3.5); // do not compile
duration<int, milli> d(3); // ok

Effects: Constructs an object of type duration.

PostConditions: count() == static_cast<rep>(r).

Constructor duration(const duration&)

template <class Rep2, class Period2>
constexpr duration(const duration<Rep2, Period2>& d);

Remarks: treat_as_floating_point<rep>::value, or ratio_divide<Period2, period>::type::den == 1, else this
constructor will not participate in overload resolution. note This requirement prevents implicit truncation error when converting
between integral-based durations. Such a construction could easily lead to confusion about the value of the duration.

Example:

duration<int, milli> ms(3);
duration<int, micro> us = ms; // ok
duration<int, milli> ms2 = us; // do not compile

Effects: Constructs an object of type duration, constructing rep_ from duration_cast<duration>(d).count().

39

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Function count() const

constexpr rep count() const;

Returns: rep_.

Member Function operator+() const

constexpr duration operator+() const;

Returns: *this.

Member Function operator-() const

constexpr duration operator-() const;

Returns: duration(-rep_).

Member Function operator++()

duration& operator++();

Effects: ++rep_.

Returns: *this.

Member Function operator++(int)

duration operator++(int);

Returns: duration(rep_++).

Member Function operator--()

duration& operator--();

Effects: --rep_.

Returns: *this.

Member Function operator--(int)

duration operator--(int);

Returns: duration(rep_--).

Member Function operator+=(const duration&)

duration& operator+=(const duration& d);

Effects: rep_ += d.count().

Returns: *this.

40

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Function operator-=(const duration&)

duration& operator-=(const duration& d);

Effects: rep_ -= d.count().

Returns: *this.

Member Function operator%=(const duration&)

duration& operator%=(const duration& d);

Effects: rep_ %= d.count().

Returns: *this.

Member Function operator*=(const rep&)

duration& operator*=(const rep& rhs);

Effects: rep_ *= rhs.

Returns: *this.

Member Function operator/=(const rep&)

duration& operator/=(const rep& rhs);

Effects: rep_ /= rhs.

Returns: *this.

Member Function operator%=(const rep&)

duration& operator%=(const rep& rhs);

Effects: rep_ %= rhs.

Returns: *this.

Static Member Function zero()

static constexpr duration zero();

Returns: duration(duration_values<rep>::zero()).

Static Member Function min()

static constexpr duration min();

Returns: duration(duration_values<rep>::min()).

Static Member Function max()

static constexpr duration max();

41

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns: duration(duration_values<rep>::max()).

duration Non-Member Arithmetic

Non-Member Function operator+(duration,duration)

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type
operator+(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

Returns: CD(CD(lhs).count() + CD(rhs).count()) where CD is the type of the return value.

Non-Member Function operator-(duration,duration)

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type
operator-(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

Returns: CD(CD(lhs).count() - CD(rhs).count()) where CD is the type of the return value.

Non-Member Function operator*(duration,Rep1)

template <class Rep1, class Period, class Rep2>
constexpr
duration<typename common_type<Rep1, Rep2>::type, Period>
operator*(const duration<Rep1, Period>& d, const Rep2& s);

Requires: Let CR represent the common_type of Rep1 and Rep2. This function will not participate in overload resolution unless
both Rep1 and Rep2 are implicitly convertible to CR.

Returns: CD(CD(d).count() * s) where CD is the type of the return value.

Non-Member Function operator*(Rep1,duration)

template <class Rep1, class Period, class Rep2>
constexpr
duration<typename common_type<Rep1, Rep2>::type, Period>
operator*(const Rep1& s, const duration<Rep2, Period>& d);

Requires: Let CR represent the common_type of Rep1 and Rep2. This function will not participate in overload resolution unless
both Rep1 and Rep2 are implicitly convertible to CR.

Returns: d * s.

Non-Member Function operator/(duration,Rep2)

template <class Rep1, class Period, class Rep2>
constexpr
duration<typename common_type<Rep1, Rep2>::type, Period>
operator/(const duration<Rep1, Period>& d, const Rep2& s);

Requires: Let CR represent the common_type of Rep1 and Rep2. This function will not participate in overload resolution unless
both Rep1 and Rep2 are implicitly convertible to CR, and Rep2 is not an instantiation of duration.

Returns: CD(CD(d).count() / s) where CD is the type of the return value.

42

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-Member Function operator/(duration,duration)

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr
typename common_type<Rep1, Rep2>::type
operator/(const duration<Rep1, Period1>& lhs, const duration<Rep2, Period2>& rhs);

Remarks: Let CD represent the common_type of the two duration arguments. Returns: Returns CD(lhs).count() /

CD(rhs).count().

Non-Member Function operator/(Rep1,duration)

Included only if BOOST_CHRONO_EXTENSIONS is defined.

This overloading could be used to get the frequency of an event counted by Rep1.

template <class Rep1, class Rep2, class Period>
constexpr
double operator/(const Rep1& s, const duration<Rep2, Period>& d);

Remarks: Let CR represent the common_type of Rep1 and Rep2. This function will not participate in overload resolution unless
both Rep1 and Rep2 are implicitly convertible to CR, and Rep1 is not an instantiation of duration. Let CD represent dura-
tion<CR,Period>.

Returns: CR(s)/CD(d).count() where CD is the type of the return value.

Non-Member Function operator%(duration,Rep2)

template <class Rep1, class Period, class Rep2>
constexpr
duration<typename common_type<Rep1, Rep2>::type, Period>
operator%(const duration<Rep1, Period>& d, const Rep2& s);

Remarks: Let CR represent the common_type of Rep1 and Rep2. This function will not participate in overload resolution unless
Rep2 must be implicitly convertible to CR and Rep2 must not be an instantiation of duration.

Returns: CD(CD(d).count() % s) where CD is the type of the return value.

Non-Member Function operator%(duration,duration)

template <class Rep1, class Period1, class Rep2, class Period2>
constexpr
typename common_type<duration<Rep1, Period1>, duration<Rep2, Period2> >::type
operator%(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

Remarks: This function will not participate in overload resolution unless

Returns: CD(CD(lhs).count() % CD(rhs).count()) where CD is the type of the return value.

duration Non-Member Comparaisons

Non-Member Function operator==(duration,duration)

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator==(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

43

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns: Let CD represent the common_type of the two duration arguments.

Returns: Returns CD(lhs).count() == CD(rhs).count()

Non-Member Function operator!=(duration,duration)

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator!=(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

Returns: !(lhs == rhs).

Non-Member Function operator<(duration,duration)

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator< (const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

Returns: Let CD represent the common_type of the two duration arguments. Returns CD(lhs).count() < CD(rhs).count()

Non-Member Function operator<=(duration,duration)

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator<=(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

Returns: !(rhs < lhs).

Non-Member Function operator>(duration,duration)

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator> (const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

Returns: rhs < lhs.

Non-Member Function operator>=(duration,duration)

template <class Rep1, class Period1, class Rep2, class Period2>
bool operator>=(const duration<Rep1, Period1>& lhs,

const duration<Rep2, Period2>& rhs);

Returns: !(lhs < rhs).

Non-Member Function duration_cast(duration)

template <class ToDuration, class Rep, class Period>
ToDuration duration_cast(const duration<Rep, Period>& d);

Requires: This function will not participate in overload resolution unless ToDuration is an instantiation of duration.

Returns: Forms CF which is a ratio resulting from ratio_divide<Period, typename ToDuration::period>::type. Let
CR be the common_type of ToDuration::rep, Rep, and intmax_t.

• If CF::num == 1 and CF::den == 1, then returns ToDuration(static_cast<typename ToDuration::rep>(d.count()))

44

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• else if CF::num != 1 and CF::den == 1, then returns ToDuration(static_cast<typename ToDuration::rep>(stat-

ic_cast<CR>(d.count()) * static_cast<CR>(CF::num)))

• else if CF::num == 1 and CF::den != 1, then returns ToDuration(static_cast<typename ToDuration::rep>(stat-

ic_cast<CR>(d.count()) / static_cast<CR>(CF::den)))

• else returns ToDuration(static_cast<typename ToDuration::rep>(static_cast<CR>(d.count()) * stat-

ic_cast<CR>(CF::num) / static_cast<CR>(CF::den)))

Remarks: This function does not rely on any implicit conversions. All conversions must be accomplished through static_cast.
The implementation avoids all multiplications or divisions when it is known at compile-time that it can be avoided because one or
more arguments are 1. All intermediate computations are carried out in the widest possible representation and only converted to the
destination representation at the final step.

duration typedefs

// convenience typedefs
typedef duration<boost::int_least64_t, nano> nanoseconds; // at least 64 bits needed
typedef duration<boost::int_least64_t, micro> microseconds; // at least 55 bits needed
typedef duration<boost::int_least64_t, milli> milliseconds; // at least 45 bits needed
typedef duration<boost::int_least64_t> seconds; // at least 35 bits needed
typedef duration<boost::int_least32_t, ratio< 60> > minutes; // at least 29 bits needed
typedef duration<boost::int_least32_t, ratio<3600> > hours; // at least 23 bits needed

Clock Requirements

A clock represents a bundle consisting of a duration, a time_point, and a function now() to get the current time_point. A
clock must meet the requirements in the following Table.

In this table C1 and C2 denote Clock types. t1 and t2 are values returned from C1::now() where the call returning t1 happens
before the call returning t2 and both of these calls occur before C1::time_point::max(). (note This means C1 did not wrap
around between t1 and t2.).

Table 1. Clock Requirements

operational semanticsreturn typeexpression

The representation type of the duration
and time_point.

An arithmetic type or class emulating an
arithmetic type.

C1::rep

The tick period of the clock in seconds.ratioC1::period

The duration type of the clock.chrono::duration<C1::rep,

C1::period>

C1::duration

The time_point type of the clock.
Different clocks are permitted to share a
time_point definition if it is valid to
compare their time_points by comparing
their respective durations. C1 and C2
must refer to the same epoch.

chrono::time_point<C1> or

chrono::time_point<C2, C1::dur-

ation>

C1::time_point

true if t1 <= t2 is always true, else
false. Note: A clock that can be adjus-
ted backwards is not steady

constexpr boolC1::is_steady

Returns a time_point representing the
current point in time.

C1::time_pointC1::now()

45

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Models of Clock:

• system_clock

• steady_clock

• high_resolution_clock

• process_real_cpu_clock

• process_user_cpu_clock

• process_system_cpu_clock

• process_cpu_clock

• thread_clock

TrivialClock Requirements

A type TC meets the TrivialClock requirements if:

• TC satisfies the Clock requirements,

• the types TC::rep, TC::duration, and TC::time_point satisfy the requirements of EqualityComparable, LessThanCom-
parable, DefaultConstructible, CopyConstructible, CopyAssignable, Destructible, and the requirements of nu-
meric types.

Note

This means, in particular, that operations on these types will not throw exceptions.

• lvalues of the types TC::rep, TC::duration, and TC::time_point are swappable,

• the function TC::now() does not throw exceptions, and

• the type TC::time_point::clock meets the TrivialClock requirements, recursively.

Models of TrivialClock:

• system_clock

• steady_clock

• high_resolution_clock

• process_real_cpu_clock

• process_user_cpu_clock

• process_system_cpu_clock

• thread_clock

EcClock Requirements

A type EcC meets the EcClock requirements if

• TC satisfies the TrivialClock requirements, and

46

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• it add now() interfaces allowing to recover internal error codes as described in the following table.

In this table C1 denotes a EcClock type and ec is an instance of a boost::system::error_code.

Table 2. Clock Requirements

operational semanticsreturn typeexpression

Returns a time_point representing the
current point in time. ec will stores the
error-code in case something was wrong
internally.

C1::time_pointC1::now(ec)

Returns a time_point representing the
current point in time. Throws a
boost::system::system_error ex-
ception in case something was wrong in-
ternally.

C1::time_pointC1::now(boost::throws())

Models of Clock:

• system_clock

• steady_clock

• high_resolution_clock

• process_real_cpu_clock

• process_user_cpu_clock

• process_system_cpu_clock

• process_cpu_clock

• thread_clock

Header <boost/chrono/time_point.hpp>

This file contains time_point specific classes and non-member functions.

47

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

namespace boost {
namespace chrono {

template <class Clock, class Duration = typename Clock::duration>
class time_point;

}
template <class Clock, class Duration1, class Duration2>
struct common_type<time_point<Clock, Duration1>,

time_point<Clock, Duration2> >;

namespace chrono {

// time_point arithmetic
template <class Clock, class Duration1, class Rep2, class Period2>
constexpr time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2> >::type>
operator+(const time_point<Clock, Duration1>& lhs,

const duration<Rep2, Period2>& rhs);

template <class Rep1, class Period1, class Clock, class Duration2>
constexpr time_point<Clock, typename common_type<duration<Rep1, Period1>, Duration2>::type>
operator+(const duration<Rep1, Period1>& lhs,

const time_point<Clock, Duration2>& rhs);

template <class Clock, class Duration1, class Rep2, class Period2>
constexpr time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2> >::type>
operator-(const time_point<Clock, Duration1>& lhs,

const duration<Rep2, Period2>& rhs);

template <class Clock, class Duration1, class Duration2>
constexpr typename common_type<Duration1, Duration2>::type
operator-(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

// time_point comparisons
template <class Clock, class Duration1, class Duration2>
constexpr bool
operator==(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>
constexpr bool
operator!=(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>
constexpr bool
operator<(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>
constexpr bool
operator<=(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>
constexpr bool
operator>(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);
template <class Clock, class Duration1, class Duration2>
constexpr bool
operator>=(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

// time_point_cast

48

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class ToDuration, class Clock, class Duration>
constexpr time_point<Clock, ToDuration>
time_point_cast(const time_point<Clock, Duration>& t);

}
}

common_type specialization

template <class Clock, class Duration1, class Duration2>
struct common_type<chrono::time_point<Clock, Duration1>, chrono::time_point<Clock, Duration2> >
{

typedef chrono::time_point<Clock, typename common_type<Duration1, Duration2>::type> type;
};

The common_type of two time_points is a time_point with the same Clock (both have the same Clock), and the common_type
of the two durations.

Class template time_point<>

A time_point represents a point in time with respect to a specific clock.

49

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class Clock, class Duration>
class time_point {
public:

typedef Clock clock;
typedef Duration duration;
typedef typename duration::rep rep;
typedef typename duration::period period;

private:
duration d_; // exposition only

public:
constexpr time_point();

constexpr explicit time_point(const duration& d);

// conversions
template <class Duration2>
constexpr
time_point(const time_point<clock, Duration2>& t);

// observer
constexpr duration time_since_epoch() const;

// arithmetic

#ifdef BOOST_CHRONO_EXTENSIONS
constexpr time_point operator+();
constexpr time_point operator-();
time_point& operator++();
time_point operator++(int);
time_point& operator--();
time_point operator--(int);

time_point& __time_point__op_plus_eq_1(const rep& d);
time_point& operator-=(const rep& d);
#endif

time_point& __time_point__op_plus_eq_2(const duration& d);
time_point& operator-=(const duration& d);

// special values

static constexpr time_point min();
static constexpr time_point max();

};

Clock must meet the Clock requirements.

Duration must be an instantiation of duration, compile diagnostic otherwise.

Constructor time_point()

constexpr time_point();

Effects: Constructs an object of time_point, initializing d_ with duration::zero(). This time_point represents the epoch.

Constructor time_point(const duration&)

constexpr time_point(const duration& d);

Effects: Constructs an object of time_point, initializing d_ with d. This time_point represents the epoch + d.

50

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Copy Constructor time_point(const time_point&)

template <class Duration2>
constexpr
time_point(const time_point<clock, Duration2>& t);

Requires: This function will not participate in overload resolution unless Duration2 is implicitly convertible to duration.

Effects: Constructs an object of time_point, initializing d_ with t.time_since_epoch().

Member Function time_since_epoch() const

constexpr duration time_since_epoch() const;

Returns: d_.

Member Function operator+() const

constexpr time_point operator+() const;

Returns: *this.

Member Function operator-() const

constexpr time_point operator-() const;

Returns: time_point(-d_).

Member Function operator++()

time_point& operator++();

Effects: ++d_.

Returns: *this.

Member Function operator++(int)

time_point operator++(int);

Returns: time_point(d_++).

Member Function operator--()

time_point& operator--();

Effects: --d_.

Returns: *this.

Member Function operator--(int)

time_point operator--(int);

Returns: time_point(d_--).

51

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Member Function operator+=(const rep&)

time_point& operator+=(const rep& r);

Effects: d_ += duration(r).

Returns: *this.

Member Function operator-=(const rep&)

time_point& operator-=(const rep& r);

Effects: d_ -= duration(r)

Returns: *this.

Member Function operator+=

time_point& operator+=(const duration& d);

Effects: d_ += d.

Returns: *this.

Member Function operator-=

time_point& operator-=(const duration& d);

Effects: d_ -= d

Returns: *this.

Static Member Function min

static constexpr time_point min();

Returns: time_point(duration::min()).

Static Member Function max

static constexpr time_point max();

Returns: time_point(duration::max()).

time_point non-member arithmetic

Non-Member Function operator+(time_point,duration)

template <class Clock, class Duration1, class Rep2, class Period2>
constexpr
time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2> >::type>
operator+(const time_point<Clock, Duration1>& lhs,

const duration<Rep2, Period2>& rhs);

Returns: CT(lhs.time_since_epoch() + rhs) where CT is the type of the return value.

52

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Non-Member Function operator+(duration,time_point)

template <class Rep1, class Period1, class Clock, class Duration2>
constexpr
time_point<Clock, typename common_type<duration<Rep1, Period1>, Duration2>::type>
operator+(const duration<Rep1, Period1>& lhs,

const time_point<Clock, Duration2>& rhs);

Returns: rhs + lhs.

Non-Member Function operator-(time_point,duration)

template <class Clock, class Duration1, class Rep2, class Period2>
constexpr
time_point<Clock, typename common_type<Duration1, duration<Rep2, Period2> >::type>
operator-(const time_point<Clock, Duration1>& lhs,

const duration<Rep2, Period2>& rhs);

Returns: lhs + (-rhs).

Non-Member Function operator-(time_point,time_point)

template <class Clock, class Duration1, class Duration2>
constexpr
typename common_type<Duration1, Duration2>::type
operator-(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

Returns: lhs.time_since_epoch() - rhs.time_since_epoch().

time_point non-member comparisons

Non-Member Function operator==(time_point,time_point)

template <class Clock, class Duration1, class Duration2>
constexpr
bool operator==(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

Returns: lhs.time_since_epoch() == rhs.time_since_epoch().

Non-Member Function operator!=(time_point,time_point)

template <class Clock, class Duration1, class Duration2>
constexpr
bool operator!=(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

Returns: !(lhs == rhs).

Non-Member Function operator<(time_point,time_point)

template <class Clock, class Duration1, class Duration2>
constexpr
bool operator< (const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

53

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Returns: lhs.time_since_epoch() < rhs.time_since_epoch().

Non-Member Function operator<=(time_point,time_point)

template <class Clock, class Duration1, class Duration2>
constexpr
bool operator<=(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

Returns: !(rhs < lhs).

Non-Member Function operator>(time_point,time_point)

template <class Clock, class Duration1, class Duration2>
constexpr
bool operator>(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

Returns: rhs < lhs.

Non-Member Function operator>=(time_point,time_point)

template <class Clock, class Duration1, class Duration2>
constexpr
bool operator>=(const time_point<Clock, Duration1>& lhs,

const time_point<Clock, Duration2>& rhs);

Returns: !(lhs < rhs).

Non-Member Function time_point_cast(time_point)

template <class ToDuration, class Clock, class Duration>
constexpr
time_point<Clock, ToDuration> time_point_cast(const time_point<Clock, Duration>& t);

Requires: This function will not participate in overload resolution unless ToDuration is an instantiation of duration.

Returns: time_point<Clock, ToDuration>(duration_cast<ToDuration>(t.time_since_epoch())).

Header <boost/chrono/system_clocks.hpp>

This file contains the standard clock classes. The types defined in this section satisfy the TrivialClock requirements

namespace boost {
namespace chrono {

// Clocks
class system_clock;
class steady_clock;
class high_resolution_clock;

template <class CharT>
struct clock_string<system_clock, CharT>;
template <class CharT>
struct clock_string<steady_clock, CharT>;

}
}

54

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class system_clock

The system_clock class provides a means of obtaining the current wall-clock time from the system-wide real-time clock. The
current time can be obtained by calling system_clock::now(). Instances of system_clock::time_point can be converted to
and from time_t with the system_clock::to_time_t() and system_clock::to_time_point() functions. If system clock
is not steady, a subsequent call to system_clock::now() may return an earlier time than a previous call (e.g. if the operating
system clock is manually adjusted, or synchronized with an external clock).

The current implementation of system_clock is related an epoch (midnight UTC of January 1, 1970), but this is not in the contract.
You need to use the static function static

std::time_t to_time_t(const time_point& t);

which returns a time_t type that is based on midnight UTC of January 1, 1970.

class system_clock {
public:

typedef see bellow duration;
typedef duration::rep rep;
typedef duration::period period;
typedef chrono::time_point<system_clock> time_point;
static constexpr bool is_steady = false;

static time_point now() noexcept;
static time_point now(system::error_code & ec);

// Map to C API
static std::time_t to_time_t(const time_point& t) noexcept;
static time_point from_time_t(std::time_t t) noexcept;

};

system_clock satisfy the Clock requirements:

• system_clock::duration::min() < system_clock::duration::zero() is true.

• The nested duration typedef has a resolution that depends on the one provided by the platform.

Static Member Function to_time_t(time_point)

time_t to_time_t(const time_point& t) noexcept;

Returns: A time_t such that the time_t and t represent the same point in time, truncated to the coarser of the precisions among
time_t and time_point.

Static Member Function from_time_t(time_t)

time_point from_time_t(time_t t) noexcept;

Returns: A time_point such that the time_point and t represent the same point in time, truncated to the coarser of the precisions
among time_point and time_t.

Macro BOOST_CHRONO_HAS_CLOCK_STEADY

Defined if the platform support steady clocks.

55

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class steady_clock

steady_clock satisfy the Clock requirements.

steady_clock class provides access to the system-wide steady clock. The current time can be obtained by calling
steady_clock::now(). There is no fixed relationship between values returned by steady_clock::now() and wall-clock time.

#ifdef BOOST_HAS_CLOCK_STEADY
class steady_clock {
public:

typedef nanoseconds duration;
typedef duration::rep rep;
typedef duration::period period;
typedef chrono::time_point<steady_clock> time_point;
static constexpr bool is_steady = true;

static time_point now() noexcept;
static time_point now(system::error_code & ec);

};
#endif

Class high_resolution_clock

high_resolution_clock satisfy the Clock requirements.

#ifdef BOOST_CHRONO_HAS_CLOCK_STEADY
typedef steady_clock high_resolution_clock; // as permitted by [time.clock.hires]

#else
typedef system_clock high_resolution_clock; // as permitted by [time.clock.hires]

#endif

clock_string<system_clock> Specialization

template <class CharT>
struct clock_string<system_clock, CharT>
{

static std::basic_string<CharT> name();
static std::basic_string<CharT> since();

};

clock_string<>::name() returns "system_clock".

clock_string<>::since() returns " since Jan 1, 1970"

clock_string<steady_clock> Specialization

#ifdef BOOST_CHRONO_HAS_CLOCK_STEADY

template <class CharT>
struct clock_string<steady_clock, CharT>
{

static std::basic_string<CharT> name();
static std::basic_string<CharT> since();

};
#endif

clock_string<>::name() returns "steady_clock".

clock_string<>::since() returns " since boot"

56

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/chrono/clock_strings.hpp>

namespace boost {
namespace chrono {

template <class Clock, class CharT>
struct clock_string;

}
}

Template Class clock_string<>

template <class Clock, class CharT>
struct clock_string;

This template must be specialized for specific clocks. The specialization must define the following functions

static std::basic_string<CharT> name();
static std::basic_string<CharT> since();

clock_string<>::name() return the clock name, which usually corresponds to the class name.

clock_string<>::since() return the textual format of the clock epoch.

Header <boost/chrono/typeof/boost/chrono/chrono.hpp>

Register duration<> and time_point<> class templates to Boost.Typeof.

57

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Chrono I/O

Header <boost/chrono/chrono_io.hpp>

namespace boost {
namespace chrono {

template <class CharT>
class duration_punct;

template <class CharT, class Traits>
std::basic_ostream<CharT, Traits>&
duration_short(std::basic_ostream<CharT, Traits>& os);

template <class CharT, class Traits>
std::basic_ostream<CharT, Traits>&
duration_long(std::basic_ostream<CharT, Traits>& os);

template <class CharT, class Traits, class Rep, class Period>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os, const duration<Rep, Period>& d);

template <class CharT, class Traits, class Rep, class Period>
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is, duration<Rep, Period>& d)

template <class CharT, class Traits, class Clock, class Duration>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os,

const time_point<Clock, Duration>& tp);

template <class CharT, class Traits, class Clock, class Duration>
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is,

time_point<Clock, Duration>& tp);

}
}

Template Class duration_punct<>

The duration unit names can be customized through the facet: duration_punct. duration unit names come in two varieties:
long and short. The default constructed duration_punct provides names in the long format. These names are English descriptions.
Other languages are supported by constructing a duration_punct with the proper spellings for "hours", "minutes" and "seconds",
and their abbreviations (for the short format).

58

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class CharT>
class duration_punct

: public std::locale::facet
{
public:

typedef std::basic_string<CharT> string_type;
enum {use_long, use_short};

static std::locale::id id;

explicit duration_punct(int use = use_long);

duration_punct(int use,
const string_type& long_seconds, const string_type& long_minutes,
const string_type& long_hours, const string_type& short_seconds,
const string_type& short_minutes, const string_type& short_hours);

duration_punct(int use, const duration_punct& d);

template <class Period> string_type short_name() const;
template <class Period> string_type long_name() const;
template <class Period> string_type name() const;

bool is_short_name() const;
bool is_long_name() const;

};

I/O Manipulators

The short or long format can be easily chosen by streaming a duration_short or duration_long manipulator respectively.

template <class CharT, class Traits>
std::basic_ostream<CharT, Traits>&
duration_short(std::basic_ostream<CharT, Traits>& os);

Effects: Set the duration_punct facet to stream durations and time_points as abbreviations.

Returns: the output stream

template <class CharT, class Traits>
std::basic_ostream<CharT, Traits>&
duration_long(std::basic_ostream<CharT, Traits>& os);

Effects: Set the duration_punct facet to stream durations and time_points as long text.

Returns: the output stream

I/O Streams Operations

Any duration can be streamed out to a basic_ostream. The run-time value of the duration is formatted according to the rules
and current format settings for duration::rep. This is followed by a single space and then the compile-time unit name of the
duration. This unit name is built on the string returned from ratio_string<> and the data used to construct the duration_punct
which was inserted into the stream's locale. If a duration_punct has not been inserted into the stream's locale, a default constructed
duration_punct will be added to the stream's locale.

A time_point is formatted by outputting its internal duration followed by a string that describes the time_point::clock
epoch. This string will vary for each distinct clock, and for each implementation of the supplied clocks.

59

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <class CharT, class Traits, class Rep, class Period>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os, const duration<Rep, Period>& d);

Effects: outputs the duration as an abrevieated or long text format depending on the state of the duration_punct facet.

Returns: the output stream

template <class CharT, class Traits, class Rep, class Period>
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is, duration<Rep, Period>& d)

Effects: reads a duration from the input stream. If a format error is found, the input stream state will be set to failbit.

Returns: the input stream

template <class CharT, class Traits, class Clock, class Duration>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os,

const time_point<Clock, Duration>& tp);

Effects: outputs the time_point as an abrevieated or long text format depending on the state of the duration_punct facet.

Returns: the output stream

template <class CharT, class Traits, class Clock, class Duration>
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is,

time_point<Clock, Duration>& tp);

Effects: reads a time_point from the input stream. If a format error is found, the input stream state will be set to failbit.

Returns: the input stream

Chrono Rounding Utilities

Header <boost/chrono/floor.hpp>

namespace boost { namespace chrono {
template <class To, class Rep, class Period>
To floor(const duration<Rep, Period>& d);

} }

This function round down the given parameter.

Header <boost/chrono/round.hpp>

namespace boost { namespace chrono {
template <class To, class Rep, class Period>
To round(const duration<Rep, Period>& d);

} }

This function round to nearest, to even on tie the given parameter.

60

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Header <boost/chrono/ceil.hpp>

namespace boost { namespace chrono {
template <class To, class Rep, class Period>
To ceil(const duration<Rep, Period>& d);

} }

This function round up the given parameter.

Other Clocks

Header <boost/chrono/process_cpu_clocks.hpp>

Knowing how long a program takes to execute is useful in both test and production environments. It is also helpful if such timing
information is broken down into real (wall clock) time, CPU time spent by the user, and CPU time spent by the operating system
servicing user requests.

Process clocks don't include the time spent by the child process.

#define BOOST_CHRONO_HAS_PROCESS_CLOCKS

namespace boost { namespace chrono {

class process_real_cpu_clock;
class process_user_cpu_clock;
class process_system_cpu_clock;
class process_cpu_clock;

template <typename Rep>
struct process_times;
template <class CharT, class Traits, class Rep>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os,

process_times<Rep> const& rhs);

template <class CharT, class Traits, class Rep>
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is,

process_times<Rep> const& rhs);

template <class Rep>
struct duration_values<process_times<Rep> >;

template <class CharT>
struct clock_string<process_real_cpu_clock, CharT>;
struct clock_string<process_user_cpu_clock, CharT>;
struct clock_string<process_system_cpu_clock, CharT>;
struct clock_string<process_cpu_clock, CharT>;

} }
namespace std {

template <class Rep>
class numeric_limits<boost::chrono::process_times<Rep> >;

}

Macro BOOST_CHRONO_HAS_PROCESS_CLOCKS

This macro is defined if the platform supports process clocks.

61

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class process_real_cpu_clock

process_real_cpu_clock satisfy the Clock requirements.

process_real_cpu_clock class provides access to the real process wall-clock steady clock, i.e. the real CPU-time clock of the
calling process. The process relative current time can be obtained by calling process_real_cpu_clock::now().

class process_real_cpu_clock {
public:

typedef nanoseconds duration;
typedef duration::rep rep;
typedef duration::period period;
typedef chrono::time_point<process_real_cpu_clock> time_point;
static constexpr bool is_steady = true;

static time_point now() noexcept;
static time_point now(system::error_code & ec);

};

Class process_user_cpu_clock

process_user_cpu_clock satisfy the Clock requirements.

process_user_cpu_clock class provides access to the user CPU-time steady clock of the calling process. The process relative
user current time can be obtained by calling process_user_cpu_clock::now().

class process_user_cpu_clock {
public:

typedef nanoseconds duration;
typedef duration::rep rep;
typedef duration::period period;
typedef chrono::time_point<process_user_cpu_clock> time_point;
static constexpr bool is_steady = true;

static time_point now() noexcept;
static time_point now(system::error_code & ec);

};

Class process_system_cpu_clock

process_system_cpu_clock satisfy the Clock requirements.

process_system_cpu_clock class provides access to the system CPU-time steady clockof the calling process. The process relative
system current time can be obtained by calling process_system_cpu_clock::now().

class process_system_cpu_clock {
public:

typedef nanoseconds duration;
typedef duration::rep rep;
typedef duration::period period;
typedef chrono::time_point<process_system_cpu_clock> time_point;
static constexpr bool is_steady = true;

static time_point now() noexcept;
static time_point now(system::error_code & ec);

};

62

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Class process_cpu_clock

process_cpu_clock can be considered as a tuple<process_real_cpu_clock, process_user_cpu_clock, process_sys-

tem_cpu_clock>.

process_cpu_clock provides a thin wrapper around the operating system's process time API. For POSIX-like systems, that's the
times() function, while for Windows, it's the GetProcessTimes() function.

The process relative real, user and system current time can be obtained at once by calling process_clocks::now().

class process_cpu_clock
{
public:

typedef process_times<nanoseconds::rep> times ;

typedef duration<times, nano> duration;
typedef duration::rep rep;
typedef duration::period period;
typedef chrono::time_point<process_cpu_clock> time_point;
static constexpr bool is_steady = true;

static time_point now() noexcept;
static time_point now(system::error_code & ec);

};

Template Class process_times

This class is the representation of the process_cpu_clock::duration class. As such it needs to implements the arithmetic oper-
ators.

63

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

template <typename Rep>
struct process_times : arithmetic<process_times<Rep>,

multiplicative<process_times<Rep>, Rep,
less_than_comparable<process_times<Rep> > > >

{
Rep real; // real (i.e wall clock) time
Rep user; // user cpu time
Rep system; // system cpu time

times();
times(

process_real_cpu_clock::rep r,
process_user_cpu_clock::rep u,
process_system_cpu_clock::rep s);

template <typename Rep2>
explicit process_times(

Rep2 r);
template <typename Rep2>
explicit process_times(

process_times<Rep2> const& rhs);
operator rep() const;

bool operator==(process_times const& rhs);
template <typename Rep2>
bool operator==(process_times<Rep2> const& rhs);

times operator+=(process_times const& rhs);
times operator-=(process_times const& rhs);
times operator*=(process_times const& rhs);
times operator/=(process_times const& rhs);
bool operator<(process_times const & rhs) const;

};

process_times Input/Output

template <class CharT, class Traits, class Rep>
std::basic_ostream<CharT, Traits>&
operator<<(std::basic_ostream<CharT, Traits>& os,

process_times<Rep> const& rhs);

Effects: Output each part separated by ';' and sourrounded by '{', '}'.

Throws: None.

template <class CharT, class Traits, class Rep>
std::basic_istream<CharT, Traits>&
operator>>(std::basic_istream<CharT, Traits>& is,

process_times<Rep> const& rhs);

Effects: overrides the value of rhs if the input stream has the format "{r;u;s}". Otherwise, set the input stream state as failbit | eofbit.

Throws: None.

64

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

duration_values Specialization for process_times<>

template <class Rep>
struct duration_values<process_times<Rep> >
{

static process_times<Rep> zero();
static process_times<Rep> max();
static process_times<Rep> min();

};

The times specific functions zero(), max() and min() uses the relative functions on the representation of each component.

clock_string<process_real_cpu_clock> Specialization

template <class CharT>
struct clock_string<process_real_cpu_clock, CharT>
{

static std::basic_string<CharT> name();
static std::basic_string<CharT> since();

};

clock_string<>::name() returns "process_real_cpu_clock".

clock_string<>::since() returns " since process start-up"

clock_string<process_user_cpu_clock> Specialization

template <class CharT>
struct clock_string<process_user_cpu_clock, CharT>
{

static std::basic_string<CharT> name();
static std::basic_string<CharT> since();

};

clock_string<>::name() returns "process_user_cpu_clock".

clock_string<>::since() returns " since process start-up"

clock_string<process_system_cpu_clock> Specialization

template <class CharT>
struct clock_string<process_system_cpu_clock, CharT>
{

static std::basic_string<CharT> name();
static std::basic_string<CharT> since();

};

clock_string<>::name() returns "process_system_cpu_clock".

clock_string<>::since() returns " since process start-up"

65

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

clock_string<process_cpu_clock> Specialization

template <class CharT>
struct clock_string<process_cpu_clock, CharT>
{

static std::basic_string<CharT> name();
static std::basic_string<CharT> since();

};

clock_string<>::name() returns "process_cpu_clock".

clock_string<>::since() returns " since process start-up"

numeric_limits Specialization for process_times<>

namespace std {
template <>
class numeric_limits<boost::chrono::process_times<Rep>> {

typedef boost::chrono::process_times<Rep> Res;

public:
static const bool is_specialized = true;
static Res min();
static Res max();
static Res lowest();
static const int digits;
static const int digits10;
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 0;

};
}

The process_times<Rep> specialization functions min(), max() and lowest() uses the relative functions on the representation
of each component.

Notes

• min() returns the tuple of mins.

• max() returns the tuple of maxs.

• lowest() returns the tuple of lowests.

• digits is the sum of (binary) digits.

• digits10 is the sum of digits10s.

Header <boost/chrono/thread_clock.hpp>

Knowing the time a thread takes to execute is useful in both test and production environments.

66

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

#define BOOST_CHRONO_HAS_THREAD_CLOCK
#define BOOST_CHRONO_THREAD_CLOCK_IS_STEADY
namespace boost { namespace chrono {

class thread_clock;
template <class CharT>
struct clock_string<thread_clock, CharT>;

} }

Macro BOOST_CHRONO_HAS_THREAD_CLOCK

This macro is defined if the platform supports thread clocks.

Macro BOOST_CHRONO_THREAD_CLOCK_IS_STEADY

This macro is defined if the platform has a thread clock. Its value is true if it is steady and false otherwise.

Class thread_clock

thread_clock satisfy the Clock requirements.

thread_clock class provides access to the real thread wall-clock, i.e. the real CPU-time clock of the calling thread. The thread
relative current time can be obtained by calling thread_clock::now().

class thread_clock {
public:

typedef nanoseconds duration;
typedef duration::rep rep;
typedef duration::period period;
typedef chrono::time_point<thread_clock> time_point;
static constexpr bool is_steady = BOOST_CHRONO_THREAD_CLOCK_IS_STEADY;

static time_point now() noexcept;
static time_point now(system::error_code & ec);

};

clock_string<thread_clock> Specialization

#if defined(BOOST_CHRONO_HAS_THREAD_CLOCK)
template <class CharT>
struct clock_string<thread_clock, CharT>
{

static std::basic_string<CharT> name();
static std::basic_string<CharT> since();

};
#endif

clock_string<>::name() returns "thread_clock".

clock_string<>::since() returns " since thread start-up"

67

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Appendices

Appendix: History

Version 1.2.1, February 1, 2012 - 1.49

Fixes:

• #6092 Input from non integral durations makes the compiler fail.

• #6093 [1/3]second fails as valid duration input.

• #6113 duplicate symbol when BOOST_CHRONO_HEADER_ONLY is defined.

• #6243 Sandia-pgi-11.9: more than one instance of overloaded function "min" matches.

• #6257 process_cpu_clock::now() on linux gives time_points 1/1000 times.

Version 1.2.0, October 17, 2011 - 1.48

New Features:

• #5979 Added chrono rounding utilities as defined By Howard Hinnant here.

• #5978 Add BOOST_CHRONO_HAS_PROCESS_CLOCKS to know if process clocks are available.

• #5998 Make possible to don't provide hybrid error handling.

• #5906 Take in account the constexpr as defined in the standard.

• #5907 Take in account noexcept for compilers supporting it.

Fixes:

• #5669 Intel compiler failure to compile duration.hpp

• #2114 Enable visibility support (Boost.Chrono part)

• #5909 process_cpu_clock::now() on MAC gives time_points 1/1000 times.

• #5946 Process real cpu clock returns the system steady clock (windows).

• #5974 Process real cpu clock should use clock() instead of times() in MAC which is twice faster and have better resolution.

Cleanup:

• #5975 Reduce the combinations of header-only, shared, static link to reduce test time by 50%.

• #5976 chrono_accuracy_test is not deterministic and should be removed from the regression tests

• #5977 Remove old files from Beman's version. Some old files included in the Beman's version and not documented in the reviewed
version that have been definitely removed from the repository as

• boost/chrono/timer.hpp,

• boost/chrono/process_times.hpp

• boost/chrono/detail/process_clock.hpp,

• boost/chrono/detail/mac/process_clock.hpp,

68

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/6092
http://svn.boost.org/trac/boost/ticket/6093
http://svn.boost.org/trac/boost/ticket/6113
http://svn.boost.org/trac/boost/ticket/6243
http://svn.boost.org/trac/boost/ticket/6257
http://svn.boost.org/trac/boost/ticket/5979
http://home.roadrunner.com/~hinnant/duration_io/chrono_util.html
http://svn.boost.org/trac/boost/ticket/5978
http://svn.boost.org/trac/boost/ticket/5998
http://svn.boost.org/trac/boost/ticket/5906
http://svn.boost.org/trac/boost/ticket/5907
http://svn.boost.org/trac/boost/ticket/5669
http://svn.boost.org/trac/boost/ticket/2114
http://svn.boost.org/trac/boost/ticket/5909
http://svn.boost.org/trac/boost/ticket/5946
http://svn.boost.org/trac/boost/ticket/5974
http://svn.boost.org/trac/boost/ticket/5975
http://svn.boost.org/trac/boost/ticket/5976
http://svn.boost.org/trac/boost/ticket/5977
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• boost/chrono/detail/posix/process_clock.hpp,

• boost/chrono/detail/win/process_clock.hpp,

• boost/chrono/detail/run_timer.hpp,

• boost/chrono/detail/run_timer_static.hpp,

Version 1.1.0, Mars 17, 2011 - 1.47

New Features:

• #???? Added time_point unary operators +,-,++,-- and binary operators +,- with Rep al RHS.

• #5323 Add Associated type difference_type for chrono::time_point.

Fixes:

• #5322 Explicit default constructed chrono::durations are uninitialized

Version 1.0.0, January 6, 2011

• Moved chrono to trunk taking in account the review remarks.

• Documentation revision.

Features:

• Boost_Chrono is now a configurable header-only library version (that also allows the user to choose if the windows.h file is included
or not).

• Added clock_string<> traits.

• Define chrono-io for all the clocks.

• Add input of process_times representation.

Implementation:

• Use of detail/win files to avoid the use of windows.h file.

• Completed the error_code handling.

• Works now with BOOST_SYSTEM_NO_DEPRECATED.

Fixes:

• Fix some warnings.

• Fix original errors on Mac

• Don't fix the link with boost_system to static.

Test:

• Added test on process and thread clocks.

• Moved to lightweight_test.hpp.

• Able to test multiple configurations.

Doc:

69

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/????
http://svn.boost.org/trac/boost/ticket/5323
http://svn.boost.org/trac/boost/ticket/5322
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

• Removed some not useful parts as the test and the tickets.

Appendix: Rationale
See N2661 - A Foundation to Sleep On which is very informative and provides motivation for key design decisions. This section
contains some extracts from this document.

Why duration needs operator%

This operator is convenient for computing where in a time frame a given duration lies. A motivating example is converting a duration
into a "broken-down" time duration such as hours::minutes::seconds:

class ClockTime
{

typedef boost::chrono::hours hours;
typedef boost::chrono::minutes minutes;
typedef boost::chrono::seconds seconds;

public:
hours hours_;
minutes minutes_;
seconds seconds_;

template <class Rep, class Period>
explicit ClockTime(const boost::chrono::duration<Rep, Period>& d)

: hours_ (boost::chrono::duration_cast<hours> (d)),
minutes_(boost::chrono::duration_cast<minutes>(d % hours(1))),
seconds_(boost::chrono::duration_cast<seconds>(d % minutes(1)))
{}

};

Appendix: Implementation Notes

Which APIs have been chosen to implement each clock on each platform?

The following table presents a resume of which API is uused for each clock on each platform

70

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2661.htm
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Table 3. Clock API correspondence

Mac PlatformPosix PlatformWindows PlatformClock

gettimeofdayclock_gettime(CLOCK_RE-
ALTIME)

GetSystemTimeAsFileTimesystem_clock

mach_timebase_info,mach_ab-
solute_time

c l o c k _ g e t t i m e (
CLOCK_STEADY)

QueryPerformanceCounter
and QueryPerformanceFre-
quency

steady_clock

timestimesGetProcessTimesprocess_real_cpu_clock

timestimesGetProcessTimesp r o c e s s _ s y s -

tem_cpu_clock

timestimesGetProcessTimesprocess_user_cpu_clock

timestimesGetProcessTimesprocess_cpu_clock

c l o c k _ g e t -
time(pthread_getcpuclockid)

c l o c k _ g e t -
time(pthread_getcpuclockid)

GetThreadTimesthread_clock

Appendix: FAQ

Why does process_cpu_clock sometimes give more cpu seconds than real seconds?

Ask your operating system supplier. The results have been inspected with a debugger, and both for Windows and Linux, that's what
the OS appears to be reporting at times.

Are integer overflows in the duration arithmetic detected and reported?

Boost.Ratio avoids all kind of overflow that could result of arithmetic operation and that can be simplified. The typedefs durations
don't detect overflow. You will need a duration representation that handles overflow.

Which clocks should be used to benchmarking?

Each clock has his own features. It depends on what do you need to benchmark. Most of the time, you could be interested in using
a thread clock, but if you need to measure code subject to synchronization a process clock would be better. If you have a multi-process
application, a system-wide clock could be needed.

Which clocks should be used for watching?

For trace purposes, it is probably best to use a system-wide clock.

Appendix: Acknowledgements
The library's code was derived from Howard Hinnant's time2_demo prototype. Many thanks to Howard for making his code available
under the Boost license. The original code was modified by Beman Dawes to conform to Boost conventions.

time2_demo contained this comment:

Much thanks to Andrei Alexandrescu, Walter Brown, Peter Dimov, Jeff Garland, Terry Golubiewski, Daniel Krugler, Anthony
Williams.

The file <boost/chrono_io.hpp> has been adapted from the experimental header <chrono_io> from Howard Hinnant. Thanks for
all Howard.

71

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

Howard Hinnant, who is the real author of the library, has provided valuable feedback and suggestions during the development of
the library. In particular, The chrono_io_io.hpp source has been adapted from the experimental header <chrono_io> from Howard
Hinnant.

The acceptance review of Boost.Ratio took place between November 5th and 15th 2010. Many thanks to Anthony Williams, the review
manager, and to all the reviewers: David Deakins, John Bytheway, Roland Bock and Paul A. Bristow.

Thanks to Ronald Bock, Andrew Chinoff, Paul A. Bristow and John Bytheway for his help polishing the documentation.

Thanks to Tom Tan for reporting some compiler issues with MSVC V10 beta and MinGW-gcc-4.4.0 and for the many pushing for
an homogeneous process_cpu_clock clock.

Thanks to Ronald Bock for reporting Valgind issues and for the many suggestions he made concerning the documentation.

Appendix: Future plans

For later releases

• Enhance chrono I/O

• #5980 Take care of the Howard Hinnant proposal which has the advantage to provide I/O for system clocks using the Gregorian
Calendar.

• #5981 Added i/o state savers.

• Deprecate:

• chrono I/O: The manipulators duration_short, duration long are depreceated. You should use the parameterized form duration_fmt
instead.

• chrono I/O: The duraction_punc<> facet observers is_short_name, is_long_name are depreceated. You should use is_prefix
and is_symbol instead.

• chrono I/O: The duraction_punc<> facet constructors taking as argument the literals duraction_punc<>::use_long or use short
are depreceated. You should use duration_style::prefix and duration_style::symbol instead.

• chrono I/O: The duraction_punc<> facet constructors taking the long names for seconds, minutes and hours and the associated
observers short_name, long_name and name are depreceated. Boost.Chrono allows the user to use an interface that could be
customized to take care of locale issues. The default behavior been to return the English words.

When BOOST_CHRONO_IO_V1_DONT_PROVIDE_DEPRECATED is defined the preceding deprecated functions are not
available. In addition, the user needs to define the macro BOOST_CHRONO_IO_USES_EXTERNAL_LOCALIZATION to be
able to customize the locale interface.

• Include Stopwatches.

• Include chrono::date as defined by Howard Hinnant here.

72

Boost.Chrono 1.2.1

XML to PDF by RenderX XEP XSL-FO Formatter, visit us at http://www.renderx.com/

http://svn.boost.org/trac/boost/ticket/5980
http://home.roadrunner.com/~hinnant/bloomington/chrono_io.html
http://svn.boost.org/trac/boost/ticket/5981
http://home.roadrunner.com/~hinnant/bloomington/date.html
http://www.renderx.com/
http://www.renderx.com/reference.html
http://www.renderx.com/tools/
http://www.renderx.com/

	Boost.Chrono 1.2.1
	Table of Contents
	Overview
	Motivation
	Description

	User's Guide
	Getting Started
	Installing Chrono
	Hello World!

	Tutorial
	Duration
	So What Exactly is a duration and How Do I Use One?
	What Happens if I Assign m3 + us3 to minutes Instead of microseconds?
	But What if the Truncation Behavior is What I Want to Do?
	Rounding functions
	Trafficking in floating-point Durations
	How Expensive is All of this?
	How Complicated is it to Build a Function Taking a duration Parameter?
	Is it possible for the user to pass a duration to a function with the units being ambiguous?
	Can Durations Overflow?

	Clocks
	Time Point
	So What Exactly is a time_point and How Do I Use One?

	Specific Clocks
	system_clock
	steady_clock
	high_resolution_clock
	process_cpu_clock
	thread_clock

	I/O

	Examples
	Duration
	How you Override the Duration's Default Constructor
	Saturating
	xtime Conversions

	Clocks
	Cycle count
	xtime_clock

	Time Point
	min Utility
	A Tiny Program that Times How Long Until a Key is Struck
	24 Hours Display
	Simulated Thread Interface Demonstration Program

	IO
	French Output

	External Resources

	Reference
	Header <boost/chrono/include.hpp>
	Included on the C++11 Recommendation
	Header <boost/chrono.hpp>
	Header <boost/chrono.hpp>
	Limitations and Extensions
	Configuration Macros
	How Assert Behaves?
	Don't provide Hybrid Error Handling
	How to Build Boost.Chrono as a Header Only Library?

	Header <boost/chrono/duration.hpp>
	Time-related Traits
	Metafunction treat_as_floating_point<>
	Class Template duration_values
	Static Member Function zero()
	Static Member Function max()
	Static Member Function min()

	common_type Specialization
	Class Template duration<>
	Constructor duration()
	Constructor duration(const Rep2&)
	Constructor duration(const duration&)
	Member Function count() const
	Member Function operator+() const
	Member Function operator-() const
	Member Function operator++()
	Member Function operator++(int)
	Member Function operator--()
	Member Function operator--(int)
	Member Function operator+=(const duration&)
	Member Function operator-=(const duration&)
	Member Function operator%=(const duration&)
	Member Function operator*=(const rep&)
	Member Function operator/=(const rep&)
	Member Function operator%=(const rep&)
	Static Member Function zero()
	Static Member Function min()
	Static Member Function max()

	duration Non-Member Arithmetic
	Non-Member Function operator+(duration,duration)
	Non-Member Function operator-(duration,duration)
	Non-Member Function operator*(duration,Rep1)
	Non-Member Function operator*(Rep1,duration)
	Non-Member Function operator/(duration,Rep2)
	Non-Member Function operator/(duration,duration)
	Non-Member Function operator/(Rep1,duration)
	Non-Member Function operator%(duration,Rep2)
	Non-Member Function operator%(duration,duration)

	duration Non-Member Comparaisons
	Non-Member Function operator==(duration,duration)
	Non-Member Function operator!=(duration,duration)
	Non-Member Function operator<(duration,duration)
	Non-Member Function operator<=(duration,duration)
	Non-Member Function operator>(duration,duration)
	Non-Member Function operator>=(duration,duration)

	Non-Member Function duration_cast(duration)
	duration typedefs

	Clock Requirements
	TrivialClock Requirements
	EcClock Requirements
	Header <boost/chrono/time_point.hpp>
	common_type specialization
	Class template time_point<>
	Constructor time_point()
	Constructor time_point(const duration&)
	Copy Constructor time_point(const time_point&)
	Member Function time_since_epoch() const
	Member Function operator+() const
	Member Function operator-() const
	Member Function operator++()
	Member Function operator++(int)
	Member Function operator--()
	Member Function operator--(int)
	Member Function operator+=(const rep&)
	Member Function operator-=(const rep&)
	Member Function operator+=
	Member Function operator-=
	Static Member Function min
	Static Member Function max

	time_point non-member arithmetic
	Non-Member Function operator+(time_point,duration)
	Non-Member Function operator+(duration,time_point)
	Non-Member Function operator-(time_point,duration)
	Non-Member Function operator-(time_point,time_point)

	time_point non-member comparisons
	Non-Member Function operator==(time_point,time_point)
	Non-Member Function operator!=(time_point,time_point)
	Non-Member Function operator<(time_point,time_point)
	Non-Member Function operator<=(time_point,time_point)
	Non-Member Function operator>(time_point,time_point)
	Non-Member Function operator>=(time_point,time_point)

	Non-Member Function time_point_cast(time_point)

	Header <boost/chrono/system_clocks.hpp>
	Class system_clock
	Static Member Function to_time_t(time_point)
	Static Member Function from_time_t(time_t)

	Macro BOOST_CHRONO_HAS_CLOCK_STEADY
	Class steady_clock
	Class high_resolution_clock
	clock_string<system_clock> Specialization
	clock_string<steady_clock> Specialization

	Header <boost/chrono/clock_strings.hpp>
	Template Class clock_string<>

	Header <boost/chrono/typeof/boost/chrono/chrono.hpp>

	Chrono I/O
	Header <boost/chrono/chrono_io.hpp>
	Template Class duration_punct<>
	I/O Manipulators
	I/O Streams Operations

	Chrono Rounding Utilities
	Header <boost/chrono/floor.hpp>
	Header <boost/chrono/round.hpp>
	Header <boost/chrono/ceil.hpp>

	Other Clocks
	Header <boost/chrono/process_cpu_clocks.hpp>
	Macro BOOST_CHRONO_HAS_PROCESS_CLOCKS
	Class process_real_cpu_clock
	Class process_user_cpu_clock
	Class process_system_cpu_clock
	Class process_cpu_clock
	Template Class process_times
	process_times Input/Output
	duration_values Specialization for process_times<>
	clock_string<process_real_cpu_clock> Specialization
	clock_string<process_user_cpu_clock> Specialization
	clock_string<process_system_cpu_clock> Specialization
	clock_string<process_cpu_clock> Specialization
	numeric_limits Specialization for process_times<>

	Header <boost/chrono/thread_clock.hpp>
	Macro BOOST_CHRONO_HAS_THREAD_CLOCK
	Macro BOOST_CHRONO_THREAD_CLOCK_IS_STEADY
	Class thread_clock
	clock_string<thread_clock> Specialization

	Appendices
	Appendix: History
	Version 1.2.1, February 1, 2012 - 1.49
	Version 1.2.0, October 17, 2011 - 1.48
	Version 1.1.0, Mars 17, 2011 - 1.47
	Version 1.0.0, January 6, 2011

	Appendix: Rationale
	Appendix: Implementation Notes
	Appendix: FAQ
	Appendix: Acknowledgements
	Appendix: Future plans

