
SUSE Linux Enterprise
Server

www.novell.com11 SP1

August 17, 2010 System Analysis and Tuning Guide

System Analysis and Tuning Guide
All content is copyright © 2006–2010 Novell, Inc. All rights reserved.

Legal Notice

This manual is protected under Novell intellectual property rights. By reproducing, duplicating or
distributing this manual you explicitly agree to conform to the terms and conditions of this license
agreement.

This manual may be freely reproduced, duplicated and distributed either as such or as part of a bundled
package in electronic and/or printed format, provided however that the following conditions are ful-
filled:

That this copyright notice and the names of authors and contributors appear clearly and distinctively
on all reproduced, duplicated and distributed copies. That this manual, specifically for the printed
format, is reproduced and/or distributed for noncommercial use only. The express authorization of
Novell, Inc must be obtained prior to any other use of any manual or part thereof.

For Novell trademarks, see the Novell Trademark and Service Mark list http://www.novell
.com/company/legal/trademarks/tmlist.html. * Linux is a registered trademark of
Linus Torvalds. All other third party trademarks are the property of their respective owners. A trademark
symbol (®, ™ etc.) denotes a Novell trademark; an asterisk (*) denotes a third party trademark.

All information found in this book has been compiled with utmost attention to detail. However, this
does not guarantee complete accuracy. Neither Novell, Inc., SUSELINUXProducts GmbH, the authors,
nor the translators shall be held liable for possible errors or the consequences thereof.

http://www.novell.com/company/legal/trademarks/tmlist.html
http://www.novell.com/company/legal/trademarks/tmlist.html

Contents

About This Guide ix

Part I Basics 1

1 General Notes on System Tuning 3
1.1 Be Sure What Problem to Solve 3
1.2 Rule Out Common Problems . 4
1.3 Finding the Bottleneck . 4
1.4 Step-by-step Tuning . 5

Part II System Monitoring 7

2 System Monitoring Utilities 9
2.1 Multi-Purpose Tools . 9
2.2 System Information . 17
2.3 Processes . 22
2.4 Memory . 27
2.5 Networking . 30
2.6 The /proc File System . 32
2.7 Hardware Information . 35
2.8 Files and File Systems . 37
2.9 User Information . 39
2.10 Time and Date . 40
2.11 Graph Your Data: RRDtool . 40

3 Monitoring with Nagios 49
3.1 Features of Nagios . 49
3.2 Installing Nagios . 49
3.3 Nagios Configuration Files . 50
3.4 Configuring Nagios . 53
3.5 Troubleshooting . 57
3.6 For More Information . 57

4 Analyzing and Managing System Log Files 59
4.1 System Log Files in /var/log/ 59
4.2 Viewing and Parsing Log Files . 62
4.3 Managing Log Files with logrotate 62
4.4 Monitoring Log Files with logwatch 64

Part III Kernel Monitoring 67

5 SystemTap—Filtering and Analyzing System Data 69
5.1 Conceptual Overview . 70
5.2 Installation and Setup . 73
5.3 Script Syntax . 84
5.4 Example Script . 92
5.5 For More Information . 93

6 Kernel Probes 95
6.1 Supported Architectures . 96
6.2 Types of Kernel Probes . 96
6.3 Kernel probes API . 97
6.4 Debugfs Interface . 98
6.5 For More Information . 99

7 Perfmon2—Hardware-Based Performance Monitoring 101
7.1 Conceptual Overview . 101
7.2 Installation . 103
7.3 Using Perfmon . 104
7.4 Retrieving Metrics From DebugFS 108
7.5 For More Information . 110

8 OProfile—System-Wide Profiler 111
8.1 Conceptual Overview . 111

8.2 Installation and Requirements 112
8.3 Available OProfile Utilities . 112
8.4 Using OProfile . 112
8.5 Using OProfile's GUI . 115
8.6 Generating Reports . 116
8.7 For More Information . 117

Part IV Resource Management 119

9 General System Resource Management 121
9.1 Planning the Installation . 121
9.2 Disabling Unnecessary Services 123
9.3 File Systems and Disk Access . 124

10 Kernel Control Groups 127
10.1 Technical Overview and Definitions 127
10.2 Scenario . 128
10.3 Control Group Subsystems . 129
10.4 Using Controller Groups . 131
10.5 For More Information . 134

11 Power Management 137
11.1 Power Management at CPU Level 137
11.2 The Linux Kernel CPUfreq Infrastructure 140
11.3 Tuning Options for P-states . 142
11.4 Tuning Options for C-states . 145
11.5 Creating and Using Power Management Profiles 146
11.6 Monitoring Power Consumption with powerTOP 147
11.7 Troubleshooting . 150
11.8 For More Information . 151

Part V Kernel Tuning 153

12 Installing Multiple Kernel Versions 155
12.1 Enabling Multiversion Support 156
12.2 Installing/Removing Multiple Kernel Versions with YaST 156
12.3 Installing/Removing Multiple Kernel Versions with zypper 157

13 Tuning Per-Device I/O Performance 159
13.1 I/O Scheduler -- /sys/block/<device>/queue/scheduler 159
13.2 I/O Barrier Tuning . 161

14 Tuning the Task Scheduler 163
14.1 Introduction . 163
14.2 Process Classification . 164
14.3 O(1) Scheduler . 165
14.4 Completely Fair Scheduler . 166
14.5 For More Information . 173

15 Tuning the Memory Management Subsystem 175
15.1 Memory Usage . 176
15.2 Reducing Memory Usage . 178
15.3 Virtual Memory Manager (VM) Tunable Parameters 179
15.4 Non-Uniform Memory Access (NUMA) 182
15.5 Monitoring VM Behavior . 182

16 Tuning the Network 183
16.1 Configurable Kernel Socket Buffers 183
16.2 Detecting Network Bottlenecks and Analyzing Network Traffic 185
16.3 Netfilter . 185
16.4 For More Information . 186

Part VI Handling System Dumps 187

17 Tracing Tools 189
17.1 Tracing System Calls with strace 189
17.2 Tracing Library Calls with ltrace 193
17.3 Debugging and Profiling with Valgrind 194
17.4 For More Information . 199

18 Kexec and Kdump 201
18.1 Introduction . 201
18.2 Required Packages . 202
18.3 Kexec Internals . 202
18.4 Basic Kexec Usage . 203
18.5 How to Configure Kexec for Routine Reboots 204
18.6 Basic Kdump Configuration . 205

18.7 Analyzing the Crash Dump . 209
18.8 Advanced Kdump Configuration 214
18.9 For More Information . 215

About This Guide
SUSE Linux Enterprise Server is used for a broad range of usage scenarios in enterprise
and scientific data centers. Novell has ensured SUSE Linux Enterprise Server is set up
in a way that it accommodates different operation purposes with optimal performance.
However, SUSE Linux Enterprise Server must meet very different demands when em-
ployed on a number crunching server compared to a file server, for example.

Generally it is not possible to ship a distribution that will by default be optimized for
all kinds of workloads. Due to the simple fact that different workloads vary substantially
in various aspects—most importantly I/O access patterns, memory access patterns, and
process scheduling. A behavior that perfectly suits a certain workload might t reduce
performance of a completely different workload (for example, I/O intensive databases
usually have completely different requirements compared to CPU-intensive tasks, such
as video encoding). The great versatility of Linux makes it possible to configure your
system in a way that it brings out the best in each usage scenario.

This manual introduces you to means to monitor and analyze your system. It describes
methods to manage system resources and to tune your system. This guide does not offer
recipes for special scenarios, because each server has got its own different demands. It
rather enables you to thoroughly analyze your servers and make the most out of them.

General Notes on System Tuning
Tuning a system requires a carefully planned proceeding. Learn which steps are
necessary to successfully improve your system.

Part II, “System Monitoring” (page 7)
Linux offers a large variety of tools to monitor almost every aspect of the system.
Learn how to use these utilities and how to read and analyze the system log files.

Part III, “Kernel Monitoring” (page 67)
The Linux kernel itself offers means to examine every nut, bolt and screw of the
system. This part introduces you to SystemTap, a scripting language for writing
kernel modules that can be used to analyze and filter data. Collect debugging infor-
mation and find bottlenecks by using kernel probes and use perfmon2 to access the
CPU's performance monitoring unit. Last, monitor applications with the help of
Oprofile.

Part IV, “Resource Management” (page 119)
Learn how to set up a tailor-made system fitting exactly the server's need. Get to
know how to use power management while at the same time keeping the perfor-
mance of a system at a level that matches the current requirements.

Part V, “Kernel Tuning” (page 153)
The Linux kernel can be optimized either by using sysctl or via the /proc file
system. This part covers tuning the I/O performance and optimizing the way how
Linux schedules processes. It also describes basic principles of memorymanagement
and shows how memory management could be fine-tuned to suit needs of specific
applications and usage patterns. Furthermore, it describes how to optimize network
performance.

Part VI, “Handling System Dumps” (page 187)
This part enables you to analyze and handle application or system crashes. It intro-
duces tracing tools such as strace or ltrace and describes how to handle system
crashes using Kexec and Kdump.

TIP: Getting the SUSE Linux Enterprise SDK

Some programs or packages mentioned in this guide are only available from
the SUSE Linux Enterprise SDK. The SDK is an add-on product for SUSE Linux
Enterprise Server and is available for download from http://developer
.novell.com/wiki/index.php/SUSE_LINUX_SDK.

Many chapters in this manual contain links to additional documentation resources. This
includes additional documentation that is available on the system as well as documen-
tation available on the Internet.

For an overview of the documentation available for your product and the latest docu-
mentation updates, refer to http://www.novell.com/documentation or to
the following section:

1 Available Documentation
We provide HTML and PDF versions of our books in different languages. The following
manuals for users and administrators are available on this product:

x System Analysis and Tuning Guide

http://developer.novell.com/wiki/index.php/SUSE_LINUX_SDK
http://developer.novell.com/wiki/index.php/SUSE_LINUX_SDK
http://www.novell.com/documentation

Deployment Guide (↑Deployment Guide)
Shows how to install single or multiple systems and how to exploit the product
inherent capabilities for a deployment infrastructure. Choose from various approach-
es, ranging from a local installation or a network installation server to a mass de-
ployment using a remote-controlled, highly-customized, and automated installation
technique.

Administration Guide (↑Administration Guide)
Covers system administration tasks like maintaining, monitoring and customizing
an initially installed system.

Security Guide (↑Security Guide)
Introduces basic concepts of system security, covering both local and network se-
curity aspects. Shows how to make use of the product inherent security software
like Novell AppArmor (which lets you specify per programwhich files the program
may read, write, and execute) or the auditing system that reliably collects informa-
tion about any security-relevant events.

System Analysis and Tuning Guide (page 1)
An administrator's guide for problem detection, resolution and optimization. Find
how to inspect and optimize your system by means of monitoring tools and how
to efficiently manage resources. Also contains an overview of common problems
and solutions and of additional help and documentation resources.

Virtualization with Xen (↑Virtualization with Xen)
Offers an introduction to virtualization technology of your product. It features an
overview of the various fields of application and installation types of each of the
platforms supported by SUSE Linux Enterprise Server as well as a short description
of the installation procedure.

Storage Administration Guide
Provides information about how to manage storage devices on a SUSE Linux En-
terprise Server.

In addition to the comprehensive manuals, several quick start guides are available:

Installation Quick Start (↑Installation Quick Start)
Lists the system requirements and guides you step-by-step through the installation
of SUSE Linux Enterprise Server from DVD, or from an ISO image.

About This Guide xi

Linux Audit Quick Start
Gives a short overview how to enable and configure the auditing system and how
to execute key tasks such as setting up audit rules, generating reports, and analyzing
the log files.

Novell AppArmor Quick Start
Helps you understand the main concepts behind Novell® AppArmor.

Find HTML versions of most product manuals in your installed system under /usr/
share/doc/manual or in the help centers of your desktop. Find the latest documen-
tation updates at http://www.novell.com/documentation where you can
download PDF or HTML versions of the manuals for your product.

2 Feedback
Several feedback channels are available:

Bugs and Enhancement Requests
For services and support options available for your product, refer to http://www
.novell.com/services/.

To report bugs for a product component, please use http://support.novell
.com/additional/bugreport.html.

Submit enhancement requests athttps://secure-www.novell.com/rms/
rmsTool?action=ReqActions.viewAddPage&return=www.

User Comments
We want to hear your comments and suggestions about this manual and the other
documentation included with this product. Use the User Comments feature at the
bottom of each page in the online documentation or go tohttp://www.novell
.com/documentation/feedback.html and enter your comments there.

3 Documentation Conventions
The following typographical conventions are used in this manual:

xii System Analysis and Tuning Guide

http://www.novell.com/documentation
http://www.novell.com/services/
http://www.novell.com/services/
http://support.novell.com/additional/bugreport.html
http://support.novell.com/additional/bugreport.html
https://secure-www.novell.com/rms/rmsTool?action=ReqActions.viewAddPage&return=www
https://secure-www.novell.com/rms/rmsTool?action=ReqActions.viewAddPage&return=www
http://www.novell.com/documentation/feedback.html
http://www.novell.com/documentation/feedback.html

• /etc/passwd: directory names and filenames

• placeholder: replace placeholder with the actual value

• PATH: the environment variable PATH

• ls, --help: commands, options, and parameters

• user: users or groups

• Alt, Alt + F1: a key to press or a key combination; keys are shown in uppercase as
on a keyboard

• File, File > Save As: menu items, buttons

• ►amd64 em64t ipf: This paragraph is only relevant for the specified architectures.
The arrows mark the beginning and the end of the text block. ◄

►ipseries zseries: This paragraph is only relevant for the specified architectures.
The arrows mark the beginning and the end of the text block. ◄

• Dancing Penguins (Chapter Penguins, ↑Another Manual): This is a reference to a
chapter in another manual.

About This Guide xiii

Part I. Basics

1General Notes on System
Tuning
This manual discusses how to find the reasons for performance problems and provides
means to solve these problems. Before you start tuning your system, you should make
sure you have ruled out common problems and have found the cause (bottleneck) for
the problem. You should also have a detailed plan on how to tune the system, because
applying random tuning tips will not help (and could make things worse).

Procedure 1.1 General Approach When Tuning a System

1 Be sure what problem to solve

2 Rule out common problems

3 Find the bottleneck

3a Monitor the system and/or application

3b Analyze the data

4 Step-by-step tuning

1.1 Be Sure What Problem to Solve
Before you start tuning your system, try to describe the problem as exactly as possible.
Obviously, a simple and general “The system is too slow!” is no helpful problem de-

General Notes on System Tuning 3

scription. If you plan to tune your Web server for faster delivery of static pages, for
example, it makes a difference whether you need to generally improve the speed or
whether it only needs to be improved at peak times.

Furthermore, make sure you can apply a measurement to your problem, otherwise you
will not be able to control if the tuning was a success or not. You should always be able
to compare “before” and “after”.

1.2 Rule Out Common Problems
A performance problem often is caused by network or hardware problems, bugs, or
configuration issues.Make sure to rule out problems such as the ones listed below before
attempting to tune your system:

• Check /var/log/warn and /var/log/messages for unusual entries.

• Check (using top or ps) whether a certain process misbehaves by eating up un-
usual amounts of CPU time or memory.

• Check for network problems by inspecting /proc/net/dev.

• In case of I/O problems with physical disks, make sure it is not caused by hardware
problems (check the disk with the smartmontools) or by a full disk.

• Ensure that background jobs are scheduled to be carried out in times the server load
is low. Those jobs should also run with low priority (set via nice).

• If the machine runs several services using the same resources, consider moving
services to another server.

• Last, make sure your software is up-to-date.

1.3 Finding the Bottleneck
Finding the bottleneck very often is the hardest part when tuning a system. SUSE Linux
Enterprise Server offers a lot of tools helping you with this task. See Part II, “System
Monitoring” (page 7) for detailed information on general system monitoring applica-

4 System Analysis and Tuning Guide

tions and log file analysis. If the problem requires a long-time in-depth analysis, the
Linux kernel offers means to perform such analysis. See Part III, “Kernel Monitoring”
(page 67) for coverage.

Once you have collected the data, it needs to be analyzed. First, inspect if the server's
hardware (memory, CPU, bus) and its I/O capacities (disk, network) are sufficient. If
these basic conditions are met, the system might benefit from tuning.

1.4 Step-by-step Tuning
Make sure to carefully plan the tuning itself. It is of vital importance to only do one
step at a time. Only by doing so you will be able to measure if the change provided an
improvement or even had a negative impact. Each tuning activity should be measured
over a sufficient time period in order to ensure you can do an analysis based on signif-
icant data. If you cannot measure a positive effect, do not make the change permanent.
Chances are, that it might have a negative effect in the future.

General Notes on System Tuning 5

Part II. System Monitoring

2System Monitoring Utilities
There are number of programs, tools, and utilities which you can use to examine the
status of your system. This chapter introduces some of them and describes their most
important and frequently used parameters.

For each of the described commands, examples of the relevant outputs are presented.
In the examples, the first line is the command itself (after the > or # sign prompt).
Omissions are indicated with square brackets ([...]) and long lines are wrapped
where necessary. Line breaks for long lines are indicated by a backslash (\).
command -x -y
output line 1
output line 2
output line 3 is annoyingly long, so long that \

we have to break it
output line 3
[...]
output line 98
output line 99

The descriptions have been kept short so that we can include as many utilities as possible.
Further information for all the commands can be found in the manual pages. Most of
the commands also understand the parameter --help, which produces a brief list of
possible parameters.

2.1 Multi-Purpose Tools
While most of the Linux systemmonitoring tools are specific to monitor a certain aspect
of the system, there are a few “swiss army knife” tools showing various aspects of the

System Monitoring Utilities 9

system at a glance. Use these tools first in order to get an overview and find out which
part of the system to examine further.

2.1.1 vmstat
vmstat collects information about processes, memory, I/O, interrupts and CPU. If called
without a sampling rate, it displays average values since the last reboot. When called
with a sampling rate, it displays actual samples:

Example 2.1 vmstat Output on a Lightly Used Machine

tux@mercury:~> vmstat -a 2
procs -----------memory---------- ---swap-- -----io---- -system-- -----cpu-------
r b swpd free inact active si so bi bo in cs us sy id wa st
0 0 0 750992 570648 548848 0 0 0 1 8 9 0 0 100 0 0
0 0 0 750984 570648 548912 0 0 0 0 63 48 1 0 99 0 0
0 0 0 751000 570648 548912 0 0 0 0 55 47 0 0 100 0 0
0 0 0 751000 570648 548912 0 0 0 0 56 50 0 0 100 0 0
0 0 0 751016 570648 548944 0 0 0 0 57 50 0 0 100 0 0

Example 2.2 vmstat Output on a Heavily Used Machine (CPU bound)

tux@mercury:~> vmstat 2
procs -----------memory----------- ---swap-- -----io---- -system-- -----cpu------
r b swpd free buff cache si so bi bo in cs us sy id wa st
32 1 26236 459640 110240 6312648 0 0 9944 2 4552 6597 95 5 0 0 0
23 1 26236 396728 110336 6136224 0 0 9588 0 4468 6273 94 6 0 0 0
35 0 26236 554920 110508 6166508 0 0 7684 27992 4474 4700 95 5 0 0 0
28 0 26236 518184 110516 6039996 0 0 10830 4 4446 4670 94 6 0 0 0
21 5 26236 716468 110684 6074872 0 0 8734 20534 4512 4061 96 4 0 0 0

TIP

The first line of the vmstat output always displays average values since the last
reboot.

The columns show the following:

r
Shows the amount of processes in the run queue. These processes are waiting for
a free CPU slot to be executed. If the number of processes in this column is con-
stantly higher than the number of CPUs available, this is an indication for insuffi-
cient CPU power.

10 System Analysis and Tuning Guide

b
Shows the amount of processes waiting for a resource other than a CPU. A high
number in this column may indicate an I/O problem (network or disk).

swpd
The amount of swap space (KB) currently used.

free
The amount of unused memory (KB).

inact
Recently unused memory that can be reclaimed. This column is only visible when
calling vmstat with the parameter -a (recommended).

active
Recently used memory that normally does not get reclaimed. This column is only
visible when calling vmstat with the parameter -a (recommended).

buff
File buffer cache (KB) in RAM. This column is not visible when calling vmstat
with the parameter -a (recommended).

cache
Page cache (KB) in RAM. This column is not visible when calling vmstat with
the parameter -a (recommended).

si
Amount of data (KB) that is moved from RAM to swap per second. High values
over a longer period of time in this column are an indication that the machine would
benefit from more RAM.

so
Amount of data (KB) that is moved from swap to RAM per second. High values
over a longer period of time in this column are an indication that the machine would
benefit from more RAM.

bi
Number of blocks per second received from a block device (e.g. a disk read). Note
that swapping also impacts the values shown here.

System Monitoring Utilities 11

bo
Number of blocks per second sent to a block device (e.g. a disk write). Note that
swapping also impacts the values shown here.

in
Interrupts per second. A high value indicates a high I/O level (network and/or disk).

cs
Number of context switches per second. Simplified this means that the kernel has
to replace executable code of one program in memory with that of another program.

us
Percentage of CPU usage from user processes.

sy
Percentage of CPU usage from system processes.

id
Percentage of CPU time spent idling. If this value is zero over a longer period of
time, your CPU(s) are working to full capacity. This is not necessarily a bad
sign—rather refer to the values in columns r and b to determine if your machine
is equipped with sufficient CPU power.

wa
If "wa" time is non-zero, it indicates throughput lost due to waiting for I/O. This
may be inevitable, for example, if a file is being read for the first time, background
writeback cannot keep up, and so on. It can also be an indicator for a hardware
bottleneck (network or hard disk). A last, it can indicate a potential for tuning the
virtual memory manager (refer to Chapter 15, Tuning the Memory Management
Subsystem (page 175)).

st
Percentage of CPU time used by virtual machines.

See vmstat --help for more options.

12 System Analysis and Tuning Guide

2.1.2 System Activity Information: sar and
sadc

sar can generate extensive reports on almost all important system activities, among
them CPU, memory, IRQ usage, IO, or networking. It can either generate reports on
the fly or query existing reports gathered by the system activity data collector (sadc).
sar and sadc both gather all their data from the /proc file system.

NOTE: sysstat Package

sar and sadc are part of sysstat package. You need to install the package
either with YaST, or with zypper in sysstat.

Automatically Collecting Daily Statistics With sadc
If you want to monitor your system about a longer period of time, use sadc to automat-
ically collect the data. You can read this data at any time using sar. To start sadc,
simply run /etc/init.d/boot.sysstat start. This will add a link to /etc/
cron.d/ that calls sadc with the following default configuration:

• All available data will be collected.

• Data is written to /var/log/sa/saDD, where DD stands for the current day. If
a file already exists, it will be archived.

• The summary report is written to /var/log/sa/sarDD, where DD stands for
the current day. Already existing files will be archived.

• Data is collected every ten minutes, a summary report is generated every 6 hours
(see /etc/sysstat/sysstat.cron).

• The data is collected by the /usr/lib64/sa/sa1 script (or /usr/lib/sa/
sa1 on 32bit systems)

• The summaries are generated by the script /usr/lib64/sa/sa2 (or /usr/
lib/sa/sa2 on 32bit systems)

System Monitoring Utilities 13

If you need to customize the configuration, copy the sa1 and sa2 scripts and adjust
them according to your needs. Replace the link /etc/cron.d/sysstat with a
customized copy of /etc/sysstat/sysstat.cron calling your scripts.

Generating reports with sar
To generate reports on the fly, call sar with an interval (seconds) and a count. To
generate reports from files specify a filename with the option -f instead of interval
and count. If filename, interval and count are not specified, sar attempts to generate
a report from /var/log/sa/saDD, where DD stands for the current day. This is the
default location to where sadc writes its data. Query multiple files with multiple -f
options.
sar 2 10 # on-the-fly report, 10 times every 2 seconds
sar -f ~/reports/sar_2010_05_03 # queries file sar_2010_05_03
sar # queries file from today in /var/log/sa/
cd /var/log/sa &&\
sar -f sa01 -f sa02 # queries files /var/log/sa/0[12]

Find examples for useful sar calls and their interpretation below. For detailed infor-
mation on the meaning of each column, please refer to the man (1) of sar. Also refer
to the man page for more options and reports—sar offers plenty of them.

CPU Utilization Report: sar

When called with no options, sar shows a basic report about CPU usage. On multi-
processor machines, results for all CPUs are summarized. Use the option -P ALL to
also see statistics for individual CPUs.
mercury:~ # sar 10 5
Linux 2.6.31.12-0.2-default (mercury) 03/05/10 _x86_64_ (2 CPU)

14:15:43 CPU %user %nice %system %iowait %steal %idle
14:15:53 all 38.55 0.00 6.10 0.10 0.00 55.25
14:16:03 all 12.59 0.00 4.90 0.33 0.00 82.18
14:16:13 all 56.59 0.00 8.16 0.44 0.00 34.81
14:16:23 all 58.45 0.00 3.00 0.00 0.00 38.55
14:16:33 all 86.46 0.00 4.70 0.00 0.00 8.85
Average: all 49.94 0.00 5.38 0.18 0.00 44.50

If the value for %iowait (percentage of the CPU being idle while waiting for I/O) is
significantly higher than zero over a longer period of time, there is a bottleneck in the

14 System Analysis and Tuning Guide

I/O system (network or hard disk). If the%idle value is zero over a longer period of
time, your CPU(s) are working to full capacity.

Memory Usage Report: sar -r

Generate an overall picture of the system memory (RAM) by using the option -r:

mercury:~ # sar -r 10 5
Linux 2.6.31.12-0.2-default (mercury) 03/05/10 _x86_64_ (2 CPU)

16:12:12 kbmemfree kbmemused %memused kbbuffers kbcached kbcommit %commit
16:12:22 548188 1507488 73.33 20524 64204 2338284 65.10
16:12:32 259320 1796356 87.39 20808 72660 2229080 62.06
16:12:42 381096 1674580 81.46 21084 75460 2328192 64.82
16:12:52 642668 1413008 68.74 21392 81212 1938820 53.98
16:13:02 311984 1743692 84.82 21712 84040 2212024 61.58
Average: 428651 1627025 79.15 21104 75515 2209280 61.51

The last two columns (kbcommit and%commit) show an approximation of the total
amount of memory (RAM plus swap) the current workload would need in the worst
case (in kilobyte or percent respectively).

Paging Statistics Report: sar -B

Use the option -B to display the kernel paging statistics.

mercury:~ # sar -B 10 5
Linux 2.6.31.12-0.2-default (mercury) 03/05/10 _x86_64_ (2 CPU)

16:11:43 pgpgin/s pgpgout/s fault/s majflt/s pgfree/s pgscank/s pgscand/s pgsteal/s %vmeff
16:11:53 225.20 104.00 91993.90 0.00 87572.60 0.00 0.00 0.00 0.00
16:12:03 718.32 601.00 82612.01 2.20 99785.69 560.56 839.24 1132.23 80.89
16:12:13 1222.00 1672.40 103126.00 1.70 106529.00 1136.00 982.40 1172.20 55.33
16:12:23 112.18 77.84 113406.59 0.10 97581.24 35.13 127.74 159.38 97.86
16:12:33 817.22 81.28 121312.91 9.41 111442.44 0.00 0.00 0.00 0.00
Average: 618.72 507.20 102494.86 2.68 100578.98 346.24 389.76 492.60 66.93

The majflt/s (major faults per second) column shows how many pages are loaded from
disk (swap) into memory. A large number of major faults slows down the system and
is an indication of insufficient main memory. The%vmeff column shows the number
of pages scanned (pgscand/s) in relation to the ones being reused from the main mem-
ory cache or the swap cache (pgsteal/s). It is a measurement of the efficiency of page
reclaim. Healthy values are either near 100 (every inactive page swapped out is being
reused) or 0 (no pages have been scanned). The value should not drop below 30.

System Monitoring Utilities 15

Block Device Statistics Report: sar -d

Use the option -d to display the block device (hdd, optical drive, USB storage device,
...). Make sure to use the additional option -p (pretty-print) to make the DEV column
readable.

mercury:~ # sar -d -p 10 5
Linux 2.6.31.12-0.2-default (neo) 03/05/10 _x86_64_ (2 CPU)

16:28:31 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
16:28:41 sdc 11.51 98.50 653.45 65.32 0.10 8.83 4.87 5.61
16:28:41 scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16:28:41 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
16:28:51 sdc 15.38 329.27 465.93 51.69 0.10 6.39 4.70 7.23
16:28:51 scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16:28:51 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
16:29:01 sdc 32.47 876.72 647.35 46.94 0.33 10.20 3.67 11.91
16:29:01 scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16:29:01 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
16:29:11 sdc 48.75 2852.45 366.77 66.04 0.82 16.93 4.91 23.94
16:29:11 scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16:29:11 DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
16:29:21 sdc 13.20 362.40 412.00 58.67 0.16 12.03 6.09 8.04
16:29:21 scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Average: DEV tps rd_sec/s wr_sec/s avgrq-sz avgqu-sz await svctm %util
Average: sdc 24.26 903.52 509.12 58.23 0.30 12.49 4.68 11.34
Average: scd0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

If your machine uses multiple disks, you will receive the best performance, if I/O re-
quests are evenly spread over all disks. Compare the Average values for tps, rd_sec/s,
and wr_sec/s of all disks. Constantly high values in the svctm and%util columns could
be an indication that the amount of free space on the disk is insufficient.

Network Statistics Reports: sar -n KEYWORD

The option -n lets you generate multiple network related reports. Specify one of the
following keywords along with the -n:

• DEV: Generates a statistic report for all network devices

• EDEV: Generates an error statistics report for all network devices

• NFS: Generates a statistic report for an NFS client

16 System Analysis and Tuning Guide

• NFSD: Generates a statistic report for an NFS server

• SOCK: Generates a statistic report on sockets

• ALL: Generates all network statistic reports

Visualizing sar Data
sar reports are not always easy to parse for humans. kSar, a Java application visualizing
your sar data, creates easy-to-read graphs. It can even generate PDF reports. kSar
takes data generated on the fly as well as past data from a file. kSar is licensed under
the BSD license and is available from http://ksar.atomique.net/.

2.2 System Information

2.2.1 Device Load Information: iostat
iostatmonitors the system device loading. It generates reports that can be useful for
better balancing the load between physical disks attached to your system.

The first iostat report shows statistics collected since the systemwas booted. Subse-
quent reports cover the time since the previous report.
tux@mercury:~> iostat
Linux 2.6.32.7-0.2-default (geeko@buildhost) 02/24/10 _x86_64_

avg-cpu: %user %nice %system %iowait %steal %idle
0,49 0,01 0,10 0,31 0,00 99,09

Device: tps Blk_read/s Blk_wrtn/s Blk_read Blk_wrtn
sda 1,34 5,59 25,37 1459766 6629160
sda1 0,00 0,01 0,00 1519 0
sda2 0,87 5,11 17,83 1335365 4658152
sda3 0,47 0,47 7,54 122578 1971008

When invoked with the -n option, iostat adds statistics of network file systems
(NFS) load. The option -x shows extended statistics information.

System Monitoring Utilities 17

http://ksar.atomique.net/

You can also specify which device should be monitored at what time intervals. For
example, iostat -p sda 3 5 will display five reports at three second intervals
for device sda.

NOTE: sysstat Package

iostat is part of sysstat package. To use it, install the package with zypper
in sysstat

2.2.2 Processor Activity Monitoring: mpstat
The utility mpstat examines activities of each available processor. If your system has
one processor only, the global average statistics will be reported.

With the -P option, you can specify the number of processors to be reported (note that
0 is the first processor). The timing arguments work the same way as with the iostat
command. Entering mpstat -P 1 2 5 prints five reports for the second processor
(number 1) at 2 second intervals.
tux@mercury:~> mpstat -P 1 2 5
Linux 2.6.32.7-0.2-default (geeko@buildhost) 02/24/10 _x86_64_

08:57:10 CPU %usr %nice %sys %iowait %irq %soft %steal \
%guest %idle
08:57:12 1 4.46 0.00 5.94 0.50 0.00 0.00 0.00 \
0.00 89.11
08:57:14 1 1.98 0.00 2.97 0.99 0.00 0.99 0.00 \
0.00 93.07
08:57:16 1 2.50 0.00 3.00 0.00 0.00 1.00 0.00 \
0.00 93.50
08:57:18 1 14.36 0.00 1.98 0.00 0.00 0.50 0.00 \
0.00 83.17
08:57:20 1 2.51 0.00 4.02 0.00 0.00 2.01 0.00 \
0.00 91.46
Average: 1 5.17 0.00 3.58 0.30 0.00 0.90 0.00 \
0.00 90.05

2.2.3 Task Monitoring: pidstat
If you need to see what load a particular task applies to your system, use pidstat
command. It prints activity of every selected task or all tasks managed by Linux kernel

18 System Analysis and Tuning Guide

if no task is specified. You can also set the number of reports to be displayed and the
time interval between them.

For example, pidstat -C top 2 3 prints the load statistic for tasks whose com-
mand name includes the string “top”. There will be three reports printed at two second
intervals.
tux@mercury:~> pidstat -C top 2 3
Linux 2.6.27.19-5-default (geeko@buildhost) 03/23/2009 _x86_64_

09:25:42 AM PID %usr %system %guest %CPU CPU Command
09:25:44 AM 23576 37.62 61.39 0.00 99.01 1 top

09:25:44 AM PID %usr %system %guest %CPU CPU Command
09:25:46 AM 23576 37.00 62.00 0.00 99.00 1 top

09:25:46 AM PID %usr %system %guest %CPU CPU Command
09:25:48 AM 23576 38.00 61.00 0.00 99.00 1 top

Average: PID %usr %system %guest %CPU CPU Command
Average: 23576 37.54 61.46 0.00 99.00 - top

2.2.4 Kernel Ring Buffer: dmesg
The Linux kernel keeps certain messages in a ring buffer. To view these messages,
enter the command dmesg:
tux@mercury:~> dmesg
[...]
end_request: I/O error, dev fd0, sector 0
subfs: unsuccessful attempt to mount media (256)
e100: eth0: e100_watchdog: link up, 100Mbps, half-duplex
NET: Registered protocol family 17
IA-32 Microcode Update Driver: v1.14 <tigran@veritas.com>
microcode: CPU0 updated from revision 0xe to 0x2e, date = 08112004
IA-32 Microcode Update Driver v1.14 unregistered
bootsplash: status on console 0 changed to on
NET: Registered protocol family 10
Disabled Privacy Extensions on device c0326ea0(lo)
IPv6 over IPv4 tunneling driver
powernow: This module only works with AMD K7 CPUs
bootsplash: status on console 0 changed to on

Older events are logged in the files /var/log/messages and /var/log/warn.

System Monitoring Utilities 19

2.2.5 List of Open Files: lsof
To view a list of all the files open for the process with process ID PID, use -p. For
example, to view all the files used by the current shell, enter:
tux@mercury:~> lsof -p $$
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
bash 5552 tux cwd DIR 3,3 1512 117619 /home/tux
bash 5552 tux rtd DIR 3,3 584 2 /
bash 5552 tux txt REG 3,3 498816 13047 /bin/bash
bash 5552 tux mem REG 0,0 0 [heap] (stat: No such
bash 5552 tux mem REG 3,3 217016 115687 /var/run/nscd/passwd
bash 5552 tux mem REG 3,3 208464 11867 /usr/lib/locale/en_GB.
[...]
bash 5552 tux mem REG 3,3 366 9720 /usr/lib/locale/en_GB.
bash 5552 tux mem REG 3,3 97165 8828 /lib/ld-2.3.6.so
bash 5552 tux 0u CHR 136,5 7 /dev/pts/5
bash 5552 tux 1u CHR 136,5 7 /dev/pts/5
bash 5552 tux 2u CHR 136,5 7 /dev/pts/5
bash 5552 tux 255u CHR 136,5 7 /dev/pts/5

The special shell variable $$, whose value is the process ID of the shell, has been used.

The command lsof lists all the files currently open when used without any parameters.
There are often thousands of open files, therefore, listing all of them is rarely useful.
However, the list of all files can be combined with search functions to generate useful
lists. For example, list all used character devices:
tux@mercury:~> lsof | grep CHR
bash 3838 tux 0u CHR 136,0 2 /dev/pts/0
bash 3838 tux 1u CHR 136,0 2 /dev/pts/0
bash 3838 tux 2u CHR 136,0 2 /dev/pts/0
bash 3838 tux 255u CHR 136,0 2 /dev/pts/0
bash 5552 tux 0u CHR 136,5 7 /dev/pts/5
bash 5552 tux 1u CHR 136,5 7 /dev/pts/5
bash 5552 tux 2u CHR 136,5 7 /dev/pts/5
bash 5552 tux 255u CHR 136,5 7 /dev/pts/5
X 5646 root mem CHR 1,1 1006 /dev/mem
lsof 5673 tux 0u CHR 136,5 7 /dev/pts/5
lsof 5673 tux 2u CHR 136,5 7 /dev/pts/5
grep 5674 tux 1u CHR 136,5 7 /dev/pts/5
grep 5674 tux 2u CHR 136,5 7 /dev/pts/5

When used with -i, lsof lists currently open Internet files as well:
tux@mercury:~> lsof -i
[...]
pidgin 4349 tux 17r IPv4 15194 0t0 TCP \
jupiter.example.com:58542->www.example.net:https (ESTABLISHED)

20 System Analysis and Tuning Guide

pidgin 4349 tux 21u IPv4 15583 0t0 TCP \
jupiter.example.com:37051->aol.example.org:aol (ESTABLISHED)
evolution 4578 tux 38u IPv4 16102 0t0 TCP \
jupiter.example.com:57419->imap.example.com:imaps (ESTABLISHED)
npviewer. 9425 tux 40u IPv4 24769 0t0 TCP \
jupiter.example.com:51416->www.example.com:http (CLOSE_WAIT)
npviewer. 9425 tux 49u IPv4 24814 0t0 TCP \
jupiter.example.com:43964->www.example.org:http (CLOSE_WAIT)
ssh 17394 tux 3u IPv4 40654 0t0 TCP \
jupiter.example.com:35454->saturn.example.com:ssh (ESTABLISHED)

2.2.6 Kernel and udev Event Sequence
Viewer: udevadm monitor

udevadm monitor listens to the kernel uevents and events sent out by a udev rule
and prints the device path (DEVPATH) of the event to the console. This is a sequence
of events while connecting a USB memory stick:

NOTE: Monitoring udev Events

Only root user is allowed to monitor udev events by running the udevadm
command.

UEVENT[1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2
UEVENT[1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UEVENT[1138806687] add@/class/scsi_host/host4
UEVENT[1138806687] add@/class/usb_device/usbdev4.10
UDEV [1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2
UDEV [1138806687] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UDEV [1138806687] add@/class/scsi_host/host4
UDEV [1138806687] add@/class/usb_device/usbdev4.10
UEVENT[1138806692] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UEVENT[1138806692] add@/block/sdb
UEVENT[1138806692] add@/class/scsi_generic/sg1
UEVENT[1138806692] add@/class/scsi_device/4:0:0:0
UDEV [1138806693] add@/devices/pci0000:00/0000:00:1d.7/usb4/4-2/4-2.2/4-2.2
UDEV [1138806693] add@/class/scsi_generic/sg1
UDEV [1138806693] add@/class/scsi_device/4:0:0:0
UDEV [1138806693] add@/block/sdb
UEVENT[1138806694] add@/block/sdb/sdb1
UDEV [1138806694] add@/block/sdb/sdb1
UEVENT[1138806694] mount@/block/sdb/sdb1
UEVENT[1138806697] umount@/block/sdb/sdb1

System Monitoring Utilities 21

2.2.7 Information on Security Events: audit
The Linux audit framework is a complex auditing system that collects detailed informa-
tion about all security related events. These records can be consequently analyzed to
discover if, for example, a violation of security policies occurred. For more information
on audit, see Part “The Linux Audit Framework” (↑Security Guide).

2.3 Processes

2.3.1 Interprocess Communication: ipcs
The command ipcs produces a list of the IPC resources currently in use:
------ Shared Memory Segments --------
key shmid owner perms bytes nattch status
0x00000000 58261504 tux 600 393216 2 dest
0x00000000 58294273 tux 600 196608 2 dest
0x00000000 83886083 tux 666 43264 2
0x00000000 83951622 tux 666 192000 2
0x00000000 83984391 tux 666 282464 2
0x00000000 84738056 root 644 151552 2 dest

------ Semaphore Arrays --------
key semid owner perms nsems
0x4d038abf 0 tux 600 8

------ Message Queues --------
key msqid owner perms used-bytes messages

2.3.2 Process List: ps
The command ps produces a list of processes. Most parameters must be written without
a minus sign. Refer to ps --help for a brief help or to the man page for extensive
help.

To list all processes with user and command line information, use ps axu:
tux@mercury:~> ps axu
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 696 272 ? S 12:59 0:01 init [5]
root 2 0.0 0.0 0 0 ? SN 12:59 0:00 [ksoftirqd

22 System Analysis and Tuning Guide

root 3 0.0 0.0 0 0 ? S< 12:59 0:00 [events
[...]
tux 4047 0.0 6.0 158548 31400 ? Ssl 13:02 0:06 mono-best
tux 4057 0.0 0.7 9036 3684 ? Sl 13:02 0:00 /opt/gnome
tux 4067 0.0 0.1 2204 636 ? S 13:02 0:00 /opt/gnome
tux 4072 0.0 1.0 15996 5160 ? Ss 13:02 0:00 gnome-scre
tux 4114 0.0 3.7 130988 19172 ? SLl 13:06 0:04 sound-juic
tux 4818 0.0 0.3 4192 1812 pts/0 Ss 15:59 0:00 -bash
tux 4959 0.0 0.1 2324 816 pts/0 R+ 16:17 0:00 ps axu

To check how many sshd processes are running, use the option -p together with the
command pidof, which lists the process IDs of the given processes.
tux@mercury:~> ps -p $(pidof sshd)

PID TTY STAT TIME COMMAND
3524 ? Ss 0:00 /usr/sbin/sshd -o PidFile=/var/run/sshd.init.pid
4813 ? Ss 0:00 sshd: tux [priv]
4817 ? R 0:00 sshd: tux@pts/0

The process list can be formatted according to your needs. The option -L returns a list
of all keywords. Enter the following command to issue a list of all processes sorted by
memory usage:
tux@mercury:~> ps ax --format pid,rss,cmd --sort rss

PID RSS CMD
2 0 [ksoftirqd/0]
3 0 [events/0]
4 0 [khelper]
5 0 [kthread]
11 0 [kblockd/0]
12 0 [kacpid]

472 0 [pdflush]
473 0 [pdflush]

[...]
4028 17556 nautilus --no-default-window --sm-client-id default2
4118 17800 ksnapshot
4114 19172 sound-juicer
4023 25144 gnome-panel --sm-client-id default1
4047 31400 mono-best --debug /usr/lib/beagle/Best.exe --autostarted
3973 31520 mono-beagled --debug /usr/lib/beagle/BeagleDaemon.exe --bg --aut

Useful ps Calls

ps aux --sort column
Sort the output by column. Replace column with

pmem for physical memory ratio
pcpu for CPU ratio

System Monitoring Utilities 23

rss for resident set size (non-swapped physical memory)

ps axo pid,%cpu,rss,vsz,args,wchan
Shows every process, their PID, CPU usage ratio, memory size (resident and virtual),
name, and their syscall.

ps axfo pid,args
Show a process tree.

2.3.3 Process Tree: pstree
The command pstree produces a list of processes in the form of a tree:
tux@mercury:~> pstree
init-+-NetworkManagerD

|-acpid
|-3*[automount]
|-cron
|-cupsd
|-2*[dbus-daemon]
|-dbus-launch
|-dcopserver
|-dhcpcd
|-events/0
|-gpg-agent
|-hald-+-hald-addon-acpi
| `-hald-addon-stor
|-kded
|-kdeinit-+-kdesu---su---kdesu_stub---yast2---y2controlcenter
| |-kio_file
| |-klauncher
| |-konqueror
| |-konsole-+-bash---su---bash
| | `-bash
| `-kwin
|-kdesktop---kdesktop_lock---xmatrix
|-kdesud
|-kdm-+-X
| `-kdm---startkde---kwrapper

[...]

The parameter -p adds the process ID to a given name. To have the command lines
displayed as well, use the -a parameter:

24 System Analysis and Tuning Guide

2.3.4 Table of Processes: top
The command top, which stands for table of processes, displays a list of
processes that is refreshed every two seconds. To terminate the program, press Q. The
parameter -n 1 terminates the program after a single display of the process list. The
following is an example output of the command top -n 1:

tux@mercury:~> top -n 1
top - 17:06:28 up 2:10, 5 users, load average: 0.00, 0.00, 0.00
Tasks: 85 total, 1 running, 83 sleeping, 1 stopped, 0 zombie
Cpu(s): 5.5% us, 0.8% sy, 0.8% ni, 91.9% id, 1.0% wa, 0.0% hi, 0.0% si
Mem: 515584k total, 506468k used, 9116k free, 66324k buffers
Swap: 658656k total, 0k used, 658656k free, 353328k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 root 16 0 700 272 236 S 0.0 0.1 0:01.33 init
2 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0
3 root 10 -5 0 0 0 S 0.0 0.0 0:00.27 events/0
4 root 10 -5 0 0 0 S 0.0 0.0 0:00.01 khelper
5 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 kthread
11 root 10 -5 0 0 0 S 0.0 0.0 0:00.05 kblockd/0
12 root 20 -5 0 0 0 S 0.0 0.0 0:00.00 kacpid

472 root 20 0 0 0 0 S 0.0 0.0 0:00.00 pdflush
473 root 15 0 0 0 0 S 0.0 0.0 0:00.06 pdflush
475 root 11 -5 0 0 0 S 0.0 0.0 0:00.00 aio/0
474 root 15 0 0 0 0 S 0.0 0.0 0:00.07 kswapd0
681 root 10 -5 0 0 0 S 0.0 0.0 0:00.01 kseriod
839 root 10 -5 0 0 0 S 0.0 0.0 0:00.02 reiserfs/0
923 root 13 -4 1712 552 344 S 0.0 0.1 0:00.67 udevd

1343 root 10 -5 0 0 0 S 0.0 0.0 0:00.00 khubd
1587 root 20 0 0 0 0 S 0.0 0.0 0:00.00 shpchpd_event
1746 root 15 0 0 0 0 S 0.0 0.0 0:00.00 w1_control
1752 root 15 0 0 0 0 S 0.0 0.0 0:00.00 w1_bus_master1
2151 root 16 0 1464 496 416 S 0.0 0.1 0:00.00 acpid
2165 messageb 16 0 3340 1048 792 S 0.0 0.2 0:00.64 dbus-daemon
2166 root 15 0 1840 752 556 S 0.0 0.1 0:00.01 syslog-ng
2171 root 16 0 1600 516 320 S 0.0 0.1 0:00.00 klogd
2235 root 15 0 1736 800 652 S 0.0 0.2 0:00.10 resmgrd
2289 root 16 0 4192 2852 1444 S 0.0 0.6 0:02.05 hald
2403 root 23 0 1756 600 524 S 0.0 0.1 0:00.00 hald-addon-acpi
2709 root 19 0 2668 1076 944 S 0.0 0.2 0:00.00 NetworkManagerD
2714 root 16 0 1756 648 564 S 0.0 0.1 0:00.56 hald-addon-stor

By default the output is sorted by CPU usage (column%CPU, shortcut Shift + P). Use
following shortcuts to change the sort field:

Shift + M: Resident Memory (RES)
Shift + N: Process ID (PID)

System Monitoring Utilities 25

Shift + T: Time (TIME+)

To use any other field for sorting, press F and select a field from the list. To toggle the
sort order, Use Shift + R.

The parameter -U UID monitors only the processes associated with a particular user.
Replace UIDwith the user ID of the user. Use top -U $(id -u) to show processes
of the current user

2.3.5 Modify a process' niceness: nice and
renice

The kernel determines which processes require more CPU time than others by the pro-
cess' nice level, also called niceness. The higher the “nice” level of a process is, the
less CPU time it will take from other processes. Nice levels range from -20 (the least
“nice” level) to 19. Negative values can only be set by root.

Adjusting the niceness level is useful when running a non time-critical process that
lasts long and uses large amounts of CPU time, such as compiling a kernel on a system
that also performs other tasks. Making such a process “nicer”, ensures that the other
tasks, for example a Web server, will have a higher priority.

Calling nice without any parameters prints the current niceness:
tux@mercury:~> nice
0

Running nice command increments the current nice level for the given command
by 10. Using nice -n level command lets you specify a new niceness relative
to the current one.

To change the niceness of a running process, use renice priority -p process
id, for example:
renice +5 3266

To renice all processes owned by a specific user, use the option -u user. Process
groups are reniced by the option -g process group id.

26 System Analysis and Tuning Guide

2.4 Memory

2.4.1 Memory Usage: free
The utility free examines RAM and swap usage. Details of both free and used mem-
ory and swap areas are shown:
tux@mercury:~> free

total used free shared buffers cached
Mem: 2062844 2047444 15400 0 129580 921936
-/+ buffers/cache: 995928 1066916
Swap: 2104472 0 2104472

The options -b, -k, -m, -g show the output in bytes, KB, MB, or GB, respectively.
The parameter -d delay ensures that the display is refreshed every delay seconds.
For example, free -d 1.5 produces an update every 1.5 seconds.

2.4.2 Detailed Memory Usage:
/proc/meminfo

Use /proc/meminfo to get more detailed information on memory usage than with
free. Actually free uses some of the data from this file. See an example output from
a 64bit system below. Note that it slightly differs on 32bit systems due to different
memory management):
tux@mercury:~> cat /proc/meminfo
MemTotal: 8182956 kB
MemFree: 1045744 kB
Buffers: 364364 kB
Cached: 5601388 kB
SwapCached: 1936 kB
Active: 4048268 kB
Inactive: 2674796 kB
Active(anon): 663088 kB
Inactive(anon): 107108 kB
Active(file): 3385180 kB
Inactive(file): 2567688 kB
Unevictable: 4 kB
Mlocked: 4 kB
SwapTotal: 2096440 kB
SwapFree: 2076692 kB
Dirty: 44 kB

System Monitoring Utilities 27

Writeback: 0 kB
AnonPages: 756108 kB
Mapped: 147320 kB
Slab: 329216 kB
SReclaimable: 300220 kB
SUnreclaim: 28996 kB
PageTables: 21092 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 6187916 kB
Committed_AS: 1388160 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 133384 kB
VmallocChunk: 34359570939 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 2689024 kB
DirectMap2M: 5691392 kB

The most important entries are:

MemTotal
Total amount of usable RAM

MemFree
Total amount of unused RAM

Buffers
File buffer cache in RAM

Cached
Page cache (excluding buffer cache) in RAM

SwapCached
Page cache in swap

Active
Recently used memory that normally is not reclaimed. This value is the sum of
memory claimed by anonymous pages (listed as Active(anon)) and file-backed
pages (listed as Active(file))

28 System Analysis and Tuning Guide

Inactive
Recently unused memory that can be reclaimed. This value is the sum of memory
claimed by anonymous pages (listed as Inactive(anon)) and file-backed pages
(listed as Inactive(file)).

SwapTotal
Total amount of swap space

SwapFree
Total amount of unused swap space

Dirty
Amount of memory that will be written to disk

Writeback
Amount of memory that currently is written to disk

Mapped
Memory claimed with the nmap command

Slab
Kernel data structure cache

SReclaimable
Reclaimable slab caches (inode, dentry, etc.)

Committed_AS
An approximation of the total amount of memory (RAM plus swap) the current
workload needs in the worst case.

2.4.3 Process Memory Usage: smaps
Exactly determining how much memory a certain process is consuming is not possible
with standard tools like top or ps. Use the smaps subsystem, introduced in Kernel
2.6.14, if you need exact data. It can be found at /proc/pid/smaps and shows you
the number of clean and dirty memory pages the process with the ID PID is using at
that time. It differentiates between shared and private memory, so you are able to see
how much memory the process is using without including memory shared with other
processes.

System Monitoring Utilities 29

2.5 Networking

2.5.1 Show the Network Status: netstat
netstat shows network connections, routing tables (-r), interfaces (-i), masquerade
connections (-M), multicast memberships (-g), and statistics (-s).
tux@mercury:~> netstat -r
Kernel IP routing table
Destination Gateway Genmask Flags MSS Window irtt Iface
192.168.2.0 * 255.255.254.0 U 0 0 0 eth0
link-local * 255.255.0.0 U 0 0 0 eth0
loopback * 255.0.0.0 U 0 0 0 lo
default 192.168.2.254 0.0.0.0 UG 0 0 0 eth0

tux@mercury:~> netstat -i
Kernel Interface table
Iface MTU Met RX-OK RX-ERR RX-DRP RX-OVR TX-OK TX-ERR TX-DRP TX-OVR Flg
eth0 1500 0 1624507 129056 0 0 7055 0 0 0 BMNRU
lo 16436 0 23728 0 0 0 23728 0 0 0 LRU

When displaying network connections or statistics, you can specify the socket type to
display: TCP (-t), UDP (-u), or raw (-r). The -p option shows the PID and name
of the program to which each socket belongs.

The following example lists all TCP connections and the programs using these connec-
tions.
mercury:~ # netstat -t -p
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Pro
[...]
tcp 0 0 mercury:33513 www.novell.com:www-http ESTABLISHED 6862/fi
tcp 0 352 mercury:ssh mercury2.:trc-netpoll ESTABLISHED
19422/s
tcp 0 0 localhost:ssh localhost:17828 ESTABLISHED -

In the following, statistics for the TCP protocol are displayed:
tux@mercury:~> netstat -s -t
Tcp:

2427 active connections openings
2374 passive connection openings
0 failed connection attempts
0 connection resets received
1 connections established
27476 segments received

30 System Analysis and Tuning Guide

26786 segments send out
54 segments retransmited
0 bad segments received.
6 resets sent

[...]
TCPAbortOnLinger: 0
TCPAbortFailed: 0
TCPMemoryPressures: 0

2.5.2 Interactive Network Monitor: iptraf
The iptraf utility is a menu based Local Area Network (LAN) monitor. It generates
network statistics, including TCP and UDP counts, Ethernet load information, IP
checksum errors and others.

If you enter the command without any option, it runs in an interactive mode. You can
navigate through graphical menus and choose the statistics that you want iptraf to
report. You can also specify which network interface to examine.

Figure 2.1 iptraf Running in Interactive Mode

The command iptraf understands several options and can be run in a batch mode as
well. The following example will collect statistics for network interface eth0 (-i) for
1 minute (-t). It will be run in the background (-B) and the statistics will be written
to the iptraf.log file in your home directory (-L).
tux@mercury:~> iptraf -i eth0 -t 1 -B -L ~/iptraf.log

You can examine the log file with the more command:

System Monitoring Utilities 31

tux@mercury:~> more ~/iptraf.log
Mon Mar 23 10:08:02 2010; ******** IP traffic monitor started ********
Mon Mar 23 10:08:02 2010; UDP; eth0; 107 bytes; from 192.168.1.192:33157 to
\
239.255.255.253:427
Mon Mar 23 10:08:02 2010; VRRP; eth0; 46 bytes; from 192.168.1.252 to \
224.0.0.18
Mon Mar 23 10:08:03 2010; VRRP; eth0; 46 bytes; from 192.168.1.252 to \
224.0.0.18
Mon Mar 23 10:08:03 2010; VRRP; eth0; 46 bytes; from 192.168.1.252 to \
224.0.0.18
[...]
Mon Mar 23 10:08:06 2010; UDP; eth0; 132 bytes; from 192.168.1.54:54395 to \
10.20.7.255:111
Mon Mar 23 10:08:06 2010; UDP; eth0; 46 bytes; from 192.168.1.92:27258 to \
10.20.7.255:8765
Mon Mar 23 10:08:06 2010; UDP; eth0; 124 bytes; from 192.168.1.139:43464 to
\
10.20.7.255:111
Mon Mar 23 10:08:06 2010; VRRP; eth0; 46 bytes; from 192.168.1.252 to \
224.0.0.18
--More--(7%)

2.6 The /proc File System
The /proc file system is a pseudo file system in which the kernel reserves important
information in the form of virtual files. For example, display the CPU type with this
command:
tux@mercury:~> cat /proc/cpuinfo
processor : 0
vendor_id : GenuineIntel
cpu family : 15
model : 4
model name : Intel(R) Pentium(R) 4 CPU 3.40GHz
stepping : 3
cpu MHz : 2800.000
cache size : 2048 KB
physical id : 0
[...]

Query the allocation and use of interrupts with the following command:
tux@mercury:~> cat /proc/interrupts

CPU0
0: 3577519 XT-PIC timer
1: 130 XT-PIC i8042
2: 0 XT-PIC cascade
5: 564535 XT-PIC Intel 82801DB-ICH4

32 System Analysis and Tuning Guide

7: 1 XT-PIC parport0
8: 2 XT-PIC rtc
9: 1 XT-PIC acpi, uhci_hcd:usb1, ehci_hcd:usb4

10: 0 XT-PIC uhci_hcd:usb3
11: 71772 XT-PIC uhci_hcd:usb2, eth0
12: 101150 XT-PIC i8042
14: 33146 XT-PIC ide0
15: 149202 XT-PIC ide1
NMI: 0
LOC: 0
ERR: 0
MIS: 0

Some of the important files and their contents are:

/proc/devices
Available devices

/proc/modules
Kernel modules loaded

/proc/cmdline
Kernel command line

/proc/meminfo
Detailed information about memory usage

/proc/config.gz
gzip-compressed configuration file of the kernel currently running

Further information is available in the text file /usr/src/linux/
Documentation/filesystems/proc.txt (this file is available when the
package kernel-source is installed). Find information about processes currently
running in the /proc/NNN directories, where NNN is the process ID (PID) of the rele-
vant process. Every process can find its own characteristics in /proc/self/:
tux@mercury:~> ls -l /proc/self
lrwxrwxrwx 1 root root 64 2007-07-16 13:03 /proc/self -> 5356
tux@mercury:~> ls -l /proc/self/
total 0
dr-xr-xr-x 2 tux users 0 2007-07-16 17:04 attr
-r-------- 1 tux users 0 2007-07-16 17:04 auxv
-r--r--r-- 1 tux users 0 2007-07-16 17:04 cmdline
lrwxrwxrwx 1 tux users 0 2007-07-16 17:04 cwd -> /home/tux
-r-------- 1 tux users 0 2007-07-16 17:04 environ
lrwxrwxrwx 1 tux users 0 2007-07-16 17:04 exe -> /bin/ls

System Monitoring Utilities 33

dr-x------ 2 tux users 0 2007-07-16 17:04 fd
-rw-r--r-- 1 tux users 0 2007-07-16 17:04 loginuid
-r--r--r-- 1 tux users 0 2007-07-16 17:04 maps
-rw------- 1 tux users 0 2007-07-16 17:04 mem
-r--r--r-- 1 tux users 0 2007-07-16 17:04 mounts
-rw-r--r-- 1 tux users 0 2007-07-16 17:04 oom_adj
-r--r--r-- 1 tux users 0 2007-07-16 17:04 oom_score
lrwxrwxrwx 1 tux users 0 2007-07-16 17:04 root -> /
-rw------- 1 tux users 0 2007-07-16 17:04 seccomp
-r--r--r-- 1 tux users 0 2007-07-16 17:04 smaps
-r--r--r-- 1 tux users 0 2007-07-16 17:04 stat
[...]
dr-xr-xr-x 3 tux users 0 2007-07-16 17:04 task
-r--r--r-- 1 tux users 0 2007-07-16 17:04 wchan

The address assignment of executables and libraries is contained in the maps file:
tux@mercury:~> cat /proc/self/maps
08048000-0804c000 r-xp 00000000 03:03 17753 /bin/cat
0804c000-0804d000 rw-p 00004000 03:03 17753 /bin/cat
0804d000-0806e000 rw-p 0804d000 00:00 0 [heap]
b7d27000-b7d5a000 r--p 00000000 03:03 11867 /usr/lib/locale/en_GB.utf8/
b7d5a000-b7e32000 r--p 00000000 03:03 11868 /usr/lib/locale/en_GB.utf8/
b7e32000-b7e33000 rw-p b7e32000 00:00 0
b7e33000-b7f45000 r-xp 00000000 03:03 8837 /lib/libc-2.3.6.so
b7f45000-b7f46000 r--p 00112000 03:03 8837 /lib/libc-2.3.6.so
b7f46000-b7f48000 rw-p 00113000 03:03 8837 /lib/libc-2.3.6.so
b7f48000-b7f4c000 rw-p b7f48000 00:00 0
b7f52000-b7f53000 r--p 00000000 03:03 11842 /usr/lib/locale/en_GB.utf8/
[...]
b7f5b000-b7f61000 r--s 00000000 03:03 9109 /usr/lib/gconv/gconv-module
b7f61000-b7f62000 r--p 00000000 03:03 9720 /usr/lib/locale/en_GB.utf8/
b7f62000-b7f76000 r-xp 00000000 03:03 8828 /lib/ld-2.3.6.so
b7f76000-b7f78000 rw-p 00013000 03:03 8828 /lib/ld-2.3.6.so
bfd61000-bfd76000 rw-p bfd61000 00:00 0 [stack]
ffffe000-fffff000 ---p 00000000 00:00 0 [vdso]

2.6.1 procinfo
Important information from the /proc file system is summarized by the command
procinfo:
tux@mercury:~> procinfo
Linux 2.6.32.7-0.2-default (geeko@buildhost) (gcc 4.3.4) #1 2CPU

Memory: Total Used Free Shared Buffers
Mem: 2060604 2011264 49340 0 200664
Swap: 2104472 112 2104360

Bootup: Wed Feb 17 03:39:33 2010 Load average: 0.86 1.10 1.11 3/118 21547

34 System Analysis and Tuning Guide

user : 2:43:13.78 0.8% page in : 71099181 disk 1: 2827023r 968
nice : 1d 22:21:27.87 14.7% page out: 690734737
system: 13:39:57.57 4.3% page act: 138388345
IOwait: 18:02:18.59 5.7% page dea: 29639529
hw irq: 0:03:39.44 0.0% page flt: 9539791626
sw irq: 1:15:35.25 0.4% swap in : 69
idle : 9d 16:07:56.79 73.8% swap out: 209
uptime: 6d 13:07:11.14 context : 542720687

irq 0: 141399308 timer irq 14: 5074312 ide0
irq 1: 73784 i8042 irq 50: 1938076 uhci_hcd:usb1, ehci_
irq 4: 2 irq 58: 0 uhci_hcd:usb2
irq 6: 5 floppy [2] irq 66: 872711 uhci_hcd:usb3, HDA I
irq 7: 2 irq 74: 15 uhci_hcd:usb4
irq 8: 0 rtc irq 82: 178717720 0 PCI-MSI e
irq 9: 0 acpi irq169: 44352794 nvidia
irq 12: 3 irq233: 8209068 0 PCI-MSI l

To see all the information, use the parameter -a. The parameter -nN produces updates
of the information every N seconds. In this case, terminate the program by pressing q.

By default, the cumulative values are displayed. The parameter -d produces the differ-
ential values. procinfo -dn5 displays the values that have changed in the last five
seconds:

2.7 Hardware Information

2.7.1 PCI Resources: lspci
NOTE: Accessing PCI configuration.

Most operating systems require root user privileges to grant access to the
computer's PCI configuration.

The command lspci lists the PCI resources:
mercury:~ # lspci
00:00.0 Host bridge: Intel Corporation 82845G/GL[Brookdale-G]/GE/PE \

DRAM Controller/Host-Hub Interface (rev 01)
00:01.0 PCI bridge: Intel Corporation 82845G/GL[Brookdale-G]/GE/PE \

Host-to-AGP Bridge (rev 01)
00:1d.0 USB Controller: Intel Corporation 82801DB/DBL/DBM \

System Monitoring Utilities 35

(ICH4/ICH4-L/ICH4-M) USB UHCI Controller #1 (rev 01)
00:1d.1 USB Controller: Intel Corporation 82801DB/DBL/DBM \

(ICH4/ICH4-L/ICH4-M) USB UHCI Controller #2 (rev 01)
00:1d.2 USB Controller: Intel Corporation 82801DB/DBL/DBM \

(ICH4/ICH4-L/ICH4-M) USB UHCI Controller #3 (rev 01)
00:1d.7 USB Controller: Intel Corporation 82801DB/DBM \

(ICH4/ICH4-M) USB2 EHCI Controller (rev 01)
00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev 81)
00:1f.0 ISA bridge: Intel Corporation 82801DB/DBL (ICH4/ICH4-L) \

LPC Interface Bridge (rev 01)
00:1f.1 IDE interface: Intel Corporation 82801DB (ICH4) IDE \

Controller (rev 01)
00:1f.3 SMBus: Intel Corporation 82801DB/DBL/DBM (ICH4/ICH4-L/ICH4-M) \

SMBus Controller (rev 01)
00:1f.5 Multimedia audio controller: Intel Corporation 82801DB/DBL/DBM \

(ICH4/ICH4-L/ICH4-M) AC'97 Audio Controller (rev 01)
01:00.0 VGA compatible controller: Matrox Graphics, Inc. G400/G450 (rev 85)
02:08.0 Ethernet controller: Intel Corporation 82801DB PRO/100 VE (LOM) \

Ethernet Controller (rev 81)

Using -v results in a more detailed listing:
mercury:~ # lspci -v
[...]
00:03.0 Ethernet controller: Intel Corporation 82540EM Gigabit Ethernet \
Controller (rev 02)
Subsystem: Intel Corporation PRO/1000 MT Desktop Adapter
Flags: bus master, 66MHz, medium devsel, latency 64, IRQ 19
Memory at f0000000 (32-bit, non-prefetchable) [size=128K]
I/O ports at d010 [size=8]
Capabilities: [dc] Power Management version 2
Capabilities: [e4] PCI-X non-bridge device
Kernel driver in use: e1000
Kernel modules: e1000

Information about device name resolution is obtained from the file /usr/share/
pci.ids. PCI IDs not listed in this file are marked “Unknown device.”

The parameter -vv produces all the information that could be queried by the program.
To view the pure numeric values, use the parameter -n.

2.7.2 USB Devices: lsusb
The command lsusb lists all USB devices. With the option -v, print a more detailed
list. The detailed information is read from the directory /proc/bus/usb/. The fol-
lowing is the output of lsusb with these USB devices attached: hub, memory stick,
hard disk and mouse.

36 System Analysis and Tuning Guide

mercury:/ # lsusb
Bus 004 Device 007: ID 0ea0:2168 Ours Technology, Inc. Transcend JetFlash \

2.0 / Astone USB Drive
Bus 004 Device 006: ID 04b4:6830 Cypress Semiconductor Corp. USB-2.0 IDE \

Adapter
Bus 004 Device 005: ID 05e3:0605 Genesys Logic, Inc.
Bus 004 Device 001: ID 0000:0000
Bus 003 Device 001: ID 0000:0000
Bus 002 Device 001: ID 0000:0000
Bus 001 Device 005: ID 046d:c012 Logitech, Inc. Optical Mouse
Bus 001 Device 001: ID 0000:0000

2.8 Files and File Systems

2.8.1 Determine the File Type: file
The command file determines the type of a file or a list of files by checking /usr/
share/misc/magic.
tux@mercury:~> file /usr/bin/file
/usr/bin/file: ELF 64-bit LSB executable, x86-64, version 1 (SYSV), \

for GNU/Linux 2.6.4, dynamically linked (uses shared libs), stripped

The parameter -f list specifies a file with a list of filenames to examine. The -z
allows file to look inside compressed files:
tux@mercury:~> file /usr/share/man/man1/file.1.gz
usr/share/man/man1/file.1.gz: gzip compressed data, from Unix, max compression
tux@mercury:~> file -z /usr/share/man/man1/file.1.gz
/usr/share/man/man1/file.1.gz: troff or preprocessor input text \

(gzip compressed data, from Unix, max compression)

The parameter -i outputs a mime type string rather than the traditional description.
tux@mercury:~> file -i /usr/share/misc/magic
/usr/share/misc/magic: text/plain charset=utf-8

2.8.2 File Systems and Their Usage: mount,
df and du

The command mount shows which file system (device and type) is mounted at which
mount point:

System Monitoring Utilities 37

tux@mercury:~> mount
/dev/sda3 on / type reiserfs (rw,acl,user_xattr)
proc on /proc type proc (rw)
sysfs on /sys type sysfs (rw)
udev on /dev type tmpfs (rw)
devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
/dev/sda1 on /boot type ext2 (rw,acl,user_xattr)
/dev/sda4 on /local type reiserfs (rw,acl,user_xattr)
/dev/fd0 on /media/floppy type subfs (rw,nosuid,nodev,noatime,fs=floppyfss,p

Obtain information about total usage of the file systems with the command df. The
parameter-h (or--human-readable) transforms the output into a form understand-
able for common users.
tux@mercury:~> df -h
Filesystem Size Used Avail Use% Mounted on
/dev/sda3 11G 3.2G 6.9G 32% /
udev 252M 104K 252M 1% /dev
/dev/sda1 16M 6.6M 7.8M 46% /boot
/dev/sda4 27G 34M 27G 1% /local

Display the total size of all the files in a given directory and its subdirectories with the
command du. The parameter -s suppresses the output of detailed information and
gives only a total for each argument. -h again transforms the output into a human-
readable form:
tux@mercury:~> du -sh /opt
192M /opt

2.8.3 Additional Information about ELF
Binaries

Read the content of binaries with the readelf utility. This even works with ELF files
that were built for other hardware architectures:
tux@mercury:~> readelf --file-header /bin/ls
ELF Header:
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00
Class: ELF64
Data: 2's complement, little endian
Version: 1 (current)
OS/ABI: UNIX - System V
ABI Version: 0
Type: EXEC (Executable file)
Machine: Advanced Micro Devices X86-64
Version: 0x1
Entry point address: 0x402540

38 System Analysis and Tuning Guide

Start of program headers: 64 (bytes into file)
Start of section headers: 95720 (bytes into file)
Flags: 0x0
Size of this header: 64 (bytes)
Size of program headers: 56 (bytes)
Number of program headers: 9
Size of section headers: 64 (bytes)
Number of section headers: 32
Section header string table index: 31

2.8.4 File Properties: stat
The command stat displays file properties:
tux@mercury:~> stat /etc/profile

File: `/etc/profile'
Size: 9662 Blocks: 24 IO Block: 4096 regular file

Device: 802h/2050d Inode: 132349 Links: 1
Access: (0644/-rw-r--r--) Uid: (0/ root) Gid: (0/ root)
Access: 2009-03-20 07:51:17.000000000 +0100
Modify: 2009-01-08 19:21:14.000000000 +0100
Change: 2009-03-18 12:55:31.000000000 +0100

The parameter --file-system produces details of the properties of the file system
in which the specified file is located:
tux@mercury:~> stat /etc/profile --file-system

File: "/etc/profile"
ID: d4fb76e70b4d1746 Namelen: 255 Type: ext2/ext3

Block size: 4096 Fundamental block size: 4096
Blocks: Total: 2581445 Free: 1717327 Available: 1586197
Inodes: Total: 655776 Free: 490312

2.9 User Information

2.9.1 User Accessing Files: fuser
It can be useful to determine what processes or users are currently accessing certain
files. Suppose, for example, you want to unmount a file system mounted at /mnt.
umount returns "device is busy." The command fuser can then be used to determine
what processes are accessing the device:
tux@mercury:~> fuser -v /mnt/*

System Monitoring Utilities 39

USER PID ACCESS COMMAND
/mnt/notes.txt tux 26597 f.... less

Following termination of the less process, which was running on another terminal,
the file system can successfully be unmounted. When used with -k option, fuser
will kill processes accessing the file as well.

2.9.2 Who Is Doing What: w
With the command w, find out who is logged onto the system and what each user is
doing. For example:
tux@mercury:~> w
14:58:43 up 1 day, 1:21, 2 users, load average: 0.00, 0.00, 0.00
USER TTY LOGIN@ IDLE JCPU PCPU WHAT
tux :0 12:25 ?xdm? 1:23 0.12s /bin/sh /usr/bin/startkde
root pts/4 14:13 0.00s 0.06s 0.00s w

If any users of other systems have logged in remotely, the parameter -f shows the
computers from which they have established the connection.

2.10 Time and Date

2.10.1 Time Measurement with time
Determine the time spent by commands with the time utility. This utility is available
in two versions: as a shell built-in and as a program (/usr/bin/time).
tux@mercury:~> time find . > /dev/null

real 0m4.051s
user 0m0.042s
sys 0m0.205s

2.11 Graph Your Data: RRDtool
There are a lot of data in the world around you, which can be easily measured in time.
For example, changes in the temperature, or the number of data sent or received by

40 System Analysis and Tuning Guide

your computer's network interface. RRDtool can help you store and visualize such data
in detailed and customizable graphs.

RRDtool is available for most UNIX platforms and Linux distributions. SUSE® Linux
Enterprise Server ships RRDtool as well. Install it either with YaST or by entering

zypper install rrdtool in the command line as root.

TIP

There are Perl, Python, Ruby, or PHP bindings available for RRDtool, so that
you can write your own monitoring scripts with your preferred scripting lan-
guage.

2.11.1 How RRDtool Works
RRDtool is a shortcut of Round Robin Database tool. Round Robin is a method for
manipulating with a constant amount of data. It uses the principle of a circular buffer,
where there is no end nor beginning to the data row which is being read. RRDtool uses
Round Robin Databases to store and read its data.

As mentioned above, RRDtool is designed to work with data that change in time. The
ideal case is a sensor which repeatedly reads measured data (like temperature, speed
etc.) in constant periods of time, and then exports them in a given format. Such data
are perfectly ready for RRDtool, and it is easy to process them and create the desired
output.

Sometimes it is not possible to obtain the data automatically and regularly. Their format
needs to be pre-processed before it is supplied to RRDtool, and often you need to ma-
nipulate RRDtool even manually.

The following is a simple example of basic RRDtool usage. It illustrates all three im-
portant phases of the usual RRDtool workflow: creating a database, updatingmeasured
values, and viewing the output.

System Monitoring Utilities 41

2.11.2 Simple Real Life Example
Suppose we want to collect and view information about the memory usage in the Linux
system as it changes in time. Tomake the example more vivid, we measure the currently
free memory for the period of 40 seconds in 4-second intervals. During the measuring,
the three hungry applications that usually consume a lot of system memory have been
started and closed: the FirefoxWeb browser, the Evolution e-mail client, andthe Eclipse
development framework.

Collecting Data
RRDtool is very often used to measure and visualize network traffic. In such case,
SimpleNetworkManagement Protocol (SNMP) is used. This protocol can query network
devices for relevant values of their internal counters. Exactly these values are to be
stored with RRDtool. For more information on SNMP, see http://www.net-snmp
.org/.

Our situation is different - we need to obtain the data manually. A helper script
free_mem.sh repetitively reads the current state of free memory and writes it to the
standard output.
tux@mercury:~> cat free_mem.sh
INTERVAL=4
for steps in {1..10}
do

DATE=`date +%s`
FREEMEM=`free -b | grep "Mem" | awk '{ print $4 }'`
sleep $INTERVAL
echo "rrdtool update free_mem.rrd $DATE:$FREEMEM"

done

Points to Notice

• The time interval is set to 4 seconds, and is implemented with the sleep command.

• RRDtool accepts time information in a special format - so called Unix time. It is
defined as the number of seconds since the midnight of January 1, 1970 (UTC).
For example, 1272907114 represents 2010-05-03 17:18:34.

• The free memory information is reported in bytes with free -b. Prefer to supply
basic units (bytes) instead of multiple units (like kilobytes).

42 System Analysis and Tuning Guide

http://www.net-snmp.org/
http://www.net-snmp.org/

• The line with the echo ... command contains the future name of the database
file (free_mem.rrd), and together creates a command line for the purpose of
updating RRDtool values.

After running free_mem.sh, you see an output similar to this:
tux@mercury:~> sh free_mem.sh
rrdtool update free_mem.rrd 1272974835:1182994432
rrdtool update free_mem.rrd 1272974839:1162817536
rrdtool update free_mem.rrd 1272974843:1096269824
rrdtool update free_mem.rrd 1272974847:1034219520
rrdtool update free_mem.rrd 1272974851:909438976
rrdtool update free_mem.rrd 1272974855:832454656
rrdtool update free_mem.rrd 1272974859:829120512
rrdtool update free_mem.rrd 1272974863:1180377088
rrdtool update free_mem.rrd 1272974867:1179369472
rrdtool update free_mem.rrd 1272974871:1181806592

It is convenient to redirect the command's output to a file with

sh free_mem.sh > free_mem_updates.log

to ease its future execution.

Creating Database
Create the initial Robin Round database for our example with the following command:
rrdtool create free_mem.rrd --start 1272974834 --step=4 \
DS:memory:GAUGE:600:U:U RRA:AVERAGE:0.5:1:24

Points to Notice

• This command creates a file called free_mem.rrd for storing our measured
values in a Round Robin type database.

• The --start option specifies the time (in Unix time) when the first value will
be added to the database. In this example, it is one less than the first time value of
the free_mem.sh output (1272974835).

• The --step specifies the time interval in seconds with which the measured data
will be supplied to the database.

System Monitoring Utilities 43

• The DS:memory:GAUGE:600:U:U part introduces a new data source for the
database. It is calledmemory, its type is gauge, the maximum number between two
updates is 600 seconds, and the minimal and maximal value in the measured range
are unknown (U).

• RRA:AVERAGE:0.5:1:24 creates Round Robin archive (RRA) whose stored
data are processed with the consolidation functions (CF) that calculates the average
of data points. 3 arguments of the consolidation function are appended to the end
of the line .

If no error message is displayed, thenfree_mem.rrd database is created in the current
directory:
tux@mercury:~> ls -l free_mem.rrd
-rw-r--r-- 1 tux users 776 May 5 12:50 free_mem.rrd

Updating Database Values
After the database is created, you need to fill it with the measured data. In Section
“Collecting Data” (page 42), we already prepared the file free_mem_updates.log
which consists of rrdtool update commands. These commands do the update of
database values for us.
tux@mercury:~> sh free_mem_updates.log; ls -l free_mem.rrd
-rw-r--r-- 1 tux users 776 May 5 13:29 free_mem.rrd

As you can see, the size of free_mem.rrd remained the same even after updating
its data.

Viewing Measured Values
We have already measured the values, created the database, and stored the measured
value in it. Now we can play with the database, and retrieve or view its values.

To retrieve all the values from our database, enter the following on the command line:
tux@mercury:~> rrdtool fetch free_mem.rrd AVERAGE --start 1272974830 \
--end 1272974871

memory
1272974832: nan
1272974836: 1.1729059840e+09
1272974840: 1.1461806080e+09
1272974844: 1.0807572480e+09

44 System Analysis and Tuning Guide

1272974848: 1.0030243840e+09
1272974852: 8.9019289600e+08
1272974856: 8.3162112000e+08
1272974860: 9.1693465600e+08
1272974864: 1.1801251840e+09
1272974868: 1.1799787520e+09
1272974872: nan

Points to Notice

• AVERAGE will fetch average value points from the database, because only one
data source is defined (Section “Creating Database” (page 43)) with AVERAGE
processing and no other function is available.

• The first line of the output prints the name of the data source as defined in Section
“Creating Database” (page 43).

• The left results column represents individual points in time, while the right one
represents corresponding measured average values in scientific notation.

• The nan in the last line stands for “not a number”.

Now a graph representing representing the values stored in the database is drawn:
tux@mercury:~> rrdtool graph free_mem.png \
--start 1272974830 \
--end 1272974871 \
--step=4 \
DEF:free_memory=free_mem.rrd:memory:AVERAGE \
LINE2:free_memory#FF0000 \
--vertical-label "GB" \
--title "Free System Memory in Time" \
--zoom 1.5 \
--x-grid SECOND:1:SECOND:4:SECOND:10:0:%X

Points to Notice

• free_mem.png is the file name of the graph to be created.

• --start and --end limit the time range within which the graph will be drawn.

• --step specifies the time resolution (in seconds) of the graph.

• The DEF:... part is a data definition called free_memory. Its data are read from
the free_mem.rrd database and its data source called memory. The average

System Monitoring Utilities 45

value points are calculated, because no others were defined in Section “Creating
Database” (page 43).

• The LINE... part specifies properties of the line to be drawn into the graph. It is
2 pixels wide, its data come from the free_memory definition, and its color is red.

• --vertical-label sets the label to be printed along the y axis, and --title
sets the main label for the whole graph.

• --zoom specifies the zoom factor for the graph. This value must be greater than
zero.

• --x-grid specifies how to draw grid lines and their labels into the graph. Our
example places them every second, while major grid lines are placed every 4 sec-
onds. Labels are placed every 10 seconds under the major grid lines.

Figure 2.2 Example Graph Created with RRDtool

2.11.3 For More Information
RRDtool is a very complex tool with a lot of sub-commands and command line options.
Some of them are easy to understand, but you have to really study RRDtool to make it
produce the results you want and fine-tune them according to your liking.

Apart form RRDtool's man page (man 1 rrdtool) which gives you only basic in-
formation, you should have a look at the RRDtool homepage [http://oss.oetiker
.ch/rrdtool/]. There is a detailed documentation [http://oss.oetiker.ch/
rrdtool/doc/index.en.html] of the rrdtool command and all its sub-
commands. There are also several tutorials [http://oss.oetiker.ch/rrdtool/
tut/index.en.html] to help you understand the common RRDtool workflow.

46 System Analysis and Tuning Guide

http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/
http://oss.oetiker.ch/rrdtool/doc/index.en.html
http://oss.oetiker.ch/rrdtool/doc/index.en.html
http://oss.oetiker.ch/rrdtool/tut/index.en.html
http://oss.oetiker.ch/rrdtool/tut/index.en.html

If you are interested in monitoring network traffic, have a look at MRTG [http://
oss.oetiker.ch/mrtg/]. It stands for Multi Router Traffic Grapher and can
graph the activity of all sorts of network devices. It can easily make use of RRDtool.

System Monitoring Utilities 47

http://oss.oetiker.ch/mrtg/
http://oss.oetiker.ch/mrtg/

3Monitoring with Nagios
Nagios is a stable, scalable and extensible enterprise-class network and system moni-
toring tool which allows administrators to monitor network and host resources such as
HTTP, SMTP, POP3, disk usage and processor load. Originally Nagios was designed
to run under Linux, but it can also be used on several UNIX operating systems. This
chapter covers the installation and parts of the configuration of Nagios (http://www
.nagios.org/).

3.1 Features of Nagios
The most important features of Nagios are:

• Monitoring of network services (SMTP, POP3, HTTP, NNTP, etc.).

• Monitoring of host resources (processor load, disk usage, etc.).

• Simple plug-in design that allows administrators to develop further service checks.

• Support for redundant Nagios servers.

3.2 Installing Nagios
Install Nagios either with zypper or using YaST.

For further information on how to install packages see:

Monitoring with Nagios 49

http://www.nagios.org/
http://www.nagios.org/

• Section “Using Zypper” (Chapter 4,Managing Software with Command Line Tools,
↑Administration Guide)

• Section “Installing and Removing Packages or Patterns” (Chapter 9, Installing or
Removing Software, ↑Deployment Guide)

Bothmethods install the packagesnagios and nagios-www. The later RPMpackage
contains a Web interface for Nagios which allows, for example, to view the service
status and the problem history. However, this is not absolutely necessary.

Nagios is modular designed and, thus, uses external check plug-ins to verify whether
a service is available or not. It is recommended to install the nagios-plugin RPM
package that contains ready-made check plug-ins. However, it is also possible to write
your own, custom check plug-ins.

3.3 Nagios Configuration Files
Nagios organizes the configuration files as follows:

/etc/nagios/nagios.cfg
Main configuration file of Nagios containing a number of directives which define
how Nagios operates. See http://nagios.sourceforge.net/docs/3
_0/configmain.html for a complete documentation.

/etc/nagios/resource.cfg
Containing path to all Nagios plug-ins (default:/usr/lib/nagios/plugins).

/etc/nagios/command.cfg
Defining the programs to be used to determine the availability of services or the
commands which are used to send e-mail notifications.

/etc/nagios/cgi.cfg
Contains options regarding the Nagios Web interface.

/etc/nagios/objects/
A directory containing object definition files. See Section 3.3.1, “Object Definition
Files” (page 51) for a more complete documentation.

50 System Analysis and Tuning Guide

http://nagios.sourceforge.net/docs/3_0/configmain.html
http://nagios.sourceforge.net/docs/3_0/configmain.html

3.3.1 Object Definition Files
In addition to those configuration files Nagios comes with very flexible and highly
customizable configuration files called Object Definition configuration files. Those
configuration files are very important since they define the following objects:

• Hosts

• Services

• Contacts

The flexibility lies in the fact that objects are easily enhanceable. Imagine you are re-
sponsible for a host with only one service running. However, you want to install another
service on the same host machine and you want to monitor that service as well. It is
possible to add another service object and assign it to the host object without huge efforts.

Right after the installation, Nagios offers default templates for object definition confi-
guration files. They can be found at /etc/nagios/objects. In the following see
a description on how hosts, services and contacts are added:

Example 3.1 A Host Object Definition

define host {
name SRV1
host_name SRV1
address 192.168.0.1
use generic-host
check_period 24x7
check_interval 5
retry_interval 1
max_check_attempts 10
notification_period workhours
notification_interval 120
notification_options d,u,r
}

The host_name option defines a name to identify the host that has to be monitored.
address is the IP address of this host. The use statement tells Nagios to inherit other
configuration values from the generic-host template. check_period defines whether
the machine has to be monitored 24x7. check_interval makes Nagios checking
the service every 5 minutes and retry_interval tells Nagios to schedule host
check retries at 1 minute intervals. Nagios tries to execute the checks multiple times

Monitoring with Nagios 51

when they do not pass. You can define how many attempts Nagios should do with the
max_check_attempts directive. All configuration flags beginning with
notification handle how Nagios should behave when a failure of a monitored
service occurs. In the host definition above, Nagios notifies the administrators only on
working hours. However, this can be adjusted with notification_period. Ac-
cording to notification_interval notifications will be resend every two hours.
notification_options contains four different flags: d, u, r and n. They
control in which state Nagios should notify the administrator. d stands for a down state,
u for unreachable and r for recoveries. n does not send any notifications
anymore.

Example 3.2 A Service Object Definition

define service {
use generic-service
host_name SRV1
service_description PING
contact_groups router-admins
check_command check_ping!100.0,20%!500.0,60%
}

The first configuration directive use tells Nagios to inherit from the generic
-service template.host_name is the name that assigns the service to the host object.
The host itself is defined in the host object definition. A description can be set with
service_description. In the example above the description is just PING.
Within the contact_groups option it is possible to refer to a group of people who
will be contacted on a failure of the service. This group and its members are later defined
in a contact group object definition. check_command sets the program that checks
whether the service is available, or not.

Example 3.3 A Contact and Contactgroup Definition

define contact {
contact_name admins
use generic-contact
alias Nagios Admin
email nagios@localhost
}

define contactgroup {
contactgroup_name router-admins
alias Administrators
members admins
}

52 System Analysis and Tuning Guide

The example listing above shows the direct contact definition and its proper
contactgroup. The contact definition contains the e-mail address and the name
of the person who is contacted on a failure of a service. Usually this is the responsible
administrator. use inherits configuration values from the generic-contact definition.

An overview of all Nagios objects and further information about them can be found at:
http://nagios.sourceforge.net/docs/3_0/objectdefinitions
.html.

3.4 Configuring Nagios
Learn step-by-step how to configure Nagios to monitor different things like remote
services or remote host-resources.

3.4.1 Monitoring Remote Services with
Nagios

This section explains how to monitor remote services with Nagios. Proceed as follows
to monitor a remote service:

Procedure 3.1 Monitoring a Remote HTTP Service with Nagios

1 Create a directory inside /etc/nagios/objects using mkdir. You can
use any desired name for it.

2 Open /etc/nagios/nagios.conf and set cfg_dir (configuration direc-
tory) to the directory you have created in the first step.

3 Change to the configuration directory created in the first step and create the fol-
lowing files: hosts.cfg, services.cfg and contacts.cfg

4 Insert a host object in hosts.cfg:
define host {
name host.name.com
host_name host.name.com
address 192.168.0.1
use generic-host
check_period 24x7

Monitoring with Nagios 53

http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html
http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html

check_interval 5
retry_interval 1
max_check_attempts 10
contact_groups admins
notification_interval 60
notification_options d,u,r
}

5 Insert a service object in services.cfg:
define service {
use generic-service
host_name host.name.com
service_description HTTP
contact_groups router-admins
check_command check_http
}

6 Insert a contact and contactgroup object in contacts.cfg:
define contact {
contact_name max-mustermann
use generic-contact
alias Webserver Administrator
email mmustermann@localhost
}

define contactgroup {
contactgroup_name admins
alias Administrators
members max-mustermann
}

7 Execute rcnagios restart to (re)start Nagios.

8 Execute cat /var/log/nagios/nagios.log and verify whether the
following content appears:
[1242115343] Nagios 3.0.6 starting... (PID=10915)
[1242115343] Local time is Tue May 12 10:02:23 CEST 2009
[1242115343] LOG VERSION: 2.0
[1242115343] Finished daemonizing... (New PID=10916)

54 System Analysis and Tuning Guide

If you need to monitor a different remote service, it is possible to adjust
check_command in step Step 5 (page 54). A full list of all available check programs
can be obtained by executing ls /usr/lib/nagios/plugins/check_*

See Section 3.5, “Troubleshooting” (page 57) if an error occurred.

3.4.2 Monitoring Remote Host-Resources
with Nagios

This section explains how to monitor remote host resources with Nagios.

Proceed as follows on the Nagios server:

Procedure 3.2 Monitoring a Remote Host Resource with Nagios (Server)

1 Install nagios-nsca (for example, zypper in nagios-nsca).

2 Set the following options in /etc/nagios/nagios.cfg:
check_external_commands=1
accept_passive_service_checks=1
accept_passive_host_checks=1
command_file=/var/spool/nagios/nagios.cmd

3 Set the command_file option in /etc/nagios/nsca.conf to the same
file defined in /etc/nagios/nagios.conf.

4 Add another host and service object:
define host {
name foobar
host_name foobar
address 10.10.4.234
use generic-host
check_period 24x7
check_interval 0
retry_interval 1
max_check_attempts 1
active_checks_enabled 0
passive_checks_enabled 1
contact_groups router-admins
notification_interval 60
notification_options d,u,r
}

Monitoring with Nagios 55

define service {
use generic-service
host_name foobar
service_description diskcheck
active_checks_enabled 0
passive_checks_enabled 1
contact_groups router-admins
check_command check_ping
}

5 Execute rcnagios restart and rcnsca restart.

Proceed as follows on the client you want to monitor:

Procedure 3.3 Monitoring a Remote Host Resource with Nagios (client)

1 Install nagios-nsca-client on the host you want to monitor.

2 Write your test scripts (for example a script that checks the disk usage) like this:
#!/bin/bash

NAGIOS_SERVER=10.10.4.166
THIS_HOST=foobar

#
Write own test algorithm here
#

Execute On SUCCESS:
echo "$THIS_HOST;diskcheck;0;OK: test ok" \

| send_nsca -H $NAGIOS_SERVER -p 5667 -c
/etc/nagios/send_nsca.cfg -d ";"

Execute On Warning:
echo "$THIS_HOST;diskcheck;1;Warning: test warning" \

| send_nsca -H $NAGIOS_SERVER -p 5667 -c
/etc/nagios/send_nsca.cfg -d ";"

Execute On FAILURE:
echo "$THIS_HOST;diskcheck;2;CRITICAL: test critical" \

| send_nsca -H $NAGIOS_SERVER -p 5667 -c
/etc/nagios/send_nsca.cfg -d ";"

3 Insert a new cron entry with crontab -e. A typical cron entry could look like
this:

56 System Analysis and Tuning Guide

*/5 * * * * /directory/to/check/program/check_diskusage

3.5 Troubleshooting
Error: ABC 'XYZ' specified in ... '...' is not defined
anywhere!

Make sure that you have defined all necessary objects correctly. Be careful with
the spelling.

(Return code of 127 is out of bounds - plugin may be
missing)

Make sure that you have installed nagios-plugins.

E-mail notification does not work
Make sure that you have installed and configured a mail server like postfix or
exim correctly. You can verify if your mail server works with echo "Mail
Server Test!" | mail foo@bar.com which sends an e-mail to
foo@bar.com. If this e-mail arrives, your mail server is working correctly. Other-
wise, check the log files of the mail server.

3.6 For More Information
The complete Nagios documentation

http://nagios.sourceforge.net/docs/3_0/toc.html

Object Configuration Overview
http://nagios.sourceforge.net/docs/3_0/configobject.html

Object Definitions
http://nagios.sourceforge.net/docs/3_0/objectdefinitions
.html

Nagios Plugins
http://nagios.sourceforge.net/docs/3_0/plugins.html

Monitoring with Nagios 57

http://nagios.sourceforge.net/docs/3_0/toc.html
http://nagios.sourceforge.net/docs/3_0/configobject.html
http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html
http://nagios.sourceforge.net/docs/3_0/objectdefinitions.html
http://nagios.sourceforge.net/docs/3_0/plugins.html

4Analyzing and Managing
System Log Files
System log file analysis is one of the most important tasks when analyzing the system.
In fact, looking at the system log files should be the first thing to do when maintaining
or troubleshooting a system. SUSE Linux Enterprise Server automatically logs almost
everything that happens on the system in detail. Normally, system log files are written
in plain text and therefore, can be easily read using an editor or pager. They are also
parsable by scripts, allowing you to easily filter their content.

4.1 System Log Files in /var/log/
System log files are always located under the /var/log directory. The following list
presents an overview of all system log files from SUSELinux Enterprise Server present
after a default installation. Depending on your installation scope, /var/log also
contains log files from other services and applications not listed here. Some files and
directories described below are “placeholders” and are only used, when the correspond-
ing application is installed. Most log files are only visible for the user root.

acpid
Log of the advanced configuration and power interface event daemon (acpid), a
daemon to notify user-space programs of ACPI events. acpid will log all of its
activities, as well as the STDOUT and STDERR of any actions to syslog.

apparmor
Novell AppArmor log files. See Part “Confining Privileges with Novell AppArmor”
(↑Security Guide) for details of AppArmor.

Analyzing and Managing System Log Files 59

audit
Logs from the audit framework. See Part “The Linux Audit Framework” (↑Security
Guide) for details.

boot.msg
Log of the system init process - this file contains all boot messages from the kernel,
the boot scripts and the services started during the boot sequence.

Check this file to find out whether your hardware has been correctly initialized or
all services have been started successfully.

boot.omsg
Log of the system shutdown process - this file contains all messages issued on the
last shutdown or reboot.

ConsoleKit/*
Logs of the ConsoleKit daemon (daemon for tracking what users are logged in
and how they interact with the computer).

cups/
Access and error logs of the common UNIX printing system (cups).

faillog
Database file that contains all login failures. Use the faillog command to view.
See man 8 faillog for more information.

firewall
Firewall logs.

gdm/*
Log files from the GNOME display manager.

krb5
Log files from the Kerberos network authentication system.

lastlog
The lastlog file is a database which contains info on the last login of each user. Use
the command lastlog to view. See man 8 lastlog for more information.

60 System Analysis and Tuning Guide

localmessages
Log messages of some boot scripts, for example the log of the DHCP client.

mail*
Mail server (postfix, sendmail) logs.

messages
This is the default place where all kernel and system log messages go and should
be the first place (along with /var/log/warn) to look at in case of problems.

NetworkManager
NetworkManager log files

news/*
Log messages from a news server.

Logs from the Network Time Protocol daemon (ntpd).

pk_backend_zypp
PackageKit (with libzypp backend) log files.

puppet/*
Log files from the data center automation tool puppet.

samba/*
Log files from samba, the Windows SMB/CIFS file server.

SaX.log
Logs from SaX2, the SUSE advanced X11 configuration tool.

scpm
Logs from the system configuration profile management (scpm).

warn
Log of all system warnings and errors. This should be the first place (along with
/var/log/messages) to look at in case of problems.

wtmp
Database of all login/logout activities, runlevel changes and remote connections.
Use the command last to view. See man 1 last for more information.

Analyzing and Managing System Log Files 61

xinetd.log
Log files from the extended Internet services daemon (xinetd).

Xorg.0.log
X startup log file. Refer to this in case you have problems starting X. Copies from
previous X starts are numbered Xorg.?.log.

YaST2/*
All YaST log files.

zypp/*
libzypp log files. Refer to these files for the package installation history.

zypper.log
Logs from the command line installer zypper.

4.2 Viewing and Parsing Log Files
To view log files, you can use your favorite text editor. There is also a simple YaST
module for viewing /var/log/messages, available in the YaST Control Center
underMiscellaneous > System Log.

For viewing log files in a text console, use the commands less or more. Use head
and tail to view the beginning or end of a log file. To view entries appended to a log
file in real-time use tail -f. For information about how to use these tools, see their
man pages.

To search for strings or regular expressions in log files use grep. awk is useful for
parsing and rewriting log files.

4.3 Managing Log Files with logrotate
Log files under /var/log grow on a daily basis and quickly become very big.
logrotate is a tool for large amounts of log files and helps you to manage these
files and to control their growth. It allows automatic rotation, removal, compression,

62 System Analysis and Tuning Guide

and mailing of log files. Log files can be handled periodically (daily, weekly, or
monthly) or when exceeding a particular size.

logrotate is usually run as a daily cron job. It does not modify any log files more
than once a day unless the log is to bemodified because of its size, because logrotate
is being run multiple times a day, or the --force option is used.

The main configuration file of logrotate is /etc/logrotate.conf. System
packages as well as programs that produce log files (for example, apache2) put their
own configuration files in the/etc/logrotate.d/ directory. The content of/etc/
logrotate.d/ is included via /etc/logrotate.conf.

Example 4.1 Example for /etc/logrotate.conf

see "man logrotate" for details
rotate log files weekly
weekly

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

use date as a suffix of the rotated file
dateext

uncomment this if you want your log files compressed
#compress

comment these to switch compression to use gzip or another
compression scheme
compresscmd /usr/bin/bzip2
uncompresscmd /usr/bin/bunzip2

RPM packages drop log rotation information into this directory
include /etc/logrotate.d

IMPORTANT

The create option pays heed to the modes and ownerships of files specified
in /etc/permissions*. If you modify these settings, make sure no conflicts
arise.

Analyzing and Managing System Log Files 63

logrotate is controlled through cron and is called daily by /etc/cron.daily/
logrotate. Use /var/lib/logrotate.status to find out when a particular
file has been rotated lastly.

4.4 Monitoring Log Files with
logwatch

logwatch is a customizable, pluggable log-monitoring script. It parses system logs,
extracts the important information and presents them in a human readable manner. To
use logwatch, install the logwatch package.

logwatch can either be used at the command-line to generate on-the-fly reports, or
via cron to regularly create custom reports. Reports can either be printed on the screen,
saved to a file, or be mailed to a specified address. The latter is especially useful when
automatically generating reports via cron.

The command-line syntax is easy. You basically tell logwatch for which service,
time span and to which detail level to generate a report:

Detailed report on all kernel messages from yesterday
logwatch --service kernel --detail High --range Yesterday --print

Low detail report on all sshd events recorded (incl. archived logs)
logwatch --service sshd --detail Low --range All --archives --print

Mail a report on all smartd messages from May 5th to May 7th to root@localhost
logwatch --service smartd --range 'between 5/5/2005 and 5/7/2005' \
--mailto root@localhost --print

The --range option has got a complex syntax—see logwatch --range help
for details. A list of all services that can be queried is available with the following
command:
ls /usr/share/logwatch/default.conf/services/ | sed 's/\.conf//g'

logwatch can be customized to great detail. However, the default configuration
should be sufficient in most cases. The default configuration files are located under
/usr/share/logwatch/default.conf/. Never change them because they
would get overwritten again with the next update. Rather place custom configuration
in/etc/logwatch/conf/ (youmay use the default configuration file as a template,

64 System Analysis and Tuning Guide

though). A detailedHOWTOon customizinglogwatch is available at/usr/share/
doc/packages/logwatch/HOWTO-Customize-LogWatch. The following
config files exist:

logwatch.conf
The main configuration file. The default version is extensively commented. Each
configuration option can be overwritten on the command line.

ignore.conf
Filter for all lines that should globally be ignored by logwatch.

services/*.conf
The service directory holds configuration files for each service you can generate a
report for.

logfiles/*.conf
Specifications on which log files should be parsed for each service.

Analyzing and Managing System Log Files 65

Part III. Kernel Monitoring

5SystemTap—Filtering and
Analyzing System Data
SystemTap provides a command line interface and a scripting language to examine the
activities of a running Linux system, particularly the kernel, in fine detail. SystemTap
scripts are written in the SystemTap scripting language, are then compiled to C-code
kernel modules and inserted into the kernel. The scripts can be designed to extract, filter
and summarize data, thus allowing the diagnosis of complex performance problems or
functional problems. SystemTap provides information similar to the output of tools like
netstat, ps, top, and iostat. However, more filtering and analysis options can
be used for the collected information.

Basically, there are two different setups for using SystemTap:

Classic Setup and Initial Test (page 74)
Have the SystemTap script compiled and the resulting kernel modules inserted on
the same machine. This requires the machine to have the kernel debugging infor-
mation installed.

Client-Server Setup (page 75)
If the machine you want to probe does not have any development tools or kernel
debugging information installed for any reason, you can make use of this setup. It
allows you to compile a SystemTap module on a machine other than the one on
which it will be run.

SystemTap—Filtering and Analyzing System Data 69

5.1 Conceptual Overview
Each time you run a SystemTap script, a SystemTap session is started. A number of
passes are done on the script before it is allowed to run, at which point the script is
compiled into a kernel module and loaded. In case the script has already been executed
before and no changes regarding any components have occurred (for example, regarding
compiler version, kernel version, library path, script contents), SystemTap does not
compile the script again, but uses the *.c and *.ko data stored in the SystemTap
cache (~/.systemtap). The module is unloaded when the tap has finished running.
For an example, see the test run in Section 5.2.1, “Classic Setup and Initial Test”
(page 74) and the respective explanation.

5.1.1 SystemTap Scripts
SystemTap usage is based on SystemTap scripts (*.stp). They tell SystemTap which
type of information to collect, and what to do once that information is collected. The
scripts are written in the SystemTap scripting language that is similar to AWK and C.
For the language definition, see http://sourceware.org/systemtap/
langref/.

The essential idea behind a SystemTap script is to name events, and to give them
handlers. When SystemTap runs the script, it monitors for certain events. When an
event occurs, the Linux kernel runs the handler as a sub-routine, then resumes. Thus,
events serve as the triggers for handlers to run. Handlers can record specified data and
print it in a certain manner.

The SystemTap language only uses a few data types (integers, strings, and associative
arrays of these), and full control structures (blocks, conditionals, loops, functions). It
has a lightweight punctuation (semicolons are optional) and does not need detailed
declarations (types are inferred and checked automatically).

For more information about SystemTap scripts and their syntax, refer to Section 5.3,
“Script Syntax” (page 84) and to the stapprobes and stapfuncsman pages, that
are available with the systemtap-doc package.

70 System Analysis and Tuning Guide

http://sourceware.org/systemtap/langref/
http://sourceware.org/systemtap/langref/

5.1.2 Tapsets
Tapsets are a library of pre-written probes and functions that can be used in SystemTap
scripts. When a user runs a SystemTap script, SystemTap checks the script's probe
events and handlers against the tapset library. SystemTap then loads the corresponding
probes and functions before translating the script to C. Like SystemTap scripts them-
selves, tapsets use the filename extension *.stp.

However, unlike SystemTap scripts, tapsets are not meant for direct execution—they
constitute the library fromwhich other scripts can pull definitions. Thus, the tapset library
is an abstraction layer designed to make it easier for users to define events and functions.
Tapsets provide useful aliases for functions that users may want to specify as an event
(knowing the proper alias is mostly easier than remembering specific kernel functions
that might vary between kernel versions).

5.1.3 Commands and Privileges
The main commands associated with SystemTap are stap and staprun. To execute
them, you either need root privileges or must be a member of the stapdev or
stapusr group.

stap
SystemTap front-end. Runs a SystemTap script (either from file, or from standard
input). It translates the script into C code, compiles it, and loads the resulting kernel
module into a running Linux kernel. Then, the requested system trace or probe
functions are performed.

staprun
SystemTap back-end. Loads and unloads kernel modules produced by the System-
Tap front-end.

For a list of options for each command, use --help. For details, refer to the stap
and the staprun man pages.

Apart from the commands above which are used in a setup where you build the kernel
modules on the same machine that you want to probe, there is also a specific set of
commands for a client-server setup:systemtap-client andsystemtap-server,
the latter containing a number of subcommands. This set of commands allows you to

SystemTap—Filtering and Analyzing System Data 71

compile a SystemTap module on a machine other than the one on which it will be run.
For more information about this specific setup and the commands involved, refer to
Section 5.2, “Installation and Setup” (page 73) and to the stap-server and
stap-client man pages.

To avoid giving root access to users just for running SystemTap, you can make use
of the following SystemTap groups. They are not available by default on SUSE Linux
Enterprise, but you can create the groups and modify the access rights accordingly.

stapdev
Members of this group can run SystemTap scripts with stap, or run SystemTap
instrumentation modules with staprun. As running stap involves compiling
scripts into kernel modules and loading them into the kernel, members of this group
still have effective root access.

stapusr
Members of this group are only allowed to run SystemTap instrumentationmodules
with staprun. In addition, they can only run those modules from /lib/
modules/kernel_version/systemtap/. This directory must be owned
by root and must only be writable for the root user.

5.1.4 Important Files and Directories
The following list gives an overview of the SystemTap main files and directories.

/lib/modules/kernel_version/systemtap/
Holds the SystemTap instrumentation modules.

/usr/share/systemtap/tapset/
Holds the standard library of tapsets.

/usr/share/doc/packages/systemtap/examples
Holds a number of example SystemTap scripts for various purposes. Only available
if the systemtap-doc package is installed.

~/.systemtap/cache
Data directory for cached SystemTap files.

72 System Analysis and Tuning Guide

/tmp/stap*
Temporary directory for SystemTap files, including translated C code and kernel
object.

If you use the SystemTap client-server setup, the following directories are also important:

/etc/systemtap/ssl/server
Public SystemTap server certificate and key database. Used if the SystemTap
server is set up under root's account.

/etc/systemtap/ssl/client
SystemTap client-side certificate database. Only located in this directory if a Sys-
temTap server is authorized as trusted for all SystemTap clients running on this
machine.

~/.systemtap/ssl/server
Private SystemTap server certificate and key database. Used if the SystemTap
server is not running under a root account, but under a regular user's account.
Usually, a dedicated user named stap-server is created for that purpose.

~/.systemtap/ssl/client
Client-side certificate database, located in a regular user's home directory. Only
located in this directory if a SystemTap server has been authorized as trusted for
SystemTap clients run by this specific user.

/var/log/stap-server.log
Default SystemTap server log file.

5.2 Installation and Setup
Depending on your preferred setup, check the sections below for an overview of the
packages you need. As SystemTap needs information about the kernel, some kernel-
related packages must be installed in addition to the SystemTap packages. For each
kernel you want to probe with SystemTap, you need to install a set of the following
packages that exactly matches the kernel version and flavor (indicated by * in the tables
below).

SystemTap—Filtering and Analyzing System Data 73

IMPORTANT: Repository for Packages with Debugging Information

If you subscribed your system for online updates, you can find “debuginfo”
packages in the *-Debuginfo-Updates online installation repository relevant
for SUSE Linux Enterprise Server 11 SP1. Use YaST to enable the repository.

To get access to the man pages and to a helpful collection of example SystemTap scripts
for various purposes, additionally install the systemtap-doc package.

5.2.1 Classic Setup and Initial Test
For this setup, install the following packages (using either YaST or zypper).

• systemtap

• systemtap-client

• systemtap-server

• systemtap-doc (optional)

• kernel-*-base

• kernel-*-debuginfo

• kernel-*-devel

• kernel-source-*

• gcc

To check if all packages are correctly installed on the machine and if SystemTap is
ready to use, execute the following command as root.
stap -v -e 'probe vfs.read {printf("read performed\n"); exit()}'

It probes the currently used kernel by running a script and returning an output. If the
output is similar to the following, SystemTap is successfully deployed and ready to
use:

74 System Analysis and Tuning Guide

Pass ❶: parsed user script and 59 library script(s) in 80usr/0sys/214real ms.
Pass ❷: analyzed script: 1 probe(s), 11 function(s), 2 embed(s), 1 global(s) in
140usr/20sys/412real ms.
Pass ❸: translated to C into
"/tmp/stapDwEk76/stap_1856e21ea1c246da85ad8c66b4338349_4970.c" in
160usr/0sys/408real ms.
Pass ❹: compiled C into "stap_1856e21ea1c246da85ad8c66b4338349_4970.ko" in
2030usr/360sys/10182real ms.
Pass ❺: starting run.
read performed
Pass ❺: run completed in 10usr/20sys/257real ms.

❶ Checks the script against the existing tapset library in /usr/share/
systemtap/tapset/ for any tapsets used. Tapsets are scripts that form a li-
brary of pre-written probes and functions that can be used in SystemTap scripts.

❷ Examines the script for its components.

❸ Translates the script to C. Runs the system C compiler to create a kernel module
from it. Both the resulting C code (*.c) and the kernel module (*.ko) are stored
in the SystemTap cache, ~/.systemtap.

❹ Loads the module and enables all the probes (events and handlers) in the script
by hooking into the kernel. The event being probed is a Virtual File System (VFS)
read. As the event occurs on any processor, a valid handler is executed (prints the
text read performed) and closed with no errors.

❺ After the SystemTap session is terminated, the probes are disabled, and the kernel
module is unloaded.

In case any error messages appear during the test, check the output for hints about any
missing packages and make sure they are installed correctly. Rebooting and loading
the appropriate kernel may also be needed.

5.2.2 Client-Server Setup
ASystemTap compile server listens for connections from SystemTap clients on a secure
SSL network port and accepts requests to run the SystemTap front-end. The server ad-
vertises its presence and configuration on the local network using avahi (a free Zeroconf
implementation that allows programs to publish and discover services and hosts in a
local network without any specific configuration). The compile server broadcasts its
IP address, port, and details about the Linux kernel it runs. Thus, the SystemTap client

SystemTap—Filtering and Analyzing System Data 75

can automatically detect a compile server on the network that is compatible to the
client's kernel version.

As SystemTap exposes kernel internal data structures and potentially private user infor-
mation, it provides several layers of security:

• A separate front-end (stap) and back-end (staprun), with only the front-end
requiring access to kernel information packages for compiling the SystemTap script
into C code and for creating a kernel module. For more information, refer to Sec-
tion 5.1.3, “Commands and Privileges” (page 71).

• An encrypted network connection between SystemTap client and server via SSL.
The SSL connection is based on certificates and key pairs consisting of public and
private keys.

• Users or system administrators can authorize SystemTap servers on the network
as “trusted”.

• Use of SystemTap groups with different privileges. For more information, refer to
Section 5.1.3, “Commands and Privileges” (page 71).

Installing SystemTap
For this setup, install the following packages (using YaST or zypper):

Client

• systemtap

• systemtap-client

• systemtap-doc (optional)

Server

• systemtap

• systemtap-server

• kernel-*-debuginfo

76 System Analysis and Tuning Guide

• kernel-*-devel

• kernel-source-*

• gcc

Setting Up the Server
You have two choices for setting up the SystemTap compile server: you can run it as
root or as non-root user. This has implications on the certificate management on
server- and client-side and on the process of establishing a given compile server as
trusted by a given client. For the SSL connection between the compile server and the
SystemTap client, you need to create a certificate for authentication. Depending on how
the SystemTap compile server is set up (as root or as non-root), the location of the
server certificate differs.When set up as root user, the certificate is stored in a database
at /etc/systemtap/ssl/server. However, when the compile server is set up
as non-root (usually by the user stap-server), the server certificate is stored in
a database in the systemtap-server user's home directory: ~/.systemtap/
ssl/server.

Procedure 5.1 Running the Compile Server as Non-root User

For this setup, it is advisable to create a dedicated system group and user for the
compile server.

1 Log in as root.

2 Create a home directory for the compile server user, for example:
mkdir /var/lib/stapserver

3 Add a system group for the operation of the compile server. In the following
example, the group is named stap-server and the group ID (GID) is 155,
but you can also specify a different group name or GID:
groupadd -g 155 -r stap-server

4 Add a user belonging to the group you created before and specify the user's home
directory:

SystemTap—Filtering and Analyzing System Data 77

useradd -c "SystemTap Compile Server" -u 155 -g stap-server -d \
/var/lib/stapserver -m -r -s /sbin/nologin stap-server

The command above will create a user named stap-server with the user ID
155. The user's finger information is specified with -c and the options -g and
-d specify the user's main group (stap-server) and his home directory you
created in Step 2 (page 77), respectively. The user account will be a system ac-
count (specified with -r) and the user will not be able to log in, as his login shell
is set to /sbin/nologin with the -s option.

5 Change the owner and the group for the home directory to use:
chown -R stap-server.stap-server /var/lib/stapserver/

6 Run a shell as user stap-server and pass the stap-gen-cert command
to generate a SystemTap certificate:
su -s /bin/sh - stap-server -c /usr/bin/stap-gen-cert

You are prompted to set a password for the SystemTap server certificate and key
database.

7 Enter a password for the SystemTap server certificate and confirm it.

This generates a certificate (stap.cert) that is stored in the
systemtap-server user's home directory—in this case: /var/lib/
stapserver/.systemtap/ssl/server.

8 Start the compile server with:
su -s /bin/sh - stap-server -c /usr/bin/stap-start-server

Upon first start of the compile server, this creates a client-side certificate database
in the systemtap-server user's home directory (~/.systemtap/ssl/
client) to which the server's certificate has now automatically been added.
Thus, a server started by the user stap-server is automatically trusted by
clients run by that user.

Procedure 5.2 Running the Compile Server as root User

Compared to Procedure 5.1, “Running the Compile Server as Non-root User”
(page 77), this setup is much simpler but it has security implications.

78 System Analysis and Tuning Guide

WARNING: Security Risk

In the following setup, the compile server certificate is stored in /etc/
systemtap/ssl/server, together with the client-side database located
at /etc/systemtap/ssl/client. As these files are accessible for anyone,
anyone can run the stap-client command, thus potentially exposing
kernel internal data structures and private user information.

1 Log in as root.

2 Create a SystemTap certificate by executing the following command:
/usr/bin/stap-gen-cert

You are prompted to set a password for the SystemTap server certificate and key
database.

3 Enter a password and confirm it.

The certificate (stap.cert) is generated. In contrast to the setup as non-root,
it is stored in a database located at /etc/systemtap/ssl/server.

4 Start a SystemTap server on the local host by using the following command:
/usr/bin/stap-start-server

At the same time, a client-side certificate database is created at /etc/
systemtap/ssl/client. The server certificate is automatically added to
the client-side certificate database.

The client-side certificate database created for root is also the global client-side
database for all clients on the host. Thus, a server started by root is automatically
trusted by clients run by any user on that host: Any user can now compile kernel modules
on the compile server using the stap-client command. For more information about
the security implications, see the Safety and Security section of the stap-server
man page.

SystemTap—Filtering and Analyzing System Data 79

Setting Up the Client
To be able to invoke stap-client from another host, you need to copy the certificate
that has been created on the server to the client and to authorize the compile server as
trusted for the client. The location of the original server certificate to copy depends on
how the SystemTap compile server has been set up. For the authorization process you
can choose to either authorize the compile server as trusted for all SystemTap clients
running on that machine or only for clients that are run by a specific user.

1 Log in to the client machine.

2 If you have set up the compile server as non-root, copy the server certificate
to the client machine as follows:
scp root@servername:~stap-server/.systemtap/ssl/server/stap.cert \
/tmp/stap.cert

3 If you have set up the compile server as root, copy the server certificate to the
client machine as follows:
scp root@servername:/etc/systemtap/ssl/server/stap.cert /tmp/stap.cert

4 If you want to authorize the compile server as trusted for all SystemTap clients
running on that machine (no matter by which user), execute the following com-
mand as root:
/usr/bin/stap-authorize-server-cert /tmp/stap.cert

In this case, the server certificate will be added to the client-side certificate
database (/etc/systemtap/ssl/client).

5 If you want to authorize the compile server only as trusted for SystemTap clients
on that machine that are run by a specific user, execute the following command
as regular user:
/usr/bin/stap-authorize-server-cert /tmp/stap.cert

In that case, the server certificate will be added to the client-side certificate
database for that user (~/.systemtap/ssl/client).

6 Remove the copied certificate from the /tmp directory:
rm /tmp/stap.cert

80 System Analysis and Tuning Guide

Using the Client
After you have set up the SystemTap compile server and client as described in the
previous sections, you can make use of the stap-client program. It is analogous
to the stap front-end, except that it tries to find a compatible SystemTap compile
server on the local network. It then uses this server for compiling the SystemTap script
into a module, loading the kernel module and enabling the probes (passes 1-4 of a
SystemTap session). If requested, pass 5 actions are performed on the localhost using
staprun. For more information about a SystemTap session and the individual passes,
see Section 5.2.1, “Classic Setup and Initial Test” (page 74).

NOTE: Executing stap-client

You can run stap-client either as root or as non-root. If run as non-root,
the underlying staprun command needs to be suid and the user executing
stap-client must be a member of the stapdev group. For more informa-
tion, refer to Section 5.1.3, “Commands and Privileges” (page 71).

Usually, a running SystemTap compile server on the local network advertises its presence
using avahi and is automatically detected by the SystemTap client. The following pro-
cedure illustrates how to make use of the SystemTap client-server setup and covers the
most common commands and options needed for that.

1 To make sure that a compatible SystemTap server is running on your local net-
work, execute the following command on the SystemTap client:
stap-find-servers

This invokes avahi-browse to find servers. The details of any servers found are
echoed to standard output. If this command does not return anything, no compat-
ible SystemTap server can be found on your network.

2 In this case, log in to the compile server and run
stap-start-server

This starts avahi-publish-service in the background. The server listens for con-
nections on a random port and advertises its presence on the local network using
the avahi daemon. If the server is started successfully, the process ID of the
server is echoed to standard output.

SystemTap—Filtering and Analyzing System Data 81

Note thatstap-start-server does not work for the initial setup as described
in Procedure 5.2, “Running the Compile Server as rootUser” (page 78), where
/usr/bin/stap-serverd is used instead. stap-start-server puts
the server in the background—thus, you would not see the prompt asking for the
server certificate password.
ps -ef | grep avahi

should now return an output similar to the following:

avahi 3300 1 0 15:14 ? 00:00:00 avahi-daemon: running [linux-48zp.local]
root 4687 4655 0 18:03 ttyS0 00:00:00 avahi-publish-service Systemtap Compile Se
root 4700 4160 0 18:05 ttyS0 00:00:00 grep avahi

3 To run a simple test, execute the following command on the SystemTap client:
stap-client -e 'probe begin { printf("Hello"); exit(); }'

This compiles and executes a simple example on any compatible SystemTap
server found on the local network. If the test is successful, it prints “Hello” to
standard output.

Instead of using any compatible server found on the network, you can also determine
which SystemTap server to contact and use. To do so, run the stap-client command
with the --server option. It lets you specify the hostname or IP address of the Sys-
temTap server, optionally also a port (which is useful fore connecting to non-local
servers). For more information and details about the other available commands and
options, refer to the stap-server and stap-client man pages.

Troubleshooting
There are several things that can go wrong when using the SystemTap client-server
setup. If you have difficulties establishing a connection between SystemTap client and
server or running stap-client, proceed according to the following list.

Compatible SystemTap Compile Server Available?
If stap-client reports that it is unable to find a server, check if a compatible
SystemTap compile server is available:
stap-find-servers

82 System Analysis and Tuning Guide

If this command does not return anything, no compatible SystemTap server can be
found on your network.

SystemTap Compile Server Running?
To make sure that the SystemTap compile server is running, log in to the server
and run
stap-server-start

If the server is started successfully, the process ID of the server is echoed to standard
output.

Avahi Installed?
The SystemTap client-server setup depends on avahi for automatically announcing
the presence and configuration of any SystemTap servers in the network and on
client-side for automatically detecting a compatible server. As a consequence, the
following packages are usually automatically installed together with the
systemtap-server and systemtap-client packages:

• avahi

• avahi-utils

Check if the packages are installed with
rpm -qa | grep avahi

If not, install them with YaST or zypper.

Avahi Daemon Running?
Check if the avahi daemon is running:
/etc/init.d/avahi-daemon status

If not, start it with
/etc/init.d/avahi-daemon start

Also check if the avahi daemon was configured to be started automatically at run-
levels 3 and 5:
chkconfig -l avahi-daemon

This should return the following output:
avahi-daemon 0:off 1:off 2:off 3:on 4:off 5:on 6:off

SystemTap—Filtering and Analyzing System Data 83

If not, configure this option with
chkconfig avahi-daemon 35

Virtual Machine: Bridged Network?
If you are running SystemTap in a virtual machine setup, make sure the network
has been bridged, otherwise broadcasting via avahi will not work.

Certificate Not Found?
If running an stap-client command fails because the certificate database was
not found, check if you have set up the SystemTap client correctly. For details, refer
to Section “Setting Up the Client” (page 80).

5.3 Script Syntax
SystemTap scripts consist of the following two components:

SystemTap Events (Probe Points) (page 86)
Name the kernel events at the associated handler should be executed. Examples
for events are entering or exiting a certain function, a timer expiring, or starting or
terminating a session.

SystemTap Handlers (Probe Body) (page 87)
Series of script language statements that specify the work to be done whenever a
certain event occurs. This normally includes extracting data from the event context,
storing them into internal variables, or printing results.

An event and its corresponding handler is collectively called a probe. SystemTap
events are also called probe points. A probe's handler is also referred to as probe
body.

Comments can be inserted anywhere in the SystemTap script in various styles: using
either #, /* */, or // as marker.

5.3.1 Probe Format
A SystemTap script can have multiple probes. They must be written in the following
format:

84 System Analysis and Tuning Guide

probe event {statements}

Each probe has a corresponding statement block. This statement block must be enclosed
in { } and contains the statements to be executed per event.

Example 5.1 Simple SystemTap Script

The following example shows a simple SystemTap script.
probe❶ begin❷
{❸

printf❹ ("hello world\n")❺
exit ()❻

}❼

❶ Start of the probe.

❷ Event begin (the start of the SystemTap session).

❸ Start of the handler definition, indicated by {.

❹ First function defined in the handler: the printf function.

❺ String to be printed by the printf function, followed by a line break (/n).

❻ Second function defined in the handler: the exit() function. Note that the Sys-
temTap script will continue to run until the exit() function executes. If you
want to stop the execution of the script before, stop it manually by pressing Ctrl
+ C.

❼ End of the handler definition, indicated by }.

The event begin❷ (the start of the SystemTap session) triggers the handler enclosed
in { }, in this case the printf function❹ which prints hello world followed
by a new line❺, then exits.

If your statement block holds several statements, SystemTap executes these statements
in sequence—you do not need to insert special separators or terminators between mul-
tiple statements. A statement block can also be nested within another statement blocks.
Generally, statement blocks in SystemTap scripts use the same syntax and semantics
as in the C programming language.

SystemTap—Filtering and Analyzing System Data 85

5.3.2 SystemTap Events (Probe Points)
SystemTap supports a number of built-in events.

The general event syntax is a dotted-symbol sequence. This allows a breakdown of the
event namespace into parts. Each component identifier may be parametrized by a string
or number literal, with a syntax like a function call. A component may include a *
character, to expand to other matching probe points. A probe point may be followed
by a ? character, to indicate that it is optional, and that no error should result if it fails
to expand. Alternately, a probe point may be followed by a ! character to indicate that
it is both optional and sufficient.

SystemTap supports multiple events per probe—they need to be separated by a comma
(,). If multiple events are specified in a single probe, SystemTapwill execute the handler
when any of the specified events occur.

In general, events can be classified into the following categories:

• Synchronous events: Occur when any process executes an instruction at a particular
location in kernel code. This gives other events a reference point (instruction ad-
dress) from which more contextual data may be available.

An example for a synchronous event is vfs.file_operation: The entry to
the file_operation event for Virtual File System (VFS). For example, in
Section 5.2.1, “Classic Setup and Initial Test” (page 74), read is the
file_operation event used for VFS.

• Asynchronous events: Not tied to a particular instruction or location in code. This
family of probe points consists mainly of counters, timers, and similar constructs.

Examples for asynchronous events are: begin (start of a SystemTap session—as
soon as a SystemTap script is run, end (end of a SystemTap session), or timer
events. Timer events specify a handler to be executed periodically, like example
timer.s(seconds), or timer.ms(milliseconds).

When used in conjunction with other probes that collect information, timer events
allow you to print out periodic updates and see how that information changes over
time.

86 System Analysis and Tuning Guide

Example 5.2 Probe with Timer Event

For example, the following probe would print the text “hello world” every 4 seconds:
probe timer.s(4)
{

printf("hello world\n")
}

For detailed information about supported events, refer to the stapprobesman page.
The See Also section of the man page also contains links to other man pages that discuss
supported events for specific subsystems and components.

5.3.3 SystemTap Handlers (Probe Body)
Each SystemTap event is accompanied by a corresponding handler defined for that
event, consisting of a statement block.

Functions
If you need the same set of statements in multiple probes, you can place them in a
function for easy reuse. Functions are defined by the keyword function followed
by a name. They take any number of string or numeric arguments (by value) and may
return a single string or number.
function function_name(arguments) {statements}
probe event {function_name(arguments)}

The statements in function_name are executed when the probe for event executes.
The arguments are optional values passed into the function.

Functions can be defined anywhere in the script. They may take any

One of the functions needed very often was already introduced in Example 5.1, “Simple
SystemTap Script” (page 85): the printf function for printing data in a formatted
way. When using the printf function, you can specify how arguments should be
printed by using a format string. The format string is included in quotation marks and
can contain further format specifiers, introduced by a % character.

SystemTap—Filtering and Analyzing System Data 87

Which format strings to use depends on your list of arguments. Format strings can have
multiple format specifiers—each matching a corresponding argument. Multiple argu-
ments can be separated by a comma.

Example 5.3 printf Function with Format Specifiers

printf ("❶%s❷(%d❸) open\n❹", execname(), pid())

❶ Start of the format string, indicated by ".

❷ String format specifier.

❸ Integer format specifier.

❹ End of the format string, indicated by ".

The example above would print the current executable name (execname()) as string
and the process ID (pid()) as integer in brackets, followed by a space, then the word
open and a line break:
[...]
vmware-guestd(2206) open
hald(2360) open
[...]

Apart from the two functionsexecname()andpid()) used in Example 5.3, “printf
Function with Format Specifiers” (page 88), a variety of other functions can be used
as printf arguments.

Among the most commonly used SystemTap functions are the following:

tid()
ID of the current thread.

pid()
Process ID of the current thread.

uid()
ID of the current user.

cpu()
Current CPU number.

88 System Analysis and Tuning Guide

execname()
Name of the current process.

gettimeofday_s()
Number of seconds since UNIX epoch (January 1, 1970).

ctime()
Convert time into a string.

pp()
String describing the probe point currently being handled.

thread_indent()
Useful function for organizing print results. It (internally) stores an indentation
counter for each thread (tid()). The function takes one argument, an indentation
delta, indicating how many spaces to add or remove from the thread's indentation
counter. It returns a string with some generic trace data along with an appropriate
number of indentation spaces. The generic data returned includes a timestamp
(number of microseconds since the initial indentation for the thread), a process
name, and the thread ID itself. This allows you to identify what functions were
called, who called them, and how long they took.

Call entries and exits often do not immediately precede each other (otherwise it
would be easy to match them). In between a first call entry and its exit, usually a
number of other call entries and exits are made. The indentation counter helps you
match an entry with its corresponding exit as it indents the next function call in
case it is not the exit of the previous one. For an example SystemTap script using
thread_indent() and the respective output, refer to the SystemTap Tutorial:
http://sourceware.org/systemtap/tutorial/Tracing.html
#fig:socket-trace.

For more information about supported SystemTap functions, refer to the stapfuncs
man page.

Other Basic Constructs
Apart from functions, you can use several other common constructs in SystemTap
handlers, including variables, conditional statements (like if/else, while loops,
for loops, arrays or command line arguments.

SystemTap—Filtering and Analyzing System Data 89

http://sourceware.org/systemtap/tutorial/Tracing.html#fig:socket-trace
http://sourceware.org/systemtap/tutorial/Tracing.html#fig:socket-trace

Variables

Variables may be defined anywhere in the script. To define one, simply choose a name
and assign a value from a function or expression to it:
foo = gettimeofday()

Then you can use the variable in an expression. From the type of values assigned to the
variable, SystemTap automatically infers the type of each identifier (string or number).
Any inconsistencies will be reported as errors. In the example above, foo would auto-
matically be classified as a number and could be printed via printf()with the integer
format specifier (%d).

However, by default, variables are local to the probe they are used in: They are initial-
ized, used and disposed of at each handler evocation. To share variables between probes,
declare them global anywhere in the script. To do so, use the global keyword outside
of the probes:

Example 5.4 Using Global Variables

global count_jiffies, count_ms
probe timer.jiffies(100) { count_jiffies ++ }
probe timer.ms(100) { count_ms ++ }
probe timer.ms(12345)
{
hz=(1000*count_jiffies) / count_ms
printf ("jiffies:ms ratio %d:%d => CONFIG_HZ=%d\n",

count_jiffies, count_ms, hz)
exit ()
}

This example script computes the CONFIG_HZ setting of the kernel by using timers
that count jiffies and milliseconds, then computing accordingly. (A jiffy is the duration
of one tick of the system timer interrupt. It is not an absolute time interval unit, since
its duration depends on the clock interrupt frequency of the particular hardware platform).
With the global statement it is possible to use the variables count_jiffies and
count_ms also in the probe timer.ms(12345). With ++ the value of a variable
is incremented by 1.

Conditional Statements

There are a number of conditional statements that you can use in SystemTap scripts.
The following are probably most common:

90 System Analysis and Tuning Guide

If/Else Statements
They are expressed in the following format:
if (condition)❶
statement1❷

else❸
statement2❹

The if statement compares an integer-valued expression to zero. If the condition
expression❶ is non-zero, the first statement❷ is executed. If the condition expres-
sion is zero, the second statement❹ is executed. The else clause (❸ and❹) is op-
tional. Both❷ and❹ can also be statement blocks.

While Loops
They are expressed in the following format:
while (condition)❶
statement❷

As long as condition is non-zero, the statement❷ is executed.❷ can also be
a statement block. It must change a value so condition will eventually be zero.

For Loops
They are basically a shortcut for while loops and are expressed in the following
format:
for (initialization❶; conditional❷; increment❸) statement

The expression specified in❶ is used to initialize a counter for the number of loop
iterations and is executed before execution of the loop starts. The execution of the
loop continues until the loop condition❷ is false. (This expression is checked at
the beginning of each loop iteration). The expression specified in❸ is used to in-
crement the loop counter. It is executed at the end of each loop iteration.

Conditional Operators
The following operators can be used in conditional statements:

==: Is equal to

!=: Is not equal to

>=: Is greater than or equal to

SystemTap—Filtering and Analyzing System Data 91

<=: Is less than or equal to

5.4 Example Script
If you have installed the systemtap-doc package, you can find a number of useful
SystemTap example scripts in /usr/share/doc/packages/systemtap/
examples.

This section describes a rather simple example script in more detail: /usr/share/
doc/packages/systemtap/examples/network/tcp_connections
.stp.

Example 5.5 Monitoring Incoming TCP Connections with tcp_connections.stp

#! /usr/bin/env stap

probe begin {
printf("%6s %16s %6s %6s %16s\n",

"UID", "CMD", "PID", "PORT", "IP_SOURCE")
}

probe kernel.function("tcp_accept").return?,
kernel.function("inet_csk_accept").return? {

sock = $return
if (sock != 0)

printf("%6d %16s %6d %6d %16s\n", uid(), execname(), pid(),
inet_get_local_port(sock), inet_get_ip_source(sock))

}

This SystemTap script monitors the incoming TCP connections and helps to identify
unauthorized or unwanted network access requests in real time. It shows the following
information for each new incoming TCP connection accepted by the computer:

• User ID (UID)

• Command accepting the connection (CMD)

• Process ID of the command (PID)

• Port used by the connection (PORT)

• IP address from which the TCP connection originated (IP_SOUCE)

92 System Analysis and Tuning Guide

To run the script, execute
stap /usr/share/doc/packages/systemtap/examples/network/tcp_connections.stp

and follow the output on the screen. To manually stop the script, press Ctrl + C.

5.5 For More Information
This chapter only provides a short SystemTap overview. Refer to the following links
for more information about SystemTap:

http://sourceware.org/systemtap/
SystemTap project home page.

http://sourceware.org/systemtap/wiki/
Huge collection of useful information about SystemTap, ranging from detailed
user and developer documentation to reviews and comparisons with other tools, or
Frequently Asked Questions and tips. Also contains collections of SystemTap
scripts, examples and usage stories and lists recent talks and papers about System-
Tap.

http://sourceware.org/systemtap/documentation.html
Features a SystemTap Tutorial, a SystemTap Beginner's Guide, a Tapset Developer's
Guide, and a SystemTap Language Reference in PDF and HTML format. Also lists
the relevant man pages.

You can also find the SystemTap language reference and SystemTap tutorial in your
installed system under /usr/share/doc/packages/systemtap. Example
SystemTap scripts are available from the example subdirectory.

SystemTap—Filtering and Analyzing System Data 93

http://sourceware.org/systemtap/
http://sourceware.org/systemtap/wiki/
http://sourceware.org/systemtap/documentation.html

6Kernel Probes
Kernel probes are a set of tools to collect Linux kernel debugging and performance in-
formation. Developers and system administrators usually use them either to debug the
kernel, or to find system performance bottlenecks. The reported data can then be used
to tune the system for better performance.

You can insert these probes into any kernel routine, and specify a handler to be invoked
after a particular break-point is hit. The main advantage of kernel probes is that you no
longer need to rebuild the kernel and reboot the system after you make changes in a
probe.

To use kernel probes, you typically need to write or obtain a specific kernel module.
Such module includes both the init and the exit function. The init function (such as
register_kprobe()) registers one or more probes, while the exit function unreg-
isters them. The registration function defineswhere the probe will be inserted andwhich
handler will be called after the probe is hit. To register or unregister a group of probes
at one time, you can use relevant register_<probe_type>probes() or
unregister_<probe_type>probes() functions.

Debugging and status messages are typically reported with the printk kernel routine.
printk is a kernel-space equivalent of a user-space printf routine. For more infor-
mation on printk, see Logging kernel messages [http://www.win.tue.nl/
~aeb/linux/lk/lk-2.html#ss2.8]. Normally, you can view these messages
by inspecting /var/log/messages or /var/log/syslog. Commenting, file
not ready For more information on log files, see Chapter 4, Analyzing and Managing
System Log Files (page 59).

Kernel Probes 95

http://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8
http://www.win.tue.nl/~aeb/linux/lk/lk-2.html#ss2.8

6.1 Supported Architectures
Kernel probes are fully implemented on the following architectures:

• i386

• x86_64 (AMD-64, EM64T)

• ppc64

• arm

• ppc

Kernel probes are partially implemented on the following architectures:

• ia64 (does not support probes on instruction slot1)

• sparc64 (return probes not yet implemented)

6.2 Types of Kernel Probes
There are three types of kernel probes: kprobes, jprobes, and kretprobes. Kretprobes
are sometimes referred to as return probes. You can find vivid source code examples
of all three type of kernel probes in the /usr/src/linux/samples/kprobes/
directory (package kernel-source).

6.2.1 Kprobe
Kprobe can be attached to any instruction in the Linux kernel. When it is registered, it
inserts a break-point at the first bytes of the probed instruction. When the processor
hits this break-point, the processor registers are saved, and the processing passes to
kprobes. First, a pre-handler is executed, then the probed instruction is stepped, and,
finally a post-handler is executed. The control is then passed to the instruction following
the probe point.

96 System Analysis and Tuning Guide

6.2.2 Jprobe
Jprobe is implemented through the kprobe mechanism. It is inserted on a function's
entry point and allows direct access to the arguments of the function which is being
probed. Its handler routine must have the same argument list and return value as the
probed function. It also has to end by calling the jprobe_return() function.

When jprobe is hit, the processor registers are saved, and the instruction pointer is di-
rected to the jprobe handler routine. The control then passes to the handler with the
same register contents as the function being probed. Finally, the handler calls the
jprobe_return() function, and switches the control back to the control function.

In general, you can insert multiple probes on one function. Jprobe is, however, limited
to only one instance per function.

6.2.3 Return Probe
Return probes are also implemented through kprobes. When the
register_kretprobe() function is called, a kprobe is attached to the entry of
the probed function. After hitting the probe, the Kernel probes mechanism saves the
probed function return address and calls a user-defined return handler. The control is
then passed back to the probed function.

Before you callregister_kretprobe(), you need to set amaxactive argument,
which specifies how many instances of the function can be probed at the same time. If
set too low, you will miss a certain number of probes.

6.3 Kernel probes API
Kprobe's programming interface consists of functions, which are used to register and
unregister all used kernel probes, and associated probe handlers. For a more detailed
description of these functions and their arguments, see the information sources in Sec-
tion 6.5, “For More Information” (page 99).

register_kprobe()
Inserts a break-point on a specified address. When the break-point is hit, the
pre_handler and post_handler are called.

Kernel Probes 97

register_jprobe()
Inserts a break-point in the specified address. The address has to be the address of
the first instruction of the probed function.When the break-point is hit, the specified
handler is run. The handler should have the same argument list and return type as
the probed.

register_kretprobe()
Inserts a return probe for the specified function. When the probed function returns,
a specified handler is run. This function returns 0 on success, or a negative error
number on failure.

unregister_kprobe(), unregister_jprobe(),
unregister_kretprobe()

Removes the specified probe. You can use it any time after the probe has been
registered.

register_kprobes(),register_jprobes(),register_kretprobes()
Inserts each of the probes in the specified array.

unregister_kprobes(), unregister_jprobes(),
unregister_kretprobes()

Removes each of the probes in the specified array.

disable_kprobe(), disable_jprobe(), disable_kretprobe()
Disables the specified probe temporarily.

enable_kprobe(), enable_jprobe(), enable_kretprobe()
Enables temporarily disabled probes.

6.4 Debugfs Interface
With recent Linux kernels, the Kernel probes instrumentation uses the kernel debugfs
interface. It helps you list all registered probes and globally switch all the probes on or
off.

98 System Analysis and Tuning Guide

6.4.1 How to List Registered Kernel Probes
The list of all currently registered kprobes is in the /sys/kernel/debug/
kprobes/list file.
saturn.example.com:~ # cat /sys/kernel/debug/kprobes/list
c015d71a k vfs_read+0x0 [DISABLED]
c011a316 j do_fork+0x0
c03dedc5 r tcp_v4_rcv+0x0

The first column lists the address in the kernel where the probe is inserted. The second
column prints the type of the probe: k for kprobe, j for jprobe, and r for return probe.
The third column specifies the symbol, offset and optional module name of the probe.
The following optional columns include the status information of the probe. If the probe
is inserted on a virtual address which is not valid anymore, it is marked with [GONE].
If the probe is temporarily disabled, it is marked with [DISABLED].

6.4.2 How to Switch All Kernel Probes On
or Off

The /sys/kernel/debug/kprobes/enabled file represents a switch with
which you can globally and forcibly turn on or off all the registered kernel probes. To
turn them off, simply enter
echo "0" > /sys/kernel/debug/kprobes/enabled

on the command line as root. To turn them on again, enter
echo "1" > /sys/kernel/debug/kprobes/enabled

Note that this way you do not change the status of the probes. If a probe is temporarily
disabled, it will not be enabled automatically but will remain in the [DISABLED] state
after entering the latter command.

6.5 For More Information
To learn more about kernel probes, look at the following sources of information:

Kernel Probes 99

• Thorough but more technically oriented information about kernel probes is in
/usr/src/linux/Documentation/kprobes.txt (package
kenrel-source).

• Examples of all three types of probes (together with related Makefile) are in the
/usr/src/linux/samples/kprobes/ directory (package
kenrel-source).

• In-depth information about Linux kernel modules and printk kernel routine is
in The Linux Kernel Module Programming Guide [http://tldp.org/LDP/
lkmpg/2.6/html/lkmpg.html]

• Practical but slightly outdated information about practical use of kernel probes is
in Kernel debugging with Kprobes [http://www.ibm.com/
developerworks/library/l-kprobes.html]

100 System Analysis and Tuning Guide

http://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
http://tldp.org/LDP/lkmpg/2.6/html/lkmpg.html
http://www.ibm.com/developerworks/library/l-kprobes.html
http://www.ibm.com/developerworks/library/l-kprobes.html

7Perfmon2—Hardware-Based
Performance Monitoring
Perfmon2 is a standardized, generic interface to access the performance monitoring
unit (PMU) of a processor. It is portable across all PMU models and architectures,
supports system-wide and per-thread monitoring, counting and sampling.

7.1 Conceptual Overview
The following subsections give you a brief overview about Perfmon.

7.1.1 Perfmon2 Structure
Performance monitoring is “the action of collecting information related to how an ap-
plication or system performs”. The information can be obtained from the code or the
CPU/chipset.

Modern processors contain a performance monitoring unit (PMU). The design and
functionality of a PMU is CPU specific: for example, the number of registers, counters
and features supported will vary by CPU implementation.

The Perfmon interface is designed to be generic, flexible and extensible. It can monitor
at the program (thread) or system levels. In either mode, it is possible to count or sample
your profile information. This uniformity makes it easier to write portable tools. Fig-
ure 7.1, “Architecture of perfmon2” (page 102) gives an overview.

Perfmon2—Hardware-Based Performance Monitoring 101

Figure 7.1 Architecture of perfmon2

pfmon

Generic
perfmon

Architecture specific
perfmon

PMU CPU Hardware

Linux Kernel

Userspace

Each PMU model consists of a set of registers: the performance monitor configuration
(PMC) and the performance monitor data (PMD). Only PMCs is writeable, but both
can be read. These registers store configuration information and data.

7.1.2 Sampling and Counting
Perfmon2 supports two modes where you can run your profiling: sampling or couting.

Sampling is usually expressed by an interval of time (time-based) or an occurance of
a definied number of events (event-based). Perfmon indirectly supports time-based
sampling by using an event-based sample with constant correlation to time (for example,
unhalted_reference_cycles.)

In contrast, Counting is expressed in terms of a number of occurances of an event.

Both methods store their information into a sample. This sample contains information
about, for example, where a thread was or instruction pointers.

The following example demonstrates the counting of the CPU_OP_CYCLES event and
the sampling of this event, generating a sample per 100000 occurances of the event:

102 System Analysis and Tuning Guide

pfmon --no-cmd-output -e CPU_OP_CYCLES_ALL /bin/ls
1306604 CPU_OP_CYCLES_ALL

The following command gives the count of a specific function and the procentual amount
of the total cycles:
pfmon --no-cmd-output --short-smpl-periods=100000 -e CPU_OP_CYCLES_ALL
/bin/ls
results for [28119:28119<-[28102]] (/bin/ls)
total samples : 12
total buffer overflows : 0
#
event00
counts %self %cum code addr

1 8.33% 8.33% 0x2000000000007180
1 8.33% 16.67% 0x20000000000195a0
1 8.33% 25.00% 0x2000000000019260
1 8.33% 33.33% 0x2000000000014e60
1 8.33% 41.67% 0x20000000001f38c0
1 8.33% 50.00% 0x20000000001ea481
1 8.33% 58.33% 0x200000000020b260
1 8.33% 66.67% 0x2000000000203490
1 8.33% 75.00% 0x2000000000203360
1 8.33% 83.33% 0x2000000000203440
1 8.33% 91.67% 0x4000000000002690
1 8.33% 100.00% 0x20000000001cfdf1

7.2 Installation
In order to use Perfmon2, first check the following preconditions:

SUSE Linux Enterprise 11
Supported architectures are IA64, x86_64. The package perf (Performance
Counters for Linux) is the supported tool for x86 and PPC64

SUSE Linux Enterprise 11 SP1
Supported architecture is IA64 only

The pfmon on SUSE Linux Enterprise11 supports the following processors (taken
from /usr/share/doc/packages/pfmon/README):

Perfmon2—Hardware-Based Performance Monitoring 103

Table 7.1 Supported Processors

ProcessorModel

Itanium (Merced), Itanium 2 (McKinley, Madison, Deerfield),
Itanium 2 9000/9100 (Montecito, Montvale) and Generic

Intel IA-64

Opteron (K8, fam 10h)AMD X86

Intel P6 (Pentium II, Pentium Pro, Pentium III, Pentium M);
Yonah (Core Duo, Core Solo); Netburst (Pentium 4, Xeon);

Intel X86

Core (Merom, Penryn, Dunnington) Core 2 and Quad; Atom;
Nehalem; architectural perfmon v1, v2, v3

Install the following packages depending on your architecture:

Table 7.2 Needed Packages

PackagesArchitecture

pfmonia64

7.3 Using Perfmon
In order to use Perfmon, use the command line tool pfmon to get all your information.

NOTE: Mutual Exclusion of Perfmon and OProfile Sessions

On x86 architectures it is not possible to start a Perfmon session and a OProfile
session. Only one can be run at the same time.

7.3.1 Getting Event Information
To get a list of supported events, use the option -l from pfmon to list them. Keep in
mind, this list depends on the host PMU:

104 System Analysis and Tuning Guide

pfmon -l
ALAT_CAPACITY_MISS_ALL
ALAT_CAPACITY_MISS_FP
ALAT_CAPACITY_MISS_INT
BACK_END_BUBBLE_ALL
BACK_END_BUBBLE_FE
BACK_END_BUBBLE_L1D_FPU_RSE
...
CPU_CPL_CHANGES_ALL
CPU_CPL_CHANGES_LVL0
CPU_CPL_CHANGES_LVL1
CPU_CPL_CHANGES_LVL2
CPU_CPL_CHANGES_LVL3
CPU_OP_CYCLES_ALL
CPU_OP_CYCLES_QUAL
CPU_OP_CYCLES_HALTED
DATA_DEBUG_REGISTER_FAULT
DATA_DEBUG_REGISTER_MATCHES
DATA_EAR_ALAT
...

Get an explanation of these entries with the option -i and the event name:
pfmon -i CPU_OP_CYCLES_ALL
Name : CPU_OP_CYCLES_ALL
Code : 0x12
Counters : [4 5 6 7 8 9 10 11 12 13 14 15]
Desc : CPU Operating Cycles -- All CPU cycles counted
Umask : 0x0
EAR : None
ETB : No
MaxIncr : 1 (Threshold 0)
Qual : None
Type : Causal
Set : None

7.3.2 Enabling System Wide Sessions
Use the --system-wide option to enable monitoring all processes that execute on
a specific CPU or sets of CPUs. You do not have to be root to do so; per default, user
level is turned on for all events (option -u).

It is possible that one system wide session can run concurrently with another system
wide sessions as long as they do not monitor the same set of CPUs. However, you can
not run a system wide session with any per-thread sessions together.

Perfmon2—Hardware-Based Performance Monitoring 105

The following examples are taken from a Itanium IA64Montecito processor. To execute
a system-wide session, perform the following procedure:

1 Detect your CPU set:
pfmon -v --system-wide
...
selected CPUs (2 CPU in set, 2 CPUs online): CPU0 CPU1

2 Delimit your session. The following list describes options which are used in the
examples below (refer to the man page for more details):

-e/--events
Profile only selected events. See Section 7.3.1, “Getting Event Information”
(page 104) for how to get a list.

--cpu-list
Specifies the list of processors to monitor. Without this options, all available
processors are monitored.

-t/--session-timeout
Specifies the duration of the monitor session expressed in seconds.

Use one of the three methods to start your profile session.

• Use the default events:
pfmon --cpu-list=0-2 --system-wide -k -e
CPU_OP_CYCLES_ALL,IA64_INST_RETIRED
<press ENTER to stop session>
CPU0 7670609 CPU_OP_CYCLES_ALL
CPU0 4380453 IA64_INST_RETIRED
CPU1 7061159 CPU_OP_CYCLES_ALL
CPU1 4143020 IA64_INST_RETIRED
CPU2 7194110 CPU_OP_CYCLES_ALL
CPU2 4168239 IA64_INST_RETIRED

• Use a timeout expressed in seconds:
pfmon --cpu-list=0-2 --system-wide --session-timeout=10 -k -e
CPU_OP_CYCLES_ALL,IA64_INST_RETIRED
<session to end in 10 seconds>
CPU0 69263547 CPU_OP_CYCLES_ALL
CPU0 38682141 IA64_INST_RETIRED
CPU1 87189093 CPU_OP_CYCLES_ALL
CPU1 54684852 IA64_INST_RETIRED

106 System Analysis and Tuning Guide

CPU2 64441287 CPU_OP_CYCLES_ALL
CPU2 37883915 IA64_INST_RETIRED

• Execute a command. The session is automatically started when the program
starts and automatically stopped when the program is finished:
pfmon --cpu-list=0-1 --system-wide -u -e
CPU_OP_CYCLES_ALL,IA64_INST_RETIRED -- ls -l /dev/null
crw-rw-rw- 1 root root 1, 3 27. Mär 03:30 /dev/null
CPU0 38925 CPU_OP_CYCLES_ALL
CPU0 7510 IA64_INST_RETIRED
CPU1 9825 CPU_OP_CYCLES_ALL
CPU1 1676 IA64_INST_RETIRED

3 Press the Enter key to stop a session:

4 If you want to aggregate counts, use the -aggr option after the previous com-
mand:
pfmon --cpu-list=0-1 --system-wide -u -e
CPU_OP_CYCLES_ALL,IA64_INST_RETIRED --aggr
<press ENTER to stop session>

52655 CPU_OP_CYCLES_ALL
53164 IA64_INST_RETIRED

7.3.3 Monitoring Running Tasks
Perfmon can also monitor an existing thread. This is useful for monitoring system
daemons or programs which take a long time to start. First determine the process ID
you wish to monitor:
ps ax | grep foo
10027 pts/1 R 2:23 foo

Use the found PID for the --attach-task option of pfmon:
pfmon --attach-task=10027
3682190 CPU_OP_CYCLES_ALL

Perfmon2—Hardware-Based Performance Monitoring 107

7.4 Retrieving Metrics From DebugFS
Perfmon can collect statistics which are exported through the debug interface. The
metrics consists of mostly aggregated counts and durations.

Access the data through mounting the debug file system as root under /sys/
kernel/debug

The data is located under /sys/kernel/debug/perfmon/ and organized per
CPU. Each CPU contains a set of metrics, accessible as ASCII file. The following data
is taken from the /usr/src/linux/Documentation/perfmon2-debugfs
.txt:

Table 7.3 Read-Only Files in /sys/kernel/debug/perfmon/cpu*/

DescriptionFile

Number of PMU context switch inctxswin_count

Number of nanoseconds spent in the PMU context
switch in routine

ctxswin_ns

Average cost of the PMU context switch in =
ctxswin_ns / ctxswin_count

Number of PMU context switch outctxswout_count

Number of nanoseconds spend in the PMU context
switch out routine

ctxswout_ns

Average cost of the PMU context switch out =
ctxswout_ns / ctxswout_count

Number of calls to the sampling format routine that
handles PMU interrupts (typically the routine that
recors a sample)

fmt_handler_calls

Number of nanoseconds spent in the routine that
handle PMU interrupt in the sampling format

fmt_handler_ns

108 System Analysis and Tuning Guide

DescriptionFile

Average time spent in this routine =
fmt_handler_ns / fmt_handler_calls

Number of times the pfm_handle_timeout()
routine is called (used for timeout-based set switch-
ing)

handle_timeout_count

Number of times pfm_handle_work() routine
is called

handle_work_count

Number of PMU interrupts received by the kernelovl_intr_all_count

Number of nonmaskeable interrupts (NMI) received
by the kernel from perfmon (only for X86 hardware)

ovfl_intr_nmi_count

Number of nanoseconds spent in the perfmon2 PMU
interrupt handler routine.

ovfl_intr_ns

Average time to handle one PMU interrupt =
ovfl_intr_ns / ovfl_intr_all_count

Number of PMU interrupts which are actually pro-
cessed by the perfmon interrupt handler

ovfl_intr_regular
_count

Number of PMU interrupts which were replayed on
the context switch in or on event set switching

ovfl_intr_replay
_count

Number of PMU interrupts which were dropped be-
cause there was no active context

perfom_intr_spurious
_count, ovfl_intr
_spurious_count

Number of times pfm_restart() is calledpfm_restart_count

Number of times pfm_reset_pmds() is calledreset_pmds_count

Number of event set switchesset_switch_count

Perfmon2—Hardware-Based Performance Monitoring 109

DescriptionFile

Number of nanoseconds spent in the set switching
rountine

set_switch_ns

Average cost of switching sets =
set_switch_ns / set_switch_count

This might be useful to compare your metrics before and after the perfmon run. For
example, collect your data first:
for i in /sys/kernel/debug/perfmon/cpu0/*; do

echo "$i:"; cat $i
done >> pfmon-before.txt

Run your performance monitoring, maybe restrict it to a specific CPU:
pfmon --cpu-list=0 ...

Collect your data again:
for i in /sys/kernel/debug//perfmon/cpu0/*; do

echo "$i:"; cat $i
done >> pfmon-after.txt

Compare these two files:
diff -u pfmon-before.txt pfmon-after.txt

7.5 For More Information
This chapter only provides a short overview. Refer to the following links for more in-
formation:

http://perfmon2.sourceforge.net/
The project home page.

http://www.iop.org/EJ/article/1742-6596/119/4/042017/
jpconf8_119_042017.pdf

A good overview as PDF.

Chapter 8, OProfile—System-Wide Profiler (page 111)
Consult this chapter for other performance optimizations.

110 System Analysis and Tuning Guide

http://perfmon2.sourceforge.net/
http://www.iop.org/EJ/article/1742-6596/119/4/042017/jpconf8_119_042017.pdf
http://www.iop.org/EJ/article/1742-6596/119/4/042017/jpconf8_119_042017.pdf

8OProfile—System-Wide
Profiler
OProfile is a profiler for dynamic program analysis. It investigates the behaviour of a
running program and gathers information. This information can be viewed and gives
hints for further optimizations.

It is not necessary to recompile or use wrapper libraries in order to use OProfile. Not
even a kernel patch is needed. Usually, when you profile an application, a small overhead
is expected, depending on work load and sampling frequency.

8.1 Conceptual Overview
OProfile consists of a kernel driver and a daemon for collecting data. It makes use of
the hardware performance counters provided on Intel, AMD, and other processors.
OProfile is capable of profiling all code including the kernel, kernel modules, kernel
interrupt handlers, system shared libraries, and other applications.

Modern processors support profiling through the hardware by performance counters.
Depending on the processor, there can be many counters and each of these can be pro-
grammed with an event to count. Each counter has a value which determines how often
a sample is taken. The lower the value, the more often it is used.

During the post-processing step, all information is collected and instruction addresses
are mapped to a function name.

OProfile—System-Wide Profiler 111

8.2 Installation and Requirements
In order to make use of OProfile, install the oprofile package. OProfile works on
IA-64, AMD64, s390, and PPC64.

It is useful to install the respective debuginfo package for the respective application
you want to profile. If you want to profile the Kernel, you need the debuginfo
package as well.

8.3 Available OProfile Utilities
OProfile contains several utilities to handle the profiling process and its profiled data.
The following list is a short summary of processes used in this chapter:

opannotate
Outputs annotated source or assembly listings mixed with profile information.

opcontrol
Controls the profiling sessions (start or stop), dumps profile data, and sets up pa-
rameters.

ophelp
Lists available events with short descriptions.

opimport
Converts sample database files from a foreign binary format to the native format.

opreport
Generates reports from profiled data.

8.4 Using OProfile
It is possible with OProfile to profile both kernel and applications. When profiling the
kernel, tell OProfile where to find the vmlinuz* file. Use the --vmlinux option
and point it to vmlinuz* (usually in /boot). If you need to profile kernel modules,

112 System Analysis and Tuning Guide

OProfile does this by default. However, make sure you read http://oprofile
.sourceforge.net/doc/kernel-profiling.html.

Applications usually do not need to profile the kernel, so better use the--no-vmlinux
option to reduce the amount of information.

8.4.1 General Steps
In its simplest form, start the daemon, collect data, stop the daemon, and create your
report. This method is described in detail in the following procedure:

1 Open a shell and log in as root.

2 Decide if you want to profile with or without the Linux kernel:

2a ProfileWith theLinuxKernel Execute the following commands, because
the opcontrol command needs an uncompressed image:
cp /boot/vmlinux-`uname -r`.gz /tmp
gunzip /tmp/vmlinux*.gz
opcontrol --vmlinux=/tmp/vmlinux*

2b Profile Without the Linux Kernel Use the following command:
opcontrol --no-vmlinux

If you want to see which functions call other functions in the output, use
additionally the --callgraph option:
opcontrol --no-vmlinux --callgraph

3 Start the OProfile daemon:
opcontrol --start
Using 2.6+ OProfile kernel interface.
Using log file /var/lib/oprofile/samples/oprofiled.log
Daemon started.
Profiler running.

4 Start your application you want to profile right after the previous step.

OProfile—System-Wide Profiler 113

http://oprofile.sourceforge.net/doc/kernel-profiling.html
http://oprofile.sourceforge.net/doc/kernel-profiling.html

5 Stop the OProfile daemon:
opcontrol --stop

6 Dump the collected data to /var/lib/oprofile/samples:
opcontrol --dump

7 Create a report:
opreport
Overflow stats not available
CPU: CPU with timer interrupt, speed 0 MHz (estimated)
Profiling through timer interrupt

TIMER:0|
samples| %|

84877 98.3226 no-vmlinux

...

8 Shutdown the OProfile daemon:
opcontrol --shutdown

8.4.2 Getting Event Configurations
The general procedure for event configuration is as follows:

1 Use first the events CPU-CLK_UNHALTED and INST_RETIRED to find opti-
mization opportunities.

2 Use specific events to find bottlenecks. To list them, use the command
opcontrol --list-events.

If you need to profile certain events, first check the available events supported by your
processor with the ophelp command (example output generated from Intel Core i5
CPU):
ophelp
oprofile: available events for CPU type "Intel Architectural Perfmon"

See Intel 64 and IA-32 Architectures Software Developer's Manual
Volume 3B (Document 253669) Chapter 18 for architectural perfmon events
This is a limited set of fallback events because oprofile doesn't know your
CPU

114 System Analysis and Tuning Guide

CPU_CLK_UNHALTED: (counter: all))
Clock cycles when not halted (min count: 6000)

INST_RETIRED: (counter: all))
number of instructions retired (min count: 6000)

LLC_MISSES: (counter: all))
Last level cache demand requests from this core that missed the LLC

(min count: 6000)
Unit masks (default 0x41)

0x41: No unit mask

LLC_REFS: (counter: all))
Last level cache demand requests from this core (min count: 6000)
Unit masks (default 0x4f)

0x4f: No unit mask

BR_MISS_PRED_RETIRED: (counter: all))
number of mispredicted branches retired (precise) (min count: 500)

You can get the same output from opcontrol --list-events.

Specify the performance counter events with the option --event. Multiple options
are possible. This option needs an event name (from ophelp) and a sample rate, for
example:
opcontrol --event=CPU_CLK_UNHALTED:100000

WARNING: Be Careful with Low Sampling Rates with CPU_CLK_UNHALTED

Setting sampling rates is dangerous as small rates cause the system to overload
and freeze.

8.5 Using OProfile's GUI
The GUI for OProfile can be started as root with oprof_start, see Figure 8.1,
“GUI for OProfile” (page 116). Select your events and change the counter, if necessary.
Every highlighted line is added to the list of checked events. Use the Configuration tab
to set the buffer and CPU size, the verbose option and others. Click on Start to execute
OProfile.

OProfile—System-Wide Profiler 115

Figure 8.1 GUI for OProfile

8.6 Generating Reports
Before generating a report, make sure OProfile has dumped your data to the /var/
lib/oprofile/samples directory using the command opcontrol --dump.
A report can be generated with the commands opreport or opannotate.

Calling oreport without any options gives a complete summary. With an executable
as an argument, retrieve profile data only from this executable. If you analyze applica-
tions written in C++, use the --demangle smart option.

The opannotate generates output with annotations from source code. Run it with
the following options:
opannotate --source \

--base-dirs=BASEDIR \
--search-dirs= \
--output-dir=annotated/ \
/lib/libfoo.so

The option --base-dir contains a comma separated list of paths which is stripped
from debug source files. This paths were searched prior than looking in
--search-dirs. The --search-dirs option is also a comma separated list of
directories to search for source files.

116 System Analysis and Tuning Guide

NOTE: Inaccuracies in Annotated Source

Due to compiler optimization, code can disappear and appear in a different
place. Use the information in http://oprofile.sourceforge.net/doc/
debug-info.html to fully understand its implications.

8.7 For More Information
This chapter only provides a short overview. Refer to the following links for more in-
formation:

http://oprofile.sourceforge.net
The project home page.

Manpages
Details descriptions about the options of the different tools.

/usr/share/doc/packages/oprofile/oprofile.html
Contains the OProfile manual.

http://developer.intel.com/
Architecture reference for Intel processors.

http://www.amd.com/us-en/assets/content_type/white_papers
_and_tech_docs/22007.pdf

Architecture reference for AMD Athlon/Opteron/Phenom/Turion.

http://www-01.ibm.com/chips/techlib/techlib.nsf/
productfamilies/PowerPC/

Architecture reference for PowerPC64 processors in IBM iSeries, pSeries, and
blade server systems.

OProfile—System-Wide Profiler 117

http://oprofile.sourceforge.net/doc/debug-info.html
http://oprofile.sourceforge.net/doc/debug-info.html
http://oprofile.sourceforge.net
http://developer.intel.com/
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/22007.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/22007.pdf
http://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC/
http://www-01.ibm.com/chips/techlib/techlib.nsf/productfamilies/PowerPC/

Part IV. Resource Management

9General System Resource
Management
Tuning the system is not only about optimizing the kernel or getting the most out of
your application, it begins with setting up a lean and fast system. The way you set up
your partitions and file systems can influence the servers speed. The number of active
services and the way routine tasks are scheduled also affects performance.

9.1 Planning the Installation
A carefully planned installation ensures that the system is basically set up exactly as
you need it for the given purpose. It also saves considerable time when fine tuning the
system. All changes suggested in this section can be made in the Installation Settings
step during the installation. See Section “Installation Settings” (Chapter 6, Installation
with YaST, ↑Deployment Guide) for details.

9.1.1 Partitioning
Depending on the server's range of application and the hardware layout the partitioning
scheme can influence the machine's performance (although to a lesser extend only). It
is beyond the scope of this manual to suggest different partion schemes for particular
workloads, however, the following rules will positively affect performance. Of course
they do not apply when using an external storage system.

• Make sure there always is some free space available on the disk, since a full disk
has got inferior performance

General System Resource Management 121

• Disperse simultaneous read and write access onto different disks by, for example:

• using separate disks for the operating system, the data, and the log files

• placing a mail server's spool directory on a separate disk

• distributing the user directories of a home server between different disks

9.1.2 Installation Scope
Actually, the installation scope has no direct influence on the machine's performance,
but a carefully chosen scope of packages nevertheless has got advantages. It is recom-
mended to install the minimum of packages needed to run the server. A system with a
minimum set of packages is easier to mainatain and has got less potential security issues.
Furthermore, a tailor made installation scope also ensures no unnecessary services are
started by default.

SUSE Linux Enterprise Server lets you customize the installation scope on the Installa-
tion Summary screen. By default, you can select or remove preconfigured patterns for
specific tasks, but it is also possible to start the YaST Software Manager for a fine-
grained package based selection.

One or more of the following patterns selected for installation by default may not be
needed in all cases:

GNOME Desktop Environment
A server seldomly needs a full-blown desktop environment. In case a graphical
environment is needed, a more economical solution such as as icewm or fvwmmay
also be sufficient.

X Window System
When solely administrating the server and its applications via command line, con-
sider to not install this pattern. However, keep in mind that it is needed to run GUI
applications from a remote machine. If your application is managed by a GUI or
if you prefer the GUI version of YaST, keep this pattern.

Print Server
This pattern is only needed when you want to print from the machine.

122 System Analysis and Tuning Guide

9.1.3 Default Runlevel
A running X Window system eats up many ressources and is seldomly needed on a
server. It is strongly recommended to start the system in runlevel 3 (Full multi-user
with network, no X). You will still be able to start graphical applications from remote
or use the startx command to start a local graphical desktop.

9.2 Disabling Unnecessary Services
The default installation starts a number of services (the number varies with the installa-
tion scope). Since each service consumes ressources, it is recommended to disable the
ones not needed. Start YaST > System > System Services (Runlevel) > Expert Mode to
start the services management module. When using the graphical version of YaST you
can click on the column headlines to sort the service list. Use this to get an overview
of which services are currently running or which services are started in the server's de-
fault runlevel. Mark a service with the mouse to see its description. Use the
Start/Stop/Refresh dropdown to disable the service for the running session. To perma-
nently disable it, use the Set/Reset drop-down.

The following list shows services started after a default installation of SUSE Linux
Enterprise Server that may not be needed:

alsasound
Loads the Advanced Linux Sound System. Disable if you do not need sound.

auditd
A daemon for the audit system (see Part “The Linux Audit Framework” (↑Security
Guide) for details). Disable if you do not use Audit.

bluez-coldplug
Handles coldplugging of bluetooth dongles. Disable if you do not have bluetooth.

cups
A printer daemon. Disable if you do not have acces to a printer.

java.binfmt_misc
Enables the execution of *.class or *.jar Java programs. Disable if you do not run
Java applications.

General System Resource Management 123

nfs
Services needed to mount NFS file systems. Disable if not needed.

smbfs
Services needed to mount SMB/CIFS file systems from aWindows server. Disable
if not needed.

splash / splash_early
Shows the splash screen on start-up. Usually not needed on a server

9.3 File Systems and Disk Access
Hard disks are the slowest components in a computer system and therefore often the
cause for a bottleneck. Using the file system that best suits your workload helps to im-
prove performance. Using special mount options or prioritizing a process' I/O priority
are further means to speed up the system.

9.3.1 File Systems
SUSE Linux Enterprise Server ships with a number of different file systems, including
Ext3, Ext2, ReiserFS, and XFS. Each file system has its own advantages and disadvan-
tages. Please refer to Chapter 1, Overview of File Systems in Linux (↑SLES 11 SP1:
Storage Administration Guide) for detailed information.

NFS
NFS (Version 3) tuning is covered in detail in the NFS Howto at http://nfs
.sourceforge.net/nfs-howto/. The first thing you should experiment with
when mounting NFS shares is increasing the read write blocksize to 32768 by using
the mount options wsize and rsize.

9.3.2 Disabling Access Time (atime) Updates
Whenever a file is read on a Linux file system, its access time (atime) is updated. As a
result, each read-only file access in fact causes a write. On a journaling file system it
is even two write operations since the journal will be updated, too. It is recommended

124 System Analysis and Tuning Guide

http://nfs.sourceforge.net/nfs-howto/
http://nfs.sourceforge.net/nfs-howto/

to turn this feature off when you do not need to keep track of access times. This is
possibly true for file and Web servers as well as for a netwok storage.

To turn off access time updates, mount the file system with the noatime option. To
do so, either edit /etc/fstab directly, or use the Fstab Options dialog when editing
or adding a partition with the YaST Partitioner.

9.3.3 Prioritizing Disk Access with ionice
The ionice command lets you prioritize disk access for single processes. This enables
you to give less I/O priority to non time-critical background processes with heavy disk
access such as backup jobs. On the other hand ionice lets you raise I/O priority for
a specific process to make sure this process has always immediate access to the disk.
You may set the following three scheduling classes:

Idle
A process from the idle scheduling class is only granted disk access, when no other
process has asked for disk I/O.

Best effort
By default, every process will be granted I/O priority from this class. Priority
within this class can be adjusted to a level from 0 to 7 (with 0 being the highest
priority). By default, a process will be granted a priority corresponding to their
CPU nice level.

Real-time
Processes in this class are always granted disk access first. Fine-tune the priority
level from 0 to 7 (with 0 being the highest priority). Use with care, since it can
starve other processes.

For more details and the exact command syntax refer to the ionice(1) man page
for ionice.

General System Resource Management 125

10Kernel Control Groups
Kernel Control Groups (abbreviated known as “cgroups”) are a kernel feature that allows
aggregating or partitioning tasks (processes) and all their children into hierarchical or-
ganized groups. These hierarchical groups can be configured to show a specialized be-
havior that helps with tuning the system to make best use of available hardware and
network resources.

10.1 Technical Overview and
Definitions

The following terms are used in this chapter:

• “cgroup” is another name for Control Groups.

• In a cgroup there is a set of tasks (processes) associated with a set of subsystems
that act as parameters constituting an environment for the tasks.

• Subsystems provide the parameters that can be assigned and define CPU sets,
freezer, or—more general—“resource controllers” for memory, disk I/O, etc.

• cgroups are organized in a tree-structured hierarchy. There can be more than one
hierarchy in the system. You use a different or alternate hierarchy to cope with
specific situations.

• Every task running in the system is in exactly one of the cgroups in the hierarchy.

Kernel Control Groups 127

10.2 Scenario
See the following resource planning scenario for a better understanding (source: /usr/
src/linux/Documentation/cgroups/cgroups.txt):

Figure 10.1 Resource Planning

Memory
Professors (50%)
Students (30%)
System (20%)

Disk I/O
Professors (50%)
Students (30%)
System (20%)

CPU Set 1
(60%)

Professors

CPU Set 2
(20%)

Students

CPUs
Top CPU Set (20%)

Professors
(15%)

Network File Systems (60%)

Students
(5%)

Network I/O
WWW Browsing (20%)

Others (20%)

128 System Analysis and Tuning Guide

Web browser such as Firefox will be part of the Web network class, while the NFS
daemons such as (k)nfsd will be part of the NFS network class. On the other side,
Firefox will share appropriate CPU and memory classes depending on whether a pro-
fessor or student started it.

10.3 Control Group Subsystems
The following subsystems are available and can be classified as two types:

Isolation and Special Controllers
cpuset, namespace, freezer, device, checkpoint/restart

Resource Controllers
cpu(scheduler), memory, disk I/O, network

Either mount each subsystem separately:
mount -t cgroup -o cpu none /cpu
mount -t cgroup -o cpuset none /cpuset

or all subsystems in one go:
mount -t cgroup none /cgroups

Some additional information on available subsystems:

Cpuset (Isolation)
Use cpuset to tie processes to system subsets of CPUs and memory (“memory
nodes”). For an example, see Section 10.4.3, “Example: Cpusets” (page 132).

Namespace (Isolation)
Namespace is for showing private view of system to processes in cgroup. It is
mainly used for OS-level virtualization. This subsystem itself has no special func-
tions and just tracks changes in namespace.

Freezer (Control)
The Freezer subsystem is useful for high-performance computing clusters (HPC
clusters). Use it to freeze (stop) all tasks in a group or to stop tasks, if they reach

Kernel Control Groups 129

a defined checkpoint. For more information, see /usr/src/linux/
Documentation/cgroups/freezer-subsystem.txt.

Here are basic commands, how you can use the freezer subsystem:
mount -t cgroup freezer /freezer -o freezer
Create a child cgroup:
mkdir /freezer/0
Put a task into this cgroup:
echo $task_pid > /freezer/0/tasks
Freeze it:
echo FROZEN > /freezer/0/freezer.state
Unfreeze (thaw) it:
echo THAWED > /freezer/0/freezer.state

Device (Isoloation)
A system administrator can provide a list of devices that can be accessed by pro-
cesses under cgroups.

It limits access to a device or a file system on a device to only tasks that belong to
the specified cgroup. For more information, see /usr/src/linux/
Documentation/cgroups/devices.txt.

Checkpoint/Restart (Control)
Save the state of all processes in a cgroup to a dump file. Restart it later (or just
save the state and continue).

Allows to move “saved container” between physical machines (as VM can do).

Dump all process's image to a file.

Cpuacct (Control)
The CPU accounting controller groups tasks using cgroups and accounts the CPU
usage of these groups. For more information, see /usr/src/linux/
Documentation/cgroups/cpuacct.txt.

CPU (Resource Control)
Share CPU bandwidth between groups with the group scheduling function of CFS
(the scheduler). Mechanically complicated.

Memory (Resource Control)

• Limits memory usage of user space processes.

130 System Analysis and Tuning Guide

• Limit LRU (Least Recently Used) pages.

• Anonymous and file cache.

• No limits for kernel memory.

• Maybe in another subsystem if needed.

Formore information, see/usr/src/linux/Documentation/cgroups/
memory.txt.

Disk I/O (Resource Control) (Draft)
Three proposals are currently being discussed: dm-ioband, io-throttle, and io-con-
troller.

Network I/O (Resource Control) (Draft)
Still under discussion.

10.4 Using Controller Groups

10.4.1 Prerequisites
To use cgroups, install the following additional packages:

• libcgroup1 contains basic user space tools to simplify resource management.

• cpuset

• libcpuset1

• kernel-source (for documentation purposes only)

• lcx

Kernel Control Groups 131

10.4.2 Checking the Environment
The kernel shipped with SUSE Linux Enterprise Server supports cgroups. There is no
need to apply additional patches. Execute lxc-checkconfig to see a cgroups envi-
ronment similar to the following output:
--- Namespaces ---
Namespaces: enabled
Utsname namespace: enabled
Ipc namespace: enabled
Pid namespace: enabled
User namespace: enabled
Network namespace: enabled
Multiple /dev/pts instances: enabled

--- Control groups ---
Cgroup: enabled
Cgroup namespace: enabled
Cgroup device: enabled
Cgroup sched: enabled
Cgroup cpu account: enabled
Cgroup memory controller: enabled
Cgroup cpuset: enabled

--- Misc ---
Veth pair device: enabled
Macvlan: enabled
Vlan: enabled
File capabilities: enabled

To find out which subsystems are available, proceed as follows:
mkdir /cgroups
mount -t cgroup none /cgroups
grep cgroup /proc/mounts

The following subsystems are available: rw, freezer, devices, cpuacct, cpu, ns, cpuset,
memory. Disk and network subsystem controllers may become available during SUSE
Linux Enterprise Server 11 lifetime.

10.4.3 Example: Cpusets
With the command line proceed as follows:

1 To determine the number of CPUs and memory nodes see /proc/cpuinfo
and /proc/zoneinfo.

132 System Analysis and Tuning Guide

2 Create the cpuset hierarchy as a virtual file system (source: /usr/src/linux/Docu-
mentation/cgroups/cgroups.txt):
mkdir /dev/cpuset
mount -t cpuset cpuset /dev/cpuset
cd /dev/cpuset
mkdir Charlie
cd Charlie
List of CPUs in this cpuset:
/bin/echo 2-3 > cpus
List of memory nodes in this cpuset:
/bin/echo 1 > mems
/bin/echo $$ > tasks
The current shell is now running in the Charlie cpuset
The next line should display '/Charlie'
cat /proc/self/cpuset

3 Remove the cpuset using shell commands:
rmdir /dev/cpuset/Charlie

This fails as long as this cpuset is in use. First, you have to remove the inside
cpusets or tasks (processes) that belong to it. Check this with:
cat /dev/cpuset/Charlie/tasks

For background information and additional configuration flags, see /usr/src/
linux/Documentation/cgroups/cpusets.txt.

With the cset tool, proceed as follows:
Determine the number of CPUs and memory nodes
cset set --list
Creating the cpuset hierarchy
cset set --cpu=2-3 --mem=1 --set=Charlie
Starting processes in a cpuset
cset proc --set Charlie --exec -- stress -c 1 &
Moving existing processes to a cpuset
cset proc --move --pid PID --toset=Charlie
List task in a cpuset
cset proc --list --set Charlie
Removing a cpuset
cset set --destroy Charlie

Kernel Control Groups 133

10.4.4 Example: cgroups
Using shell commands, proceed as follows:

1 Create the cgroups hierarchy:
mkdir /dev/cgroup
mount -t cgroup cgroup /dev/cgroup
cd /dev/cgroup
mkdir priority
cd priority
cat cpu.shares

2 Understanding cpu.shares:

• 1024 is the default (for more information, see sched-design-CFS.txt)
= 50% utilization

• 1524 = 60% utilization

• 2048 = 67% utilization

• 512 = 40% utilization

3 Changing cpu.shares
/bin/echo 1024 > cpu.shares

10.5 For More Information
• Kernel documentation (packagekernel-source): files in/usr/src/linux/
Documentation/cgroups:

• /usr/src/linux/Documentation/cgroups/cgroups.txt

• /usr/src/linux/Documentation/cgroups/cpuacct.txt

• /usr/src/linux/Documentation/cgroups/cpusets.txt

• /usr/src/linux/Documentation/cgroups/devices.txt

134 System Analysis and Tuning Guide

• /usr/src/linux/Documentation/cgroups/freezer-subsystem
.txt

• /usr/src/linux/Documentation/cgroups/memcg_test.txt

• /usr/src/linux/Documentation/cgroups/memory.txt

• /usr/src/linux/Documentation/cgroups/resource_counter
.txt

• http://lwn.net/Articles/243795/—Corbet, Jonathan: Controlling
memory use in containers (2007).

• http://lwn.net/Articles/236038/—Corbet, Jonathan: Process contain-
ers (2007).

Kernel Control Groups 135

http://lwn.net/Articles/243795/
http://lwn.net/Articles/236038/

11Power Management
Power management aims at reducing operating costs for energy and cooling systems
while at the same time keeping the performance of a system at a level that matches the
current requirements. Thus, power management is always a matter of balancing the
actual performance needs and power saving options for a system. Power management
can be implemented and used at different levels of the system. A set of specifications
for power management functions of devices and the operating system interface to them
has been defined in the Advanced Configuration and Power Interface (ACPI). As
power savings in server environments can primarily be achieved on processor level,
this chapter introduces some of themain concepts and highlights some tools for analyzing
and influencing relevant parameters.

11.1 Power Management at CPU Level
At CPU level, you can control power usage in various ways: for example, by using
idling power states (C-states), changing CPU frequency (P-states), and throttling the
CPU (T-states). The following sections give a short introduction to each approach and
its significance for power savings. Detailed specifications can be found at http://
www.acpi.info/spec.htm.

11.1.1 C-States (Processor Operating States)
Modern processors have several power saving modes called C-states. They reflect
the capability of an idle processor to turn off unused components in order to save
power.Whereas C-states have been available for laptops for some time, they are a rather

Power Management 137

http://www.acpi.info/spec.htm
http://www.acpi.info/spec.htm

recent trend in the server market (for example, with Intel* processors, C-modes are
only available since Nehalem).

When a processor runs in the C0 state, it is executing instructions. A processor running
in any other C-state is idle. The higher the C number, the deeper the CPU sleep mode:
more components are shut down to save power. Deeper sleep states save more power,
but the downside is that they have higher latency (the time the CPU needs to go back
to C0).

Some states also have submodes with different power saving latency levels. Which C-
states and submodes are supported depends on the respective processor. However, C1
is always available.

Table 11.1, “C-States” (page 138) gives an overview of the most common C-states.

Table 11.1 C-States

DefinitionMode

Operational state. CPU fully turned on.C0

First idle state. Stops CPU main internal clocks via software. Bus
interface unit and APIC are kept running at full speed.

C1

Stops CPU main internal clocks via hardware. State where the pro-
cessor maintains all software-visible states, but may take longer to
wake up through interrupts.

C2

Stops all CPU internal clocks. The processor does not need to keep
its cache coherent, but maintains other states. Some processors have

C3

variations of the C3 state that differ in how long it takes to wake the
processor through interrupts.

138 System Analysis and Tuning Guide

11.1.2 P-States (Processor Performance
States)

While a processor operates (in C0 state), it can be in one of several CPU performance
states (P-states). Whereas C-states are idle states (all but C0), P-states are
operational states that relate to CPU frequency and voltage.

The higher the P-state, the lower the frequency and voltage at which the processor runs.
The number of P-states is processor-specific and the implementation differs across the
various types. However, P0 is always the highest-performance state. Higher P-state
numbers represent slower processor speeds and lower power consumption. For example,
a processor in P3 state runs more slowly and uses less power than a processor running
at P1 state. To operate at any P-state, the processor must be in the C0 state where the
processor is working and not idling. The CPU P-states are also defined in the Advanced
Configuration and Power Interface (ACPI) specification, see http://www.acpi
.info/spec.htm.

C-states and P-states can vary independently of one another.

11.1.3 T-States (Processor Throttling States)
T-states refer to throttling the processor clock to lower frequencies in order to reduce
thermal effects. This means that the CPU is forced to be idle a fixed percentage of its
cycles per second. Throttling states range from T1 (the CPU has no forced idle cycles)
to Tn, with the percentage of idle cycles increasing the greater n is.

This differs from changing the frequency (which makes the CPU have fewer cycles per
second), and from running in a C-state other than C1. Note that throttling does not reduce
voltage and since the CPU is forced to idle part of the time, processes will take longer
to finish and will consume more power instead of saving any power.

T-states are a concept from the times when dynamic frequency scaling and C-states did
not exist. With the implementation of the latter, T-states are only useful if reducing
thermal effects is the primary goal. Since T-states can interfere with C-states (preventing
the CPU from reaching higher C-states), they can even increase power consumption in
a modern CPU capable of C-states.

Power Management 139

http://www.acpi.info/spec.htm
http://www.acpi.info/spec.htm

11.2 The Linux Kernel CPUfreq
Infrastructure

Processor performance states (P-states) and processor operating states (C-states) are
the capability of a processor to switch between different supported operating frequencies
and voltages to modulate power consumption.

In order to dynamically scale processor frequencies at runtime, you can use the CPUfreq
infrastructure to set a static or dynamic power policy for the system. Its main components
are the CPUfreq subsystem (providing a common interface to the various low-level
technologies and high-level policies) , the in-kernel governors (policy governors that
can change the CPU frequency based on different criteria) and CPU-specific drivers
that implement the technology for the specific processor. Apart from that, user-space
daemons may be available.

The dynamic scaling of the clock speed helps to consume less power and generate less
heat when not operating at full capacity.

11.2.1 In-Kernel Governors
You can think of the in-kernel governors as a sort of pre-configured power schemes
for the CPU. The CPUfreq governors use P-states to change frequencies and lower
power consumption. The dynamic governors can switch between CPU frequencies,
based on CPU utilization to allow for power savings while not sacrificing performance.
These governors also allow for some tuning so you can customize and change the fre-
quency scaling.

The following governors are available with the CPUfreq subsystem:

Performance Governor
The CPU frequency is statically set to the highest possible for maximum perfor-
mance. Consequently, saving power is not the focus of this governor.

Tuning options: The range of maximum frequencies available to the governor can
be adjusted. For details, see Section 11.3.2, “Modifying Current Settings with
cpufreq-set” (page 143).

140 System Analysis and Tuning Guide

Powersave Governor
The CPU frequency is statically set to the lowest possible. This can have severe
impact on the performance, as the system will never rise above this frequency no
matter how busy the processors are.

However, using this governor often does not lead to the expected power savings
as the highest savings can usually be achieved at idle through entering C-states.
Due to running processes at the lowest frequency with the powersave governor,
processes will take longer to finish, thus prolonging the time for the system to enter
any idle C-states.

Tuning options: The range of minimum frequencies available to the governor can
be adjusted. For details, see Section 11.3.2, “Modifying Current Settings with
cpufreq-set” (page 143).

On-demand Governor
The kernel implementation of a dynamic CPU frequency policy: The governor
monitors the processor utilization. As soon as it exceeds a certain threshold, the
governor will set the frequency to the highest available. If the utilization is less
than the threshold, the next lowest frequency is used. If the system continues to be
underutilized, the frequency is again reduced until the lowest available frequency
is set.

Tuning options: The range of available frequencies, the rate at which the governor
checks utilization, and the utilization threshold can be adjusted.

Conservative Governor
Similar to the on-demand implementation, this governor also dynamically adjusts
frequencies based on processor utilization, except that it allows for a more gradual
increase in power. If processor utilization exceeds a certain threshold, the governor
does not immediately switch to the highest available frequency (as the on-demand
governor does), but only to next higher frequency available.

Tuning options: The range of available frequencies, the rate at which the governor
checks utilization, the utilization thresholds, and the frequency step rate can be
adjusted.

Power Management 141

11.2.2 Related Files and Directories
If the CPUfreq subsystem in enabled on your system (which it is by default with SUSE
Linux Enterprise Server), you can find the relevant files and directories under /sys/
devices/system/cpu/. If you list the contents of this directory, you will find a
cpu{0..x} subdirectory for each processor, and several other files and directories.
You will find a cpufreq subdirectory in each processor directory, holding a number
of files and directories that define the parameters for CPUfreq. Some of them are writable
(for root), some of them are read-only. If your system currently uses the on-demand
or conservative governor, you will see a separate subdirectory for those governors in
cpufreq, containing the parameters for the governors.

NOTE: Different Processor Settings

The settings under the cpufreq directory can be different for each processor.
If you want to use the same policies across all processors, you need to adjust
the parameters for each processor.

11.3 Tuning Options for P-states
The CPUfreq subsystem offers several tuning options for P-states: You can switch be-
tween the different governors or change individual governor parameters.

Though you can view or adjust the current settings manually (in /sys/devices/
system/cpu/cpufreq or in/sys/devices/system/cpu/cpu*/cpufreq
for machines with multiple cores), we advise to use the tools provided by
cpufrequtils for that. After you have installed the cpufrequtils package, you
can make use of the cpufreq-info and cpufreq-set command line tools as
described below.

142 System Analysis and Tuning Guide

11.3.1 Viewing Current Settings with
cpufreq-info

The cpufreq-info command helps you to retrieve CPUfreq kernel information.
Run without any options, it collects the information available for your system and shows
an output similar to the following:

cpufrequtils 004: cpufreq-info (C) Dominik Brodowski 2004-2006
Report errors and bugs to http://bugs.opensuse.org, please.
analyzing CPU 0:
driver: acpi-cpufreq
CPUs which need to switch frequency at the same time: 0
hardware limits: 2.80 GHz - 3.40 GHz
available frequency steps: 3.40 GHz, 2.80 GHz
available cpufreq governors: conservative, userspace, powersave, ondemand, performance
current policy: frequency should be within 2.80 GHz and 3.40 GHz.

The governor "performance" may decide which speed to use
within this range.

current CPU frequency is 3.40 GHz.
analyzing CPU 1:
driver: acpi-cpufreq
CPUs which need to switch frequency at the same time: 1
hardware limits: 2.80 GHz - 3.40 GHz
available frequency steps: 3.40 GHz, 2.80 GHz
available cpufreq governors: conservative, userspace, powersave, ondemand, performance
current policy: frequency should be within 2.80 GHz and 3.40 GHz.

The governor "performance" may decide which speed to use
within this range.

current CPU frequency is 3.40 GHz.

Using the appropriate options, you can view the current CPU frequency, the minimum
and maximum CPU frequency allowed, show the currently used CPUfreq policy, the
available CPUfreq governors, or determine the CPUfreq kernel driver used. For more
details and the available options, refer to the cpufreq-info man page or run
cpufreq-info --help.

11.3.2 Modifying Current Settings with
cpufreq-set

To modify CPUfreq settings, use the cpufreq-set command as root. It allows
you set values for the minimum or maximum CPU frequency the governor may select
or to create a new governor. With the -c option, you can also specify for which of the
processors the settings should be modified. That makes it easy to use a consistent policy

Power Management 143

across all processors without adjusting the settings for each processor individually. For
more details and the available options, refer to the cpufreq-set man page or run
cpufreq-set --help.

You can switch to another governor at runtime with the -g option. For example, the
following command will activate the on-demand governor:
cpufreq-set -g ondemand

If you want the change in governor to persist also after a reboot or shutdown, use the
pm-profiler as described in Section 11.5, “Creating and Using Power Management
Profiles” (page 146).

11.3.3 Modifying Further Settings
Apart from the governor settings that can be influenced with cpufreq-set (like
minimum or maximum CPU frequency to be used), you can also tune further governor
parameters manually, for example, Ignoring Nice Values in Processor Utilization
(page 144).

Another parameter that significantly impacts the performance loss caused by dynamic
frequency scaling is the sampling rate (rate at which the governor checks the current
CPU load and adjusts the processor's frequency accordingly). Its default value depends
on a BIOS value and it should be as low as possible. However, in modern systems, an
appropriate sampling rate is set by default and does not need manual intervention.

Procedure 11.1 Ignoring Nice Values in Processor Utilization

One parameter youmight want to change for the on-demand or conservative governor
is ignore_nice_load.

Each process has a niceness value associated with it. This value is used by the kernel
to determine which processes require more processor time than others. The higher
the nice value, the lower the priority of the process. Or: the “nicer” a process, the less
CPU it will try to take from other processes.

If the ignore_nice_load parameter for the on-demand or conservative governor
is set to 1, any processes with a nice value will not be counted toward the overall
processor utilization. When ignore_nice_load is set to 0 (default value), all
processes are counted toward the utilization. Adjusting this parameter can be useful

144 System Analysis and Tuning Guide

if you are running something that requires a lot of processor capacity but you do not
care about the runtime.

1 Change to the subdirectory of the governor whose settings you want to modify,
for example:
cd /sys/devices/system/cpu/cpu0/cpufreq/conservative/

2 Show the current value of ignore_nice_load with:
cat ignore_nice_load

3 To set the value to 1, execute:
echo 1 > ignore_nice_load

When setting the ignore_nice_load value for cpu0, the same value is automati-
cally used for all cores. In this case, you do not need to repeat the steps above for each
of the processors where you want to modify this governor parameter.

11.4 Tuning Options for C-states
By default, SUSE Linux Enterprise Server uses C-states appropriately. The only param-
eter you might want to touch for optimization is the sched_mc_power_savings
scheduler. Instead of distributing a work load across all cores with the effect that all
cores are utilized only at a minimum level, the kernel can try to schedule processes on
as few cores as possible so that the others can go idle. This helps to save power as it
allows some processors to be idle for a longer time so they can reach a higher C-state.
However, the actual savings depend on a number of factors, for example how many
processors are available and which C-states are supported by them (especially deeper
ones such as C3 to C6).

If sched_mc_power_savings is set to 0 (default value), no special scheduling is
done. If it is set to 1, the scheduler tries to consolidate the work onto the fewest number
of processors possible in the case that all processors are a little busy. To modify this
parameter, proceed as follows:

Power Management 145

Procedure 11.2 Scheduling Processes on Cores

1 Change to the subdirectory where the scheduler is located:
cd /sys/devices/system/cpu/

2 Show the current value of sched_mc_power_savings with:
cat sched_mc_power_savings

3 To set the value to 1, execute:
echo 1 > sched_mc_power_savings

11.5 Creating and Using Power
Management Profiles

SUSE Linux Enterprise Server includes pm-profiler, intended for server use. It is a
script infrastructure to enable or disable certain power management functions via con-
figuration files. It allows you to define different profiles, each having a specific confi-
guration file for defining different settings. A configuration template for new profiles
can be found at /usr/share/doc/packages/pm-profiler/config
.template. The template contains a number of parameters you can use for your
profile, including comments on usage and links to further documentation. The individ-
ual profiles are stored in /etc/pm-profiler/. The profile that will be activated
on system start, is defined in /etc/pm-profiler.conf.

Procedure 11.3 Creating and Switching Power Profiles

To create a new profile, proceed as follows:

1 Create a directory in /etc/pm-profiler/, containing the profile name, for
example:
mkdir /etc/pm-profiler/testprofile

2 To create the configuration file for the new profile, copy the profile template to
the newly created directory:

146 System Analysis and Tuning Guide

cp /usr/share/doc/packages/pm-profiler/config.template \
/etc/pm-profiler/testprofile/config

3 Edit the settings in/etc/pm-profiler/testprofile/config and save
the file. You can also remove variables that you do not need—theywill be handled
like empty variables, the settings will not be touched at all.

4 Edit /etc/pm-profiler.conf. The PM_PROFILER_PROFILE variable
defines which profile will be activated on system start. If it has no value, the de-
fault system or kernel settings will be used. To set the newly created profile:
PM_PROFILER_PROFILE="testprofile"

The profile name you enter here must match the name you used in the path to
the profile configuration file (/etc/pm-profiler/testprofile/
config), not necessarily the NAME you used for the profile in the /etc/pm
-profiler/testprofile/config.

5 To activate the profile, run
rcpm-profiler start

or
/usr/lib/pm-profiler/enable-profile testprofile

Though you have to manually create or modify a profile by editing the respective profile
configuration file, you can use YaST to switch between different profiles. Start YaST
and select System > Power Management to open the Power Management Settings. Al-
ternatively, become root and executeyast2 power-management on a command
line. The drop-down list shows the available profiles. Defaultmeans that the system
default settings will be kept. Select the profile to use and click Finish.

11.6 Monitoring Power Consumption
with powerTOP

A useful tool for monitoring system power consumption is powerTOP. It helps you to
identify the reasons for unnecessary high power consumption (for example, processes
that are mainly responsible for waking up a processor from its idle state) and to optimize

Power Management 147

your system settings to avoid these. It supports both Intel and AMD processors. The
powertop package is available from the SUSELinux Enterprise SDK. For information
how to access the SDK, refer to About This Guide (page ix).

powerTOP combines various sources of information (analysis of programs, device
drivers, kernel options, amounts and sources of interrupts waking up processors from
sleep states) and shows them in one screen. Example 11.1, “Example powerTOPOutput”
(page 149) shows which information categories are available:

148 System Analysis and Tuning Guide

Example 11.1 Example powerTOP Output
Cn Avg residency P-states (frequencies)
❶ ❷ ❸ ❹ ❺

C0 (cpu running) (11.6%) 2.00 Ghz 0.1%
polling 0.0ms (0.0%) 2.00 Ghz 0.0%
C1 4.4ms (57.3%) 1.87 Ghz 0.0%
C2 10.0ms (31.1%) 1064 Mhz 99.9%

Wakeups-from-idle per second : 11.2 interval: 5.0s ❻

no ACPI power usage estimate available ❼

Top causes for wakeups: ❽

96.2% (826.0) <interrupt> : extra timer interrupt
0.9% (8.0) <kernel core> : usb_hcd_poll_rh_status (rh_timer_func)
0.3% (2.4) <interrupt> : megasas
0.2% (2.0) <kernel core> : clocksource_watchdog (clocksource_watchdog)
0.2% (1.6) <interrupt> : eth1-TxRx-0
0.1% (1.0) <interrupt> : eth1-TxRx-4

[...]

Suggestion: ❾ Enable SATA ALPM link power management via:
echo min_power > /sys/class/scsi_host/host0/link_power_management_policy
or press the S key.

❶ The column shows the C-states. When working, the CPU is in state 0, when
resting it is in some state greater than 0, depending on which C-states are available
and how deep the CPU is sleeping.

❷ The column shows average time in milliseconds spent in the particular C-state.

❸ The column shows the percentages of time spent in various C-states. For consid-
erable power savings during idle, the CPU should be in deeper C-states most of
the time. In addition, the longer the average time spent in these C-states, the more
power is saved.

❹ The column shows the frequencies the processor and kernel driver support on
your system.

❺ The column shows the amount of time the CPU cores stayed in different frequen-
cies during the measuring period.

❻ Shows how often the CPU is awoken per second (number of interrupts). The
lower the number the better. The interval value is the powerTOP refresh in-
terval which can be controlled with the -t option. The default time to gather data
is 5 seconds.

Power Management 149

❼ When running powerTOP on a laptop, this line displays the ACPI information on
how much power is currently being used and the estimated time until discharge
of the battery. On servers, this information is not available.

❽ Shows what is causing the system to be more active than needed. powerTOP dis-
plays the top items causing your CPU to awake during the sampling period.

❾ Suggestions on how to improve power usage for this machine.

For more information, refer to the powerTOP project page at http://www
.lesswatts.org/projects/powertop/. It also provides tips and tricks and
an informative FAQ section.

11.7 Troubleshooting
BIOS options enabled?

In order to make use of C-states or P-states, check your BIOS options:

• To use C-states, make sure to enable CPU C State or similar options to benefit
from power savings at idle.

• To use P-states and the CPUfreq governors, make sure to enable Processor
Performance States options or similar.

In case of a CPU upgrade, make sure to upgrade your BIOS, too. The BIOS needs
to know the newCPU and its valid frequencies steps in order to pass this information
on to the operating system.

CPUfreq subsystem enabled?
In SUSE Linux Enterprise Server, the CPUfreq subsystem is enabled by default.
To find out if the subsystem is currently enabled, check for the following path in
your system:/sys/devices/system/cpu/cpufreq (or/sys/devices/
system/cpu/cpu*/cpufreq for machines with multiple cores). If the
cpufreq subdirectory exists, the subsystem is enabled.

Log file information?
Check syslog (usually /var/log/messages) for any output regrading the
CPUfreq subsystem. Only severe errors are reported there.

150 System Analysis and Tuning Guide

http://www.lesswatts.org/projects/powertop/
http://www.lesswatts.org/projects/powertop/

If you suspect problems with the CPUfreq subsystem on your machine, you can
also enable additional debug output. To do so, either use cpufreq.debug=7 as
boot parameter or execute the following command as root:
echo 7 > /sys/module/cpufreq/parameters/debug

This will cause CPUfreq to log more information to dmesg on state transitions,
which is useful for diagnosis. But as this additional output of kernel messages can
be rather comprehensive, use it only if you are fairly sure that a problem exists.

11.8 For More Information
• A threepart, comprehensive article about tuning components with regards to power
efficiency is available at the following URLs:

• Reduce Linux power consumption, Part 1: The CPUfreq subsystem, available at
http://www.ibm.com/developerworks/linux/library/l
-cpufreq-1/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=
105AGX59&S_CMP=grlnxw03

• Reduce Linux power consumption, Part 2: General and governor-specific settings,
available at http://www.ibm.com/developerworks/linux/
library/l-cpufreq-2/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX
&S_TACT=105AGX59&S_CMP=grlnxw03

• Reduce Linux power consumption, Part 3: Tuning results, available athttp://
www.ibm.com/developerworks/linux/library/l-cpufreq-3/
?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S
_CMP=grlnxw03

• The LessWatts.org project deals with how to save power, reduce costs and increase
efficiency on Linux systems. Find the project home page at http://www
.lesswatts.org/. The project page also holds an informative FAQs section
at http://www.lesswatts.org/documentation/faq/index.php
and provides useful tips and tricks. For tips dealing with the CPU level, refer to
http://www.lesswatts.org/tips/cpu.php. For more information
about powerTOP, refer to http://www.lesswatts.org/projects/
powertop/.

Power Management 151

http://www.ibm.com/developerworks/linux/library/l-cpufreq-1/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-1/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-1/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-2/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-2/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-2/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-3/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-3/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-3/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.ibm.com/developerworks/linux/library/l-cpufreq-3/?ca=dgr-lnxw03ReduceLXPWR-P1dth-LX&S_TACT=105AGX59&S_CMP=grlnxw03
http://www.lesswatts.org/
http://www.lesswatts.org/
http://www.lesswatts.org/documentation/faq/index.php
http://www.lesswatts.org/tips/cpu.php
http://www.lesswatts.org/projects/powertop/
http://www.lesswatts.org/projects/powertop/

• There is also platform-specific power saving information available, for example:
HP ProLiant Server Power Management on SUSE Linux Enterprise Server
11—Integration Note , available from http://h18004.www1.hp.com/
products/servers/technology/whitepapers/os-techwp.html

152 System Analysis and Tuning Guide

http://h18004.www1.hp.com/products/servers/technology/whitepapers/os-techwp.html
http://h18004.www1.hp.com/products/servers/technology/whitepapers/os-techwp.html

Part V. Kernel Tuning

12Installing Multiple Kernel
Versions
SUSE Linux Enterprise Server supports the parallel installation of multiple kernel ver-
sions. When installing a second kernel, a boot entry and an initrd are automatically
created, so no further manual configuration is needed. When rebooting the machine,
the newly added kernel is available as an additional boot option.

Using this functionality, you can safely test kernel updates while being able to always
fall back to the proven former kernel. To do so, do not use the update tools (such as the
YaST Online Update or the updater applet), but instead follow the process described
in this chapter.

WARNING: Support Entitlement

Please be aware that you loose your entire support entitlement for the machine
when installing a self-compiled or a third-party kernel. Only kernels shipped
with SUSE Linux Enterprise Server and kernels delivered via the official update
channels for SUSE Linux Enterprise Server are supported.

TIP: Check Your Bootloader Configuration Kernel

It is recommended to check your bootloader config after having installed an-
other kernel in order to set the default boot entry of your choice. See Sec-
tion “Configuring the Boot Loader with YaST” (Chapter 8, The Boot Loader
GRUB, ↑Administration Guide) for more information. To change the default
append line for new kernel installations, adjust /etc/sysconfig/
bootloader prior to installing a new kernel. For more information refer to

Installing Multiple Kernel Versions 155

Section “The File /etc/sysconfig/bootloader” (Chapter 8, The Boot
Loader GRUB, ↑Administration Guide).

12.1 Enabling Multiversion Support
Installing multiple versions of a software package (multiversion support) is not enabled
by default. To enable this feature, proceed as follows:

1 Open /etc/zypp/zypp.conf with the editor of your choice as root, for
example
sudo vi /etc/zypp/zypp.conf

2 Search for the string multiversion. To enable multiversion for all kernel
packages capable of this feature, uncomment the following line
multiversion = provides:multiversion(kernel)

by removing the # character.

To restrict multiversion support to certain kernel flavors, specify the package
names as a comma-separated list, for example
multiversion = kernel-default,kernel-default-base,kernel-source

3 Save your changes.

12.2 Installing/Removing Multiple
Kernel Versions with YaST

1 Start YaST and open the software manager via Software > SoftwareMannagment.

2 List all packages capable of providing multiple versions by choosing View >
Package Groups >Multiversion Packages.

156 System Analysis and Tuning Guide

Figure 12.1 The YaST Software Manager - Multiversion View

3 Select a package and open its Version tab in the bottom pane on the left.

4 To install a package, click its checkbox. A green checkmark indicates it is selected
for installation.

To remove an already installed package (marked with a white checkmark), click
its checkbox until a red X indicates it is selected for removal.

5 Click Accept to start the installation.

12.3 Installing/Removing Multiple
Kernel Versions with zypper

1 Use the command zypper se -s 'kernel*' to display a list of all kernel
packages available:

Installing Multiple Kernel Versions 157

S | Name | Type | Version | Arch | Repository
--+----------------+------------+-----------------+--------+-------------------
v | kernel-default | package | 2.6.32.10-0.4.1 | x86_64 | Alternative Kernel
i | kernel-default | package | 2.6.32.9-0.5.1 | x86_64 | (System Packages)

| kernel-default | srcpackage | 2.6.32.10-0.4.1 | noarch | Alternative Kernel
i | kernel-default | package | 2.6.32.9-0.5.1 | x86_64 | (System Packages)
...

2 Specify the exact version when installing:
zypper in kernel-default-2.6.32.10-0.4.1

3 When uninstalling a kernel, use the commandszypper se -si 'kernel*'
to list all kernels installed and zypper rm PACKAGENAME-VERSION to re-
move the package.

158 System Analysis and Tuning Guide

13Tuning Per-Device I/O
Performance

13.1 I/O Scheduler --
/sys/block/<device>/queue/scheduler

This parameter allows changing the I/O scheduler algorithm. There are three options:

13.1.1 CFQ
This is the default option. Fairness-oriented I/O scheduler. The algorithm assigns each
thread a time slice in which it is allowed to submit I/O to disk. This way each thread
gets a fair share of I/O throughput. This I/O scheduler also allows assigning tasks I/O
priorities which are taken into account during scheduling decisions (see man 1
ionice). The CFQ scheduler has the following parameters:

/sys/block/<device>/queue/iosched/slice_idle
When a task has no more I/O to submit in its timeslice, the I/O scheduler waits for
a while before scheduling the next thread to improve locality of I/O. For media
where locality does not play a big role (SSDs, SANs with lots of disks) setting
/sys/block/<device>/queue/iosched/slice_idle to0 can improve
the throughput considerably.

Tuning Per-Device I/O Performance 159

/sys/block/<device>/queue/iosched/quantum
This option limits the maximum number of requests that are being processed by
the device at once. The default value is 4. For a storage with several disks, this
setting can unnecessarily limit parallel processing of requests. Therefore, increasing
the value can improve performance although this can cause that the latency of some
I/Omay be increased due to more requests being buffered inside the storage.When
changing this value, you can also consider tuning /sys/block/<device>/
queue/iosched/slice_async_rq (the default value is 2) which limits the
maximum number of asynchronous requests, usually writing requests, that are
submitted in one timeslice.

/sys/block/<device>/queue/iosched/low_latency
For workloads where the latency of I/O is crucial, setting /sys/
block/<device>/queue/iosched/low_latency to 1 can help.

13.1.2 NOOP
A trivial scheduler that just passes down the I/O that comes to it. Useful for checking
whether complex I/O scheduling decisions of other schedulers are not causing I/O
performance regressions.

In some cases it can be helpful for devices that do I/O scheduling themselves, as intel-
ligent storage, or devices that do not depend on mechanical movement, like SSDs.
Usually, the DEADLINE I/O scheduler is a better choice for these devices. It is a rather
lightweight I/O scheduler but already does some useful work. However, NOOP may
produce better performance on certain workloads.

13.1.3 DEADLINE
Latency-oriented I/O scheduler. The algorithm preferably serves reads before writes.
/sys/block/<device>/queue/iosched/writes_starved controls how
many reads can be sent to disk before it is possible to send writes and tries to observe
given deadlines /sys/block/<device>/queue/iosched/read_expire
for reads and /sys/block/<device>/queue/iosched/write_expire for
writes after which I/O must be submitted to disk. This I/O scheduler can provide a su-
perior throughput over the CFQ I/O scheduler in cases where several threads read and

160 System Analysis and Tuning Guide

write and fairness is not an issue. For example, for several parallel readers from a SAN
or some database-like loads.

13.2 I/O Barrier Tuning
Most file systems (XFS, ext3, ext4, reiserfs) send write barriers to disk after fsync or
during transaction commits. Write barriers enforce proper ordering of writes, making
volatile disk write caches safe to use, at some performance penalty. If your disks are
battery-backed in one way or another, disabling barriers may safely improve perfor-
mance.

Sending write barriers can be disabled using the barrier=0 mount option (for ext3,
ext4, and reiserfs), or using the nobarrier mount option (for XFS).

WARNING

Disabling barriers when disks cannot guarantee caches are properly written in
case of power failure can lead to severe file system corruption and data loss.

Tuning Per-Device I/O Performance 161

14Tuning the Task Scheduler
Modern operating systems, such as SUSE® Linux Enterprise Server, normally run
many different tasks at the same time. For example, you can be searching in a text file
while receiving an e-mail and copying a big file to an external hard drive. These simple
tasks require many additional processes to be run by the system. To provide each task
with its required system resources, the Linux kernel needs a tool to distribute available
system resources to individual tasks. And this is exactly what task scheduler does.

The following sections explain the most important terms related to process scheduling.
They also introduce information about the task scheduler policy, scheduling algorithm,
description of the task scheduler used by SUSE Linux Enterprise Server, and references
to other sources of relevant information.

14.1 Introduction
The Linux kernel controls the way tasks (or processes) are managed in the running
system. The task scheduler, sometimes called process scheduler, is the part of the kernel
that decides which task to run next. It is one of the core components of a multitasking
operating system (such as Linux), being responsible for best utilizing system resources
to guarantee that multiple tasks are being executed simultaneously.

Tuning the Task Scheduler 163

14.1.1 Preemption
The theory behind task scheduling is very simple. If there are runnable processes in a
system, at least one process must always be running. If there are more runnable processes
than processors in a system, not all the processes can be running all the time.

Therefore, some processes need to be stopped temporarily, or suspended, so that others
can be running again. The scheduler decides what process in the queue will run next.

As already mentioned, Linux, like all other Unix variants, is a multitasking operating
system. That means that several tasks can be running at the same time. Linux provides
a so called preemptive multitasking, where the scheduler decides when a process is
suspended. This forced suspension is called preemption. All Unix flavors have been
providing preemptive multitasking since the beginning.

14.1.2 Timeslice
The time period for which a process will be running before it is preempted is defined
in advance. It is called a process' timeslice and represents the amount of processor time
that is provided to each process. By assigning timeslices, the scheduler makes global
decisions for the running system, and prevents individual processes from dominating
over the processor resources.

14.1.3 Process Priority
The scheduler evaluates processes based on their priority. To calculate the current pri-
ority of a process, the task scheduler uses complex algorithms. As a result, each process
is given a value according to which it is “allowed” to run on a processor.

14.2 Process Classification
Processes are usually classified according to their purpose and behavior. Although the
borderline is not always clearly distinct, generally two criterias are used to sort them.
These criteria are independent and do not exclude each other.

One approach is to classify a process either I/O-bound or processor-bound.

164 System Analysis and Tuning Guide

I/O-bound
I/O stands for Input/Output devices, such as keyboards, mice, or optical and hard
disks. I/O-bound processes spend the majority of time submitting and waiting for
requests. They are run very frequently, but for short time intervals, not to block
other processes waiting for I/O requests.

processor-bound
On the other hand, processor-bound tasks use their time to execute a code, and
usually run until they are preempted by the scheduler. They do not block processes
waiting for I/O requests, and, therefore, can be run less frequently but for longer
time intervals.

Another approach is to divide processes by either being interactive, batch, or real-time
ones.

• Interactive processes spend a lot of time waiting for I/O requests, such as keyboard
or mouse operations. The scheduler must wake up such process quickly on user
request, or the user will find the environment unresponsive. The typical delay is
approximately 100 ms. Office applications, text editors or image manipulation
programs represent typical interactive processes.

• Batch processes often run in the background and do not need to be responsive.
They usually receive lower priority from the scheduler. Multimedia converters,
database search engines, or log files analyzers are typical examples of batch pro-
cesses.

• Real-time processes must never be blocked by low-priority processes, and the
scheduler guarantees a short response time to them. Applications for editing multi-
media content are a good example here.

14.3 O(1) Scheduler
The Linux kernel version 2.6 introduced a new task scheduler, called O(1) scheduler
(see BigO notation [http://en.wikipedia.org/wiki/Big_O_notation]),
It was used as the default scheduler up to Kernel version 2.6.22. Its main task is to
schedule tasks within a fixed amount of time, no matter how many runnable processes
there are in the system.

Tuning the Task Scheduler 165

http://en.wikipedia.org/wiki/Big_O_notation

The scheduler calculates the timeslices dynamically. However, to determine the appro-
priate timeslice is a complex task: Too long timeslices cause the system to be less inter-
active and responsive, while too short ones make the processor waste a lot of time on
the overhead of switching the processes too frequently. The default timeslice is usually
rather low, for example 20ms. The scheduler determines the timeslice based on priority
of a process, which allows the processes with higher priority to run more often and for
a longer time.

A process does not have to utilize all its timeslice at once. For instance, a process with
a timeslice of 150ms does not have to be running for 150ms in one go. It can be running
in five different schedule slots for 30ms instead. Interactive tasks typically benefit from
this approach because they do not need such a large timeslice at once while they need
to be responsive as long as possible.

The scheduler also assigns process priorities dynamically. It monitors the processes'
behavior and, if needed, adjusts its priority. For example, a process which is being
suspended for a long time is brought up by increasing its priority.

14.4 Completely Fair Scheduler
Since the Linux kernel version 2.6.23, a new approach has been taken to the scheduling
of runnable processes. Completely Fair Scheduler (CFS) became the default Linux
kernel scheduler. Since then, important changes and improvements have been made.
The information in this chapter applies to SUSE Linux Enterprise Server with kernel
version 2.6.32. The scheduler environment was divided into several parts, and three
main new features were introduced:

Modular Scheduler Core
The core of the scheduler was enhanced with scheduling classes. These classes are
modular and represent scheduling policies.

Completely Fair Scheduler
Introduced in kernel 2.6.23 and extended in 2.6.24, CFS tries to assure that each
process obtains its “fair” share of the processor time.

Group Scheduling
For example, if you split processes into groups according to which user is running
them, CFS tries to provide each of these groups with the same amount of processor
time.

166 System Analysis and Tuning Guide

As a result, CFS brings more optimized scheduling for both servers and desktops.

14.4.1 How CFS Works
CFS tries to guarantee a fair approach to each runnable task. To find the most balanced
way of task scheduling, it uses the concept of red-black tree. A red-black tree is a type
of self-balancing data search tree which provides inserting and removing entries in a
reasonable way so that it remains well balanced. For more information, see the wiki
pages of Red-black tree [http://en.wikipedia.org/wiki/Red_black
_tree].

When a task enters into the run queue (a planned time line of processes to be executed
next), the scheduler records the current time. While the process waits for processor
time, its “wait” value gets incremented by an amount derived from the total number of
tasks currently in the run queue and the process priority. As soon as the processor runs
the task, its “wait” value gets decremented. If the value drops below a certain level, the
task is preempted by the scheduler and other tasks get closer to the processor. By this
algorithm, CFS tries to reach the ideal state where the “wait” value is always zero.

14.4.2 Grouping Processes
Since the Linux kernel version 2.6.24, CFS can be tuned to be fair to users or groups
rather than to tasks only. Runnable tasks are then grouped to form entities, and CFS
tries to be fair to these entities instead of individual runnable tasks. The scheduler also
tries to be fair to individual tasks within these entities.

Tasks can be grouped in two mutually exclusive ways:

• By user IDs

• By kernel control groups.

The way the kernel scheduler lets you group the runnable tasks depends on setting the
kernel compile-time options CONFIG_FAIR_USER_SCHED and
CONFIG_FAIR_CGROUP_SCHED. The default setting in SUSE® Linux Enterprise
Server 11 SP1 is to use control groups, which lets you create groups as needed. For
more information, see Chapter 10, Kernel Control Groups (page 127).

Tuning the Task Scheduler 167

http://en.wikipedia.org/wiki/Red_black_tree
http://en.wikipedia.org/wiki/Red_black_tree

14.4.3 Kernel Configuration Options
Basic aspects of the task scheduler behavior can be set through the kernel configuration
options. Setting these options is part of the kernel compilation process. Because kernel
compilation process is a complex task and out of this document's scope, refer to relevant
source of information (for example http://en.opensuse.org/Configure,
_Build_and_Install_a_Custom_Linux_Kernel).

WARNING: Kernel Compilation

If you run SUSE Linux Enterprise Server on a kernel that was not shipped with
it, for example on a self-compiled kernel, you loose the entire support entitle-
ment.

14.4.4 Terminology
Documents regarding task scheduling policy often use several technical terms which
you need to know to understand the information correctly. Here are some of them:

Latency
Delay between the time a process is scheduled to run and the actual process execu-
tion.

Granularity
The relation between granularity and latency can be expressed by the following
equation:
gran = (lat / rtasks) - (lat / rtasks / rtasks)

where gran stands for granularity, lat stand for latency, and rtasks is the number
of running tasks.

SCHED_BATCH
Scheduling policy designed for CPU-intensive tasks.

SCHED_OTHER
Default Linux time-sharing scheduling policy.

168 System Analysis and Tuning Guide

http://en.opensuse.org/Configure,_Build_and_Install_a_Custom_Linux_Kernel
http://en.opensuse.org/Configure,_Build_and_Install_a_Custom_Linux_Kernel

14.4.5 Runtime Tuning
The sysctl interface for examining and changing kernel parameters at runtime intro-
duces important variables by means of which you can change the default behavior of
the task scheduler. The syntax of the sysctl is simple, and all the following commands
must be entered on the command line as root.

To read a value from a kernel variable, enter

sysctl variable

To assign a value, enter

sysctl variable=value

To get a list of all scheduler related sysctl variables, enter
sysctl -A | grep "sched" | grep -v "domain"

saturn.example.com:~ # sysctl -A | grep "sched" | grep -v "domain"
kernel.sched_child_runs_first = 0
kernel.sched_min_granularity_ns = 1000000
kernel.sched_latency_ns = 5000000
kernel.sched_wakeup_granularity_ns = 1000000
kernel.sched_shares_ratelimit = 250000
kernel.sched_tunable_scaling = 1
kernel.sched_shares_thresh = 4
kernel.sched_features = 15834238
kernel.sched_migration_cost = 500000
kernel.sched_nr_migrate = 32
kernel.sched_time_avg = 1000
kernel.sched_rt_period_us = 1000000
kernel.sched_rt_runtime_us = 950000
kernel.sched_compat_yield = 0

Note that variables ending with “_ns” and “_us” accept values in nanoseconds and mi-
croseconds, respectively.

A list of themost important task schedulersysctl tuning variables (located at/proc/
sys/kernel/) with a short description follows:

Tuning the Task Scheduler 169

sched_child_runs_first
A freshly forked child runs before the parent continues execution. Setting this pa-
rameter to 1 is beneficial for an application in which the child performs an execution
after fork. For example make -j<NO_CPUS> performs better when
sched_child_runs_first is turned off. The default value is 0.

sched_compat_yield
Enables the aggressive yield behavior of the old 0(1) scheduler. Java applications
that use synchronization extensively perform better with this value set to 1. Only
use it when you see a drop in performance. The default value is 0.

Expect applications that depend on the sched_yield() syscall behavior to perform
better with the value set to 1.

sched_migration_cost
Amount of time after the last execution that a task is considered to be “cache hot”
in migration decisions. A “hot” task is less likely to be migrated, so increasing this
variable reduces task migrations. The default value is 500000 (ns).

If the CPU idle time is higher than expected when there are runnable processes,
try reducing this value. If tasks bounce between CPUs or nodes too often, try in-
creasing it.

sched_latency_ns
Targeted preemption latency for CPU bound tasks. Increasing this variable increases
a CPU bound task's timeslice. A task's timeslice is its weighted fair share of the
scheduling period:

timeslice = scheduling period * (task's weight/total weight of tasks in the run queue)

The task's weight depends on the task's nice level and the scheduling policy. Mini-
mum task weight for a SCHED_OTHER task is 15, corresponding to nice 19. The
maximum task weight is 88761, corresponding to nice -20.

Timeslices become smaller as the load increases. When the number of runnable
tasks exceeds sched_latency_ns/sched_min_granularity_ns, the
slice becomes number_of_running_tasks * sched_min_granularity_ns.
Prior to that, the slice is equal to sched_latency_ns.

170 System Analysis and Tuning Guide

This value also specifies the maximum amount of time during which a sleeping
task is considered to be running for entitlement calculations. Increasing this variable
increases the amount of time a waking task may consume before being preempted,
thus increasing scheduler latency for CPU bound tasks. The default value is
20000000 (ns).

sched_min_granularity_ns
Minimal preemption granularity for CPU bound tasks. See sched_latency_ns
for details. The default value is 4000000 (ns).

sched_wakeup_granularity_ns
The wake-up preemption granularity. Increasing this variable reduces wake-up
preemption, reducing disturbance of compute bound tasks. Lowering it improves
wake-up latency and throughput for latency critical tasks, particularly when a short
duty cycle load component must compete with CPU bound components. The default
value is 5000000 (ns).

WARNING

Settings larger than half of sched_latency_ns will result in zero wake-
up preemption and short duty cycle tasks will be unable to compete with
CPU hogs effectively.

sched_rt_period_us
Period over which real-time task bandwidth enforcement is measured. The default
value is 1000000 (µs).

sched_rt_runtime_us
Quantum allocated to real-time tasks during sched_rt_period_us. Setting to -1 dis-
ables RT bandwidth enforcement. By default, RT tasks may consume 95%CPU/sec,
thus leaving 5%CPU/sec or 0.05s to be used by SCHED_OTHER tasks.

sched_features
Provides information about specific debugging features.

sched_stat_granularity_ns
Specifies the granularity for collecting task scheduler statistics.

Tuning the Task Scheduler 171

sched_nr_migrate
Controls how many tasks can be moved across processors through migration soft-
ware interrupts (softirq). If a large number of tasks is created by SCHED_OTHER
policy, they will all be run on the same processor. The default value is 32. Increasing
this value gives a performance boost to large SCHED_OTHER threads at the ex-
pense of increased latencies for real-time tasks.

14.4.6 Debugging Interface and Scheduler
Statistics

CFS comes with a new improved debugging interface, and provides runtime statistics
information. Relevant files were added to the/proc file system, which can be examined
simply with the cat or less command. A list of the related /proc files follows with
their short description:

/proc/sched_debug
Contains the current values of all tunable variables (see Section 14.4.5, “Runtime
Tuning” (page 169)) that affect the task scheduler behavior, CFS statistics, and in-
formation about the run queue on all available processors.
saturn.example.com:~ # less /proc/sched_debug
Sched Debug Version: v0.09, 2.6.32.8-0.3-default #1
now at 2413026096.408222 msecs
.jiffies : 4898148820
.sysctl_sched_latency : 5.000000
.sysctl_sched_min_granularity : 1.000000
.sysctl_sched_wakeup_granularity : 1.000000
.sysctl_sched_child_runs_first : 0.000000
.sysctl_sched_features : 15834238
.sysctl_sched_tunable_scaling : 1 (logaritmic)

cpu#0, 1864.411 MHz
.nr_running : 1
.load : 1024
.nr_switches : 37539000
.nr_load_updates : 22950725

[...]
cfs_rq[0]:/
.exec_clock : 52940326.803842
.MIN_vruntime : 0.000001
.min_vruntime : 54410632.307072
.max_vruntime : 0.000001

[...]
rt_rq[0]:/

172 System Analysis and Tuning Guide

.rt_nr_running : 0

.rt_throttled : 0

.rt_time : 0.000000

.rt_runtime : 950.000000

runnable tasks:
task PID tree-key switches prio exec-runtime sum-exec sum-sleep

--
R cat 16884 54410632.307072 0 120 54410632.307072 13.836804 0.000000

/proc/schedstat
Displays statistics relevant to the current run queue. Also domain-specific statistics
for SMP systems are displayed for all connected processors. Because the output
format is not user-friendly, read the contents of /usr/src/linux/
Documentation/scheduler/sched-stats.txt for more information.

/proc/PID/sched
Displays scheduling information on the process with id PID.
saturn.example.com:~ # cat /proc/`pidof nautilus`/sched
nautilus (4009, #threads: 1)

se.exec_start : 2419575150.560531
se.vruntime : 54549795.870151
se.sum_exec_runtime : 4867855.829415
se.avg_overlap : 0.401317
se.avg_wakeup : 3.247651
se.avg_running : 0.323432
se.wait_start : 0.000000
se.sleep_start : 2419575150.560531
[...]
nr_voluntary_switches : 938552
nr_involuntary_switches : 71872
se.load.weight : 1024
policy : 0
prio : 120
clock-delta : 109

14.5 For More Information
To get a compact knowledge about Linux kernel task scheduling, you need to explore
several information sources. Here are some of them:

• For task scheduler System Calls description, see the relevant manual page (for ex-
ample man 2 sched_setaffinity).

Tuning the Task Scheduler 173

• General information on scheduling is described in Scheduling [http://en
.wikipedia.org/wiki/Scheduling_(computing)] wiki page.

• General information on Linux task scheduling is described in Inside the Linux
scheduler [http://www.ibm.com/developerworks/linux/library/
l-scheduler/].

• Information specific to Completely Fair Scheduler is available in Multiprocessing
with the Completely Fair Scheduler [http://www.ibm.com/
developerworks/linux/library/l-cfs/?ca=dgr
-lnxw06CFC4Linux]

• Information specific to tuning Completely Fair Scheduler is available in Tuning
the LinuxKernel’s Completely Fair Scheduler [http://www.hotaboutlinux
.com/2010/01/tuning-the-linux-kernels-completely-fair
-scheduler/]

• A useful lecture on Linux scheduler policy and algorithm is available in http://
www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08
.pdf.

• A good overview of Linux process scheduling is given in Linux Kernel Development
byRobert Love (ISBN-10: 0-672-32512-8). Seehttp://www.informit.com/
articles/article.aspx?p=101760.

• A very comprehensive overview of the Linux kernel internals is given in Under-
standing the Linux Kernel by Daniel P. Bovet and Marco Cesati (ISBN 978-0-596-
00565-8).

• Technical information about task scheduler is covered in files under /usr/src/
linux/Documentation/scheduler.

174 System Analysis and Tuning Guide

http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://www.ibm.com/developerworks/linux/library/l-scheduler/
http://www.ibm.com/developerworks/linux/library/l-scheduler/
http://www.ibm.com/developerworks/linux/library/l-cfs/?ca=dgr-lnxw06CFC4Linux
http://www.ibm.com/developerworks/linux/library/l-cfs/?ca=dgr-lnxw06CFC4Linux
http://www.ibm.com/developerworks/linux/library/l-cfs/?ca=dgr-lnxw06CFC4Linux
http://www.hotaboutlinux.com/2010/01/tuning-the-linux-kernels-completely-fair-scheduler/
http://www.hotaboutlinux.com/2010/01/tuning-the-linux-kernels-completely-fair-scheduler/
http://www.hotaboutlinux.com/2010/01/tuning-the-linux-kernels-completely-fair-scheduler/
http://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
http://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
http://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture08.pdf
http://www.informit.com/articles/article.aspx?p=101760
http://www.informit.com/articles/article.aspx?p=101760

15Tuning the Memory
Management Subsystem
In order to understand and tune the memory management behavior of the kernel, it is
important to first have an overview of how it works and cooperates with other subsys-
tems.

The memory management subsystem, also called the virtual memory manager, will
subsequently be referred to as “VM”. The role of the VM is to manage the allocation
of physical memory (RAM) for the entire kernel and user programs. It is also responsible
for providing a virtual memory environment for user processes (managed via POSIX
APIs with Linux extensions). Finally, the VM is responsible for freeing up RAMwhen
there is a shortage, either by trimming caches or swapping out “anonymous” memory.

The most important thing to understand when examining and tuning VM is how its
caches are managed. The basic goal of the VM's caches is to minimize the cost of I/O
as generated by swapping and file system operations (including network file systems).
This is achieved by avoiding I/O completely, or by submitting I/O in better patterns.

Free memory will be used and filled up by these caches as required. The more memory
is available for caches and anonymous memory, the more effectively caches and
swapping will operate. However, if a memory shortage is encountered, caches will be
trimmed or memory will be swapped out.

For a particular workload, the first thing that can be done to improve performance is
to increasememory and reduce the frequency that memorymust be trimmed or swapped.
The second thing is to change the way caches are managed by changing kernel param-
eters.

Tuning the Memory Management Subsystem 175

Finally, the workload itself should be examined and tuned as well. If an application is
allowed to run more processes or threads, effectiveness of VM caches can be reduced,
if each process is operating in its own area of the file system. Memory overheads are
also increased. If applications allocate their own buffers or caches, larger caches will
mean that less memory is available for VM caches. However, more processes and
threads can mean more opportunity to overlap and pipeline I/O, and may take better
advantage of multiple cores. Experimentation will be required for the best results.

15.1 Memory Usage
Memory allocations in general can be characterized as “pinned” (also known as “unre-
claimable”), “reclaimable” or “swappable”.

15.1.1 Anonymous Memory
Anonymous memory tends to be program heap and stack memory (for example,
>malloc()). It is reclaimable, except in special cases such as mlock or if there is
no available swap space. Anonymous memory must be written to swap before it can
be reclaimed. Swap I/O (both swapping in and swapping out pages) tends to be less
efficient than pagecache I/O, due to allocation and access patterns.

15.1.2 Pagecache
A cache of file data. When a file is read from disk or network, the contents are stored
in pagecache. No disk or network access is required, if the contents are up-to-date in
pagecache. tmpfs and shared memory segments count toward pagecache.

When a file is written to, the new data is stored in pagecache before being written back
to a disk or the network (making it a write-back cache). When a page has new data not
written back yet, it is called “dirty”. Pages not classified as dirty are “clean”. Clean
pagecache pages can be reclaimed if there is a memory shortage by simply freeing
them. Dirty pages must first be made clean before being reclaimed.

176 System Analysis and Tuning Guide

15.1.3 Buffercache
This is a type of pagecache for block devices (for example, /dev/sda). A file system
typically uses the buffercache when accessing its on-disk “meta-data” structures such
as inode tables, allocation bitmaps, and so forth. Buffercache can be reclaimed similarly
to pagecache.

15.1.4 Buffer Heads
Buffer heads are small auxiliary structures that tend to be allocated upon pagecache
access. They can generally be reclaimed easily when the pagecache or buffercache
pages are clean.

15.1.5 Writeback
As applications write to files, the pagecache (and buffercache) becomes dirty. When
pages have been dirty for a given amount of time, or when the amount of dirty memory
reaches a particular percentage of RAM, the kernel begins writeback. Flusher threads
perform writeback in the background and allow applications to continue running. If the
I/O cannot keep up with applications dirtying pagecache, and dirty data reaches a critical
percentage of RAM, then applications begin to be throttled to prevent dirty data exceed-
ing this threshold.

15.1.6 Readahead
TheVMmonitors file access patterns andmay attempt to perform readahead. Readahead
reads pages into the pagecache from the file system that have not been requested yet.
It is done in order to allow fewer, larger I/O requests to be submitted (more efficient).
And for I/O to be pipelined (I/O performed at the same time as the application is run-
ning).

Tuning the Memory Management Subsystem 177

15.1.7 VFS caches

Inode Cache
This is an in-memory cache of the inode structures for each file system. These contain
attributes such as the file size, permissions and ownership, and pointers to the file data.

Directory Entry Cache
This is an in-memory cache of the directory entries in the system. These contain a name
(the name of a file), the inode which it refers to, and children entries. This cache is used
when traversing the directory structure and accessing a file by name.

15.2 Reducing Memory Usage

15.2.1 Reducing malloc (Anonymous) Usage
Applications running on SUSE Linux Enterprise Server 11 SP1 can allocate more
memory compared to SUSE Linux Enterprise Server 10. This is due to glibc changing
its default behavior while allocating userspacememory. Please see http://www.gnu
.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html
for explanation of these parameters.

To restore a SUSELinux Enterprise Server 10-like behavior,M_MMAP_THRESHOLD
should be set to 128*1024. This can be done with mallopt() call from the application,
or via settingMALLOC_MMAP_THRESHOLD environment variable before running
the application.

15.2.2 Reducing Kernel Memory Overheads
Kernel memory that is reclaimable (caches, described above) will be trimmed automat-
ically during memory shortages. Most other kernel memory can not be easily reduced
but is a property of the workload given to the kernel.

178 System Analysis and Tuning Guide

http://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html
http://www.gnu.org/s/libc/manual/html_node/Malloc-Tunable-Parameters.html

Reducing the requirements of the userspace workload will reduce the kernel memory
usage (fewer processes, fewer open files and sockets, etc.)

15.2.3 Memory Controller (Memory
Cgroups)

If the memory cgroups feature is not needed, it can be switched off by passing
cgroup_disable=memory on the kernel command line, reducing memory consumption
of the kernel a bit.

15.3 Virtual Memory Manager (VM)
Tunable Parameters

When tuning the VM it should be understood that some of the changes will take time
to affect the workload and take full effect. If the workload changes throughout the day,
it may behave very differently at different times. A change that increases throughput
under some conditions may decrease it under other conditions.

15.3.1 Reclaim Ratios
/proc/sys/vm/swappiness

This control is used to define how aggressively the kernel swaps out anonymous
memory relative to pagecache and other caches. Increasing the value increases the
amount of swapping. The default value is 60.

Swap I/O tends to be much less efficient than other I/O. However, some pagecache
pages will be accessed much more frequently than less used anonymous memory.
The right balance should be found here.

If swap activity is observed during slowdowns, it may be worth reducing this pa-
rameter. If there is a lot of I/O activity and the amount of pagecache in the system
is rather small, or if there are large dormant applications running, increasing this
value might improve performance.

Tuning the Memory Management Subsystem 179

Note that the more data is swapped out, the longer the system will take to swap
data back in when it is needed.

/proc/sys/vm/vfs_cache_pressure
This variable controls the tendency of the kernel to reclaim the memory which is
used for caching of VFS caches, versus pagecache and swap. Increasing this value
increases the rate at which VFS caches are reclaimed.

It is difficult to know when this should be changed, other than by experimentation.
The slabtop command (part of the package procps) shows topmemory objects
used by the kernel. The vfs caches are the "dentry" and the "*_inode_cache" objects.
If these are consuming a large amount of memory in relation to pagecache, it may
beworth trying to increase pressure. Could also help to reduce swapping. The default
value is 100.

/proc/sys/vm/min_free_kbytes
This controls the amount of memory that is kept free for use by special reserves
including “atomic” allocations (those which cannot wait for reclaim). This should
not normally be lowered unless the system is being very carefully tuned for mem-
ory usage (normally useful for embedded rather than server applications). If “page
allocation failure” messages and stack traces are frequently seen in logs,
min_free_kbytes could be increased until the errors disappear. There is no need
for concern, if these messages are very infrequent. The default value depends on
the amount of RAM.

15.3.2 Writeback Parameters
One important change in writeback behavior since SUSE Linux Enterprise Server 10
is that modification to file-backed mmap() memory is accounted immediately as dirty
memory (and subject to writeback). Whereas previously it would only be subject to
writeback after it was unmapped, upon an msync() system call, or under heavy memory
pressure.

Some applications do not expect mmap modifications to be subject to such writeback
behavior, and performance can be reduced. Berkeley DB (and applications using it) is
one known example that can cause problems. Increasing writeback ratios and times can
improve this type of slowdown.

180 System Analysis and Tuning Guide

/proc/sys/vm/dirty_background_ratio
This is the percentage of the total amount of free and reclaimable memory. When
the amount of dirty pagecache exceeds this percentage, writeback threads start
writing back dirty memory. The default value is 10 (%).

/proc/sys/vm/dirty_ratio

Similar percentage value as above. When this is exceeded, applications that want
to write to the pagecache are blocked and start performing writeback as well. The
default value is 40 (%).

These two values together determine the pagecache writeback behavior. If these values
are increased, more dirty memory is kept in the system for a longer time. With more
dirty memory allowed in the system, the chance to improve throughput by avoiding
writeback I/O and to submitting more optimal I/O patterns increases. However, more
dirty memory can either harm latency when memory needs to be reclaimed or at data
integrity (sync) points when it needs to be written back to disk.

15.3.3 Readahead parameters
/sys/block/<bdev>/queue/read_ahead_kb

If one or more processes are sequentially reading a file, the kernel reads some data
in advance (ahead) in order to reduce the amount of time that processes have to
wait for data to be available. The actual amount of data being read in advance is
computed dynamically, based on how much "sequential" the I/O seems to be. This
parameter sets the maximum amount of data that the kernel reads ahead for a single
file. If you observe that large sequential reads from a file are not fast enough, you
can try increasing this value. Increasing it too far may result in readahead thrashing
where pagecache used for readahead is reclaimed before it can be used, or slow-
downs due to a large amount of useless I/O. The default value is 512 (kb).

15.3.4 Further VM Parameters
For the complete list of the VM tunable parameters, see /usr/src/linux/
Documentation/sysctl/vm.txt (available after having installed the
kernel-source package).

Tuning the Memory Management Subsystem 181

15.4 Non-Uniform Memory Access
(NUMA)

Another increasingly important role of the VM is to provide good NUMA allocation
strategies. NUMA stands for non-uniform memory access, and most of today's multi-
socket servers are NUMA machines. NUMA is a secondary concern to managing
swapping and caches in terms of performance, and there are lots of documents about
improving NUMA memory allocations. One particular parameter interacts with page
reclaim:

/proc/sys/vm/zone_reclaim_mode
This parameter controls whether memory reclaim is performed on a local NUMA
node even if there is plenty of memory free on other nodes. This parameter is auto-
matically turned on on machines with more pronounced NUMA characteristics.

If the VM caches are not being allowed to fill all of memory on a NUMAmachine,
it could be due to zone_reclaim_mode being set. Setting to 0 will disable this be-
havior.

15.5 Monitoring VM Behavior
Some simple tools that can help monitor VM behavior:

1. vmstat: This tool gives a good overview of what the VM is doing. See Section 2.1.1,
“vmstat” (page 10) for details.

2. /proc/meminfo: This file gives a detailed breakdown of where memory is being
used. See Section 2.4.2, “Detailed Memory Usage: /proc/meminfo” (page 27)
for details.

3. slabtop: This tool provides detailed information about kernel slabmemory usage.
buffer_head, dentry, inode_cache, ext3_inode_cache, etc. are the major caches.
This command is available with the package procps.

182 System Analysis and Tuning Guide

16Tuning the Network
The network subsystem is rather complex and its tuning highly depends on the system
use scenario and also on external factors such as software clients or hardware components
(switches, routers, or gateways) in your network. The Linux kernel aims more at relia-
bility and low latency than low overhead and high throughput. Other settings can mean
less security, but better performance.

16.1 Configurable Kernel Socket
Buffers

Networking is largely based on the TCP/IP protocol and a socket interface for commu-
nication; for more information about TCP/IP, see Chapter 18, Basic Networking (↑Ad-
ministration Guide). The Linux kernel handles data it receives or sends via the socket
interface in socket buffers. These kernel socket buffers are tunable.

IMPORTANT: TCP Autotuning

Since kernel version 2.6.17 full autotuning with 4 MBmaximum buffer size exists.
This means that manual tuning in most cases will not improve networking
performance considerably. It is often the best not to touch the following vari-
ables, or, at least, to check the outcome of tuning efforts carefully.

If you update from an older kernel, it is recommended to remove manual TCP
tunings in favor of the autotuning feature.

Tuning the Network 183

The special files in the /proc file system can modify the size and behavior of kernel
socket buffers; for general information about the /proc file system, see Section 2.6,
“The /proc File System” (page 32). Find networking related files in:
/proc/sys/net/core
/proc/sys/net/ipv4
/proc/sys/net/ipv6

General net variables are explained in the kernel documentation (linux/
Documentation/networking/sysctl/net.txt). Special ipv4 variables
are explained inlinux/Documentation/networking/ip-sysctl.txt and
linux/Documentation/networking/ipvs-sysctl.txt.

In the /proc file system, for example, it is possible to either set the Maximum Socket
Receive Buffer andMaximumSocket Send Buffer for all protocols, or both these options
for the TCP protocol only (in ipv4) and thus overriding the setting for all protocols
(in core).

/proc/sys/net/ipv4/tcp_moderate_rcvbuf
If /proc/sys/net/ipv4/tcp_moderate_rcvbuf is set to 1, autotuning
is active and buffer size is adjusted dynamically.

/proc/sys/net/ipv4/tcp_rmem
The three values setting the minimum, initial, and maximum size of the Memory
Receive Buffer per connection. They define the actual memory usage, not just TCP
window size.

/proc/sys/net/ipv4/tcp_wmem
The same as tcp_rmem, but just for Memory Send Buffer per connection.

/proc/sys/net/core/rmem_max
Set to limit the maximum receive buffer size that applications can request.

/proc/sys/net/core/wmem_max
Set to limit the maximum send buffer size that applications can request.

Via /proc it is possible to disable TCP features that you do not need (all TCP features
are switched on by default). For example, check the following files:

/proc/sys/net/ipv4/tcp_timestamps
TCP timestamps are defined in RFC1323.

184 System Analysis and Tuning Guide

/proc/sys/net/ipv4/tcp_window_scaling
TCP window scaling is also defined in RFC1323.

/proc/sys/net/ipv4/tcp_sack
Select acknowledgments (SACKS).

Use sysctl to read or write variables of the /proc file system. sysctl is preferable
to cat (for reading) and echo (for writing), because it also reads settings from /etc/
sysctl.conf and, thus, those settings survive reboots reliably. With sysctl you
can read all variables and their values easily; as root use the following command to
list TCP related settings:
sysctl -a | grep tcp

NOTE: Side-Effects of Tuning Network Variables

Tuning network variables can affect other system resources such as CPU or
memory use.

16.2 Detecting Network Bottlenecks
and Analyzing Network Traffic

Before starting with network tuning, it is important to isolate network bottlenecks and
network traffic patterns. There are some tools that can help you with detecting those
bottlenecks.

The following tools can help analyzing your network traffic: netstat, tcpdump,
and wireshark. Wireshark is a network traffic analyser.

16.3 Netfilter
The Linux firewall and masquerading features are provided by the Netfilter kernel
modules. This is a highly configurable rule based framework. If a rule matches a
packet, Netfilter accepts or denies it or takes special action (“target”) as defined by
rules such as address translation.

Tuning the Network 185

There are quite some properties, Netfilter is able to take into account. Thus, the more
rules are defined, the longer packet processing may last. Also advanced connection
tracking could be rather expensive and, thus, slowing down overall networking.

For more information, see the home page of the Netfilter and iptables project, http://
www.netfilter.org

16.4 For More Information
• Eduardo Ciliendo, Takechika Kunimasa: “Linux Performance and Tuning Guide-
lines” (2007), esp. sections 1.5, 3.5, and 4.7: http://www.redbooks.ibm
.com/redpapers/abstracts/redp4285.html

• John Heffner, Matt Mathis: “Tuning TCP for Linux 2.4 and 2.6” (2006): http://
www.psc.edu/networking/projects/tcptune/#Linux

186 System Analysis and Tuning Guide

http://www.netfilter.org
http://www.netfilter.org
http://www.redbooks.ibm.com/redpapers/abstracts/redp4285.html
http://www.redbooks.ibm.com/redpapers/abstracts/redp4285.html
http://www.psc.edu/networking/projects/tcptune/#Linux
http://www.psc.edu/networking/projects/tcptune/#Linux

Part VI. Handling System Dumps

17Tracing Tools
SUSE Linux Enterprise Server comes with a number of tools that help you obtain useful
information about your system. You can use the information for various purposes, for
example, to debug and find problems in your program, to discover places causing per-
formance drops, or to trace a running process to find out what system resources it uses.
The tools are mostly part of the installation media, otherwise you can install them from
the downloadable SUSE Software Development Kit.

NOTE: Tracing and Impact on Performance

While a running process is being monitored for system or library calls, the
performance of the process is heavily reduced. You are advised to use tracing
tools only for the time you need to collect the data.

17.1 Tracing System Calls with strace
The strace command traces system calls of a process and signals received by the
process. strace can either run a new command and trace its system calls, or you can
attach strace to an already running command. Each line of the command's output
contains the system call name, followed by its arguments in parenthesis and its return
value.

To run a new command and start tracing its system calls, enter the command to be
monitored as you normally do, and add strace at the beginning of the command line:

Tracing Tools 189

tux@mercury:~> strace ls
execve("/bin/ls", ["ls"], [/* 52 vars */]) = 0
brk(0) = 0x618000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
= 0x7f9848667000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
= 0x7f9848666000
access("/etc/ld.so.preload", R_OK) = -1 ENOENT \
(No such file or directory)
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat(3, {st_mode=S_IFREG|0644, st_size=200411, ...}) = 0
mmap(NULL, 200411, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7f9848635000
close(3) = 0
open("/lib64/librt.so.1", O_RDONLY) = 3
[...]
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
= 0x7fd780f79000
write(1, "Desktop\nDocuments\nbin\ninst-sys\n", 31Desktop
Documents
bin
inst-sys
) = 31
close(1) = 0
munmap(0x7fd780f79000, 4096) = 0
close(2) = 0
exit_group(0) = ?

To attach strace to an already running process, you need to specify the -p with the
process ID (PID) of the process that you want to monitor:
tux@mercury:~> strace -p `pidof mysqld`
Process 2868 attached - interrupt to quit
select(15, [13 14], NULL, NULL, NULL) = 1 (in [14])
fcntl(14, F_SETFL, O_RDWR|O_NONBLOCK) = 0
accept(14, {sa_family=AF_FILE, NULL}, [2]) = 31
fcntl(14, F_SETFL, O_RDWR) = 0
getsockname(31, {sa_family=AF_FILE, path="/var/run/mysql"}, [28]) = 0
fcntl(31, F_SETFL, O_RDONLY) = 0
fcntl(31, F_GETFL) = 0x2 (flags O_RDWR)
fcntl(31, F_SETFL, O_RDWR|O_NONBLOCK) = 0
[...]
setsockopt(31, SOL_IP, IP_TOS, [8], 4) = -1 EOPNOTSUPP (Operation \
not supported)
clone(child_stack=0x7fd1864801f0, flags=CLONE_VM|CLONE_FS|CLONE_ \
FILES|CLONE_SIGHAND|CLONE_THREAD|CLONE_SYSVSEM|CLONE_SETTLS|CLONE_ \
PARENT_SETTID|CLONE_CHILD_CLEARTID, parent_tidptr=0x7fd1864809e0, \
tls=0x7fd186480910, child_tidptr=0x7fd1864809e0) = 21993
select(15, [13 14], NULL, NULL, NULL

The -e option understands several sub-options and arguments. For example, to trace
all attempts to open or write to a particular file, use the following:

190 System Analysis and Tuning Guide

tux@mercury:~> strace -e trace=open,write ls ~
open("/etc/ld.so.cache", O_RDONLY) = 3
open("/lib64/librt.so.1", O_RDONLY) = 3
open("/lib64/libselinux.so.1", O_RDONLY) = 3
open("/lib64/libacl.so.1", O_RDONLY) = 3
open("/lib64/libc.so.6", O_RDONLY) = 3
open("/lib64/libpthread.so.0", O_RDONLY) = 3
[...]
open("/usr/lib/locale/cs_CZ.utf8/LC_CTYPE", O_RDONLY) = 3
open(".", O_RDONLY|O_NONBLOCK|O_DIRECTORY|O_CLOEXEC) = 3
write(1, "addressbook.db.bak\nbin\ncxoffice\n"..., 311) = 311

To trace only network related system calls, use -e trace=network:
tux@mercury:~> strace -e trace=network -p 26520
Process 26520 attached - interrupt to quit
socket(PF_NETLINK, SOCK_RAW, 0) = 50
bind(50, {sa_family=AF_NETLINK, pid=0, groups=00000000}, 12) = 0
getsockname(50, {sa_family=AF_NETLINK, pid=26520, groups=00000000}, \
[12]) = 0
sendto(50, "\24\0\0\0\26\0\1\3~p\315K\0\0\0\0\0\0\0\0", 20, 0,
{sa_family=AF_NETLINK, pid=0, groups=00000000}, 12) = 20
[...]

The -c calculates the time the kernel spent on each system call:
tux@mercury:~> strace -c find /etc -name xorg.conf
/etc/X11/xorg.conf
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
32.38 0.000181 181 1 execve
22.00 0.000123 0 576 getdents64
19.50 0.000109 0 917 31 open
19.14 0.000107 0 888 close
4.11 0.000023 2 10 mprotect
0.00 0.000000 0 1 write

[...]
0.00 0.000000 0 1 getrlimit
0.00 0.000000 0 1 arch_prctl
0.00 0.000000 0 3 1 futex
0.00 0.000000 0 1 set_tid_address
0.00 0.000000 0 4 fadvise64
0.00 0.000000 0 1 set_robust_list

------ ----------- ----------- --------- --------- ----------------
100.00 0.000559 3633 33 total

To trace all child processes of a process, use -f:
tux@mercury:~> strace -f rcapache2 status
execve("/usr/sbin/rcapache2", ["rcapache2", "status"], [/* 81 vars */]) = 0
brk(0) = 0x69e000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \

Tracing Tools 191

= 0x7f3bb553b000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) \
= 0x7f3bb553a000
[...]
[pid 4823] rt_sigprocmask(SIG_SETMASK, [], <unfinished ...>
[pid 4822] close(4 <unfinished ...>
[pid 4823] <... rt_sigprocmask resumed> NULL, 8) = 0
[pid 4822] <... close resumed>) = 0
[...]
[pid 4825] mprotect(0x7fc42cbbd000, 16384, PROT_READ) = 0
[pid 4825] mprotect(0x60a000, 4096, PROT_READ) = 0
[pid 4825] mprotect(0x7fc42cde4000, 4096, PROT_READ) = 0
[pid 4825] munmap(0x7fc42cda2000, 261953) = 0
[...]
[pid 4830] munmap(0x7fb1fff10000, 261953) = 0
[pid 4830] rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0
[pid 4830] open("/dev/tty", O_RDWR|O_NONBLOCK) = 3
[pid 4830] close(3)
[...]
read(255, "\n\n# Inform the caller not only v"..., 8192) = 73
rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0
rt_sigprocmask(SIG_BLOCK, NULL, [], 8) = 0
exit_group(0)

If you need to analyze the output of strace and the output messages are too long to
be inspected directly in the console window, use -o. In that case, unnecessary messages,
such as information about attaching and detaching processes, are suppressed. You can
also suppress these messages (normally printed on the standard output) with -q. To
optionally prepend timestamps to each line with a system call, use -t:
tux@mercury:~> strace -t -o strace_sleep.txt sleep 1; more strace_sleep.txt
08:44:06 execve("/bin/sleep", ["sleep", "1"], [/* 81 vars */]) = 0
08:44:06 brk(0) = 0x606000
08:44:06 mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, \
-1, 0) = 0x7f8e78cc5000
[...]
08:44:06 close(3) = 0
08:44:06 nanosleep({1, 0}, NULL) = 0
08:44:07 close(1) = 0
08:44:07 close(2) = 0
08:44:07 exit_group(0) = ?

The behavior and output format of strace can be largely controlled. For more information,
see the relevant manual page (man 1 strace).

192 System Analysis and Tuning Guide

17.2 Tracing Library Calls with ltrace
ltrace traces dynamic library calls of a process. It is used in a similar way to strace,
and most of their parameters have a very similar or identical meaning. By default,
ltrace uses /etc/ltrace.conf or ~/.ltrace.conf configuration files. You
can, however, specify an alternative one with the -F config_file option.

In addition to library calls, ltrace with the -S option can trace system calls as well:
tux@mercury:~> ltrace -S -o ltrace_find.txt find /etc -name \
xorg.conf; more ltrace_find.txt
SYS_brk(NULL) = 0x00628000
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327ea1000
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327ea0000
[...]
fnmatch("xorg.conf", "xorg.conf", 0) = 0
free(0x0062db80) = <void>
__errno_location() = 0x7f1327e5d698
__ctype_get_mb_cur_max(0x7fff25227af0, 8192, 0x62e020, -1, 0) = 6
__ctype_get_mb_cur_max(0x7fff25227af0, 18, 0x7f1327e5d6f0, 0x7fff25227af0,
0x62e031) = 6
__fprintf_chk(0x7f1327821780, 1, 0x420cf7, 0x7fff25227af0, 0x62e031
<unfinished ...>
SYS_fstat(1, 0x7fff25227230) = 0
SYS_mmap(0, 4096, 3, 34, 0xffffffff) = 0x7f1327e72000
SYS_write(1, "/etc/X11/xorg.conf\n", 19) = 19
[...]

You can change the type of traced events with the -e option. The following example
prints library calls related to fnmatch and strlen functions:
tux@mercury:~> ltrace -e fnmatch,strlen find /etc -name xorg.conf
[...]
fnmatch("xorg.conf", "xorg.conf", 0) = 0
strlen("Xresources") = 10
strlen("Xresources") = 10
strlen("Xresources") = 10
fnmatch("xorg.conf", "Xresources", 0) = 1
strlen("xorg.conf.install") = 17
[...]

To display only the symbols included in a specific library, use -l
/path/to/library:
tux@mercury:~> ltrace -l /lib64/librt.so.1 sleep 1
clock_gettime(1, 0x7fff4b5c34d0, 0, 0, 0) = 0
clock_gettime(1, 0x7fff4b5c34c0, 0xffffffffff600180, -1, 0) = 0
+++ exited (status 0) +++

Tracing Tools 193

You can make the output more readable by indenting each nested call by the specified
number of space with the -n num_of_spaces.

17.3 Debugging and Profiling with
Valgrind

Valgrind is a set of tools to debug and profile your programs so that they can run faster
and with less errors. Valgrind can detect problems related to memory management and
threading, or can also serve as a framework for building new debugging tools.

17.3.1 Installation
Valgrind is not shipped with standard SUSE Linux Enterprise Server distribution. To
install it on your system, you need to obtain SUSE Software Development Kit, and either
install it as an Add-On product and run

zypper install valgrind

or browse through the SUSE Software Development Kit directory tree, locate the Val-
grind package and install it with

rpm -i valgrind-version_architecture.rpm

17.3.2 Supported Architectures
Valgrind runs on the following architectures:

• i386

• x86_64 (AMD-64)

• ppc

• ppc64

194 System Analysis and Tuning Guide

17.3.3 General Information
The main advantage of Valgrind is that it works with existing compiled executables.
You do not have to recompile or modify your programs to make use of it. Run Valgrind
like this:

valgrind valgrind_options your-prog your-program-options

Valgrind consists of several tools, and each provides specific functionality. Information
in this section is general and valid regardless of the used tool. The most important
configuration option is --tool . This option tells Valgrind which tool to run. If you
omit this option, memcheck is selected by default. For example, if you want to run
find ~ -name .bashrc with Valgrind's memcheck tools, enter the following
in the command line:

valgrind --tool=memcheck find ~ -name .bashrc

A list of standard Valgrind tools with a brief description follows:

memcheck
Detects memory errors. It helps you tune your programs to behave correctly.

cachegrind
Profiles cache prediction. It helps you tune your programs to run faster.

callgrind
Works in a similar way to cachegrind but also gathers additional cache-profiling
information.

exp-drd
Detects thread errors. It helps you tune your multi-threaded programs to behave
correctly.

helgrind
Another thread error detector. Similar to exp-drd but uses different techniques
for problem analysis.

Tracing Tools 195

massif
A heap profiler. Heap is an area of memory used for dynamic memory allocation.
This tool helps you tune your program to use less memory.

lackey
An example tool showing instrumentation basics.

17.3.4 Default Options
Valgrind can read options at start-up. There are three places which Valgrind checks:

1. The file .valgrindrc in the home directory of the user who runs Valgrind.

2. The environment variable $VALGRIND_OPTS

3. The file .valgrindrc in the current directory where Valgrind is runned from.

These resources are parsed exactly in this order, while later given options take prece-
dence over earlier processed options. Options specific to a particular Valgrind tool must
be prefixed with the tool name and a colon. For example, if you want cachegrind
to alwayswrite profile data to the/tmp/cachegrind_PID.log, add the following
line to the .valgrindrc file in your home directory:

--cachegrind:cachegrind-out-file=/tmp/cachegrind_%p.log

17.3.5 How Valgrind Works
Valgrind takes control of your executable before it starts. It reads debugging information
from the executable and related shared libraries. The executable's code is redirected to
the selected Valgrind tool, and the tool adds its own code to handle its debugging. Then
the code is handed back to the Valgrind core and the execution continues.

For example, memcheck adds its code, which checks every memory access. As a
consequence, the program runs much slower than in the native execution environment.

Valgrind simulates every instruction of your program. Therefore, it not only checks the
code of your program, but also all related libraries (including the C library), libraries
used for graphical environment, and so on. If you try to detect errors with Valgrind, it

196 System Analysis and Tuning Guide

also detects errors in associated libraries (like C, X11, or Gtk libraries). Because you
probably do not need these errors, Valgrind can selectively, suppress these error mes-
sages to suppression files. The --gen-suppressions=yes tells Valgrind to report
these suppressions which you can copy to a file.

Note that you should supply a real executable (machine code) as an Valgrind argument.
Therefore, if your application is run, for example, from a shell or a Perl script you will
by mistake get error reports related to /bin/sh (or /usr/bin/perl). In such case,
you can use --trace-children=yes or, which is better, supply a real executable
to avoid any processing confusion.

17.3.6 Messages
During its runtime, Valgrind reports messages with detailed errors and important events.
The following example explains the messages:
tux@mercury:~> valgrind --tool=memcheck find ~ -name .bashrc
[...]
==6558== Conditional jump or move depends on uninitialised value(s)
==6558== at 0x400AE79: _dl_relocate_object (in /lib64/ld-2.11.1.so)
==6558== by 0x4003868: dl_main (in /lib64/ld-2.11.1.so)
[...]
==6558== Conditional jump or move depends on uninitialised value(s)
==6558== at 0x400AE82: _dl_relocate_object (in /lib64/ld-2.11.1.so)
==6558== by 0x4003868: dl_main (in /lib64/ld-2.11.1.so)
[...]
==6558== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 0 from 0)
==6558== malloc/free: in use at exit: 2,228 bytes in 8 blocks.
==6558== malloc/free: 235 allocs, 227 frees, 489,675 bytes allocated.
==6558== For counts of detected errors, rerun with: -v
==6558== searching for pointers to 8 not-freed blocks.
==6558== checked 122,584 bytes.
==6558==
==6558== LEAK SUMMARY:
==6558== definitely lost: 0 bytes in 0 blocks.
==6558== possibly lost: 0 bytes in 0 blocks.
==6558== still reachable: 2,228 bytes in 8 blocks.
==6558== suppressed: 0 bytes in 0 blocks.
==6558== Rerun with --leak-check=full to see details of leaked memory.

The ==6558== introduces Valgrind's messages and contains the process ID number
(PID). You can easily distinguish Valgrind's messages from the output of the program
itself, and decide which messages belong to a particular process.

To make Valgrind's messages more detailed, use -v or even -v -v.

Tracing Tools 197

Basically, you can make Valgrind send its messages to three different places:

1. By default, Valgrind sends its messages to the file descriptor 2, which is the standard
error output. You can tell Valgrind to send its messages to any other file descriptor
with the --log-fd=file_descriptor_number option.

2. The second and probably more useful way is to send Valgrind's messages to a file
with--log-file=filename. This option accepts several variables, for example,
%p gets replaced with the PID of the currently profiled process. This way you can
send messages to different files based on their PID. %q{env_var} is replaced
with the value of the related env_var environment variable.

The following example checks for possible memory errors during the ApacheWeb
server restart, while following children processes and writing detailed Valgrind's
messages to separate files distinguished by the current process PID:
tux@mercury:~> valgrind -v --tool=memcheck --trace-children=yes \
--log-file=valgrind_pid_%p.log rcapache2 restart

This process created 52 log files in the testing system, and took 75 seconds instead
of the usual 7 seconds needed to run rcapache2 restart without Valgrind,
which is approximately 10 times more.
tux@mercury:~> ls -1 valgrind_pid_*log
valgrind_pid_11780.log
valgrind_pid_11782.log
valgrind_pid_11783.log
[...]
valgrind_pid_11860.log
valgrind_pid_11862.log
valgrind_pid_11863.log

3. You may also prefer to send the Valgrind's messages over the network. You need
to specify the aa.bb.cc.dd IP address and port_num port number of the net-
work socket with the --log-socket=aa.bb.cc.dd:port_num option. If
you omit the port number, 1500 will be used.

It is useless to send Valgrind's messages to a network socket if no application is
capable of receiving them on the remote machine. That is why
valgrind-listener, a simple listener, is shipped together with Valgrind. It
accepts connections on the specified port and copies everything it receives to the
standard output.

198 System Analysis and Tuning Guide

17.3.7 Error Messages
Valgrind remembers all error messages, and if it detects a new error, the error is com-
pared against old error messages. This wayValgrind checks for duplicate error messages.
In case of a duplicate error, it is recorded but no message is shown. This mechanism
prevents you from being overwhelmed by millions of duplicate errors.

The -v option will add a summary of all reports (sorted by their total count) to the end
of the Valgrind's execution output. Moreover, Valgrind stops collecting errors if it detects
either 1000 different errors, or 10 000 000 errors in total. If you want to suppress this
limit and wish to see all error messages, use --error-limit=no.

Some errors usually cause other ones. Therefore, fix errors in the same order as they
appear and re-check the program continuously.

17.4 For More Information
• For a complete list of options related to the described tracing tools, see the corre-
sponding man page (man 1 strace, man 1 ltrace, and man 1
valgrind).

• To describe advanced usage of Valgrind is beyond the scope of this document. It
is very well documented, see Valgrind UserManual [http://valgrind.org/
docs/manual/manual.html]. These pages are indispensable if you need
more advanced information on Valgrind or the usage and purpose of its standard
tools.

Tracing Tools 199

http://valgrind.org/docs/manual/manual.html
http://valgrind.org/docs/manual/manual.html

18Kexec and Kdump
Kexec is a tool to boot to another kernel from the currently running one. You can perform
faster system reboots without any hardware initialization. You can also prepare the
system to boot to another kernel if the system crashes.

18.1 Introduction
With Kexec, you can replace the running kernel with another without a hard reboot.
The tool is useful for several reasons:

• Faster system rebooting

If, for any reasons, you have to reboot the system frequently, Kexec can save you
significant time.

• Avoiding unreliable firmware and hardware

Nowadays, computer hardware is complex and serious problems may occur during
the system start-up. You cannot always replace unreliable hardware immediately.
Kexec boots the kernel to a controlled environment with the hardware already ini-
tialized. The risk of unsuccessful system start is minimized.

• Saving the dump of a crashed kernel

Kexec preserves the contents of the physical memory. After the production kernel
fails, the capture kernel, which runs in a reserved memory, saves the state of the
failed kernel. The saved image can help you with the subsequent analysis.

Kexec and Kdump 201

• Booting without GRUB or LILO configuration

When the system boots a kernel with Kexec, it skips the boot loader stage. Normal
booting procedure can fail due to an error in the boot loader configuration. With
Kexec, you do not depend on a working boot loader configuration.

18.2 Required Packages
If you aim to use Kexec on SUSE® Linux Enterprise Server to speed up reboots or
avoid potential hardware problems, you need to install the kexec-tools package.

The package kexec-tools contains a script called kexec-bootloader. It reads
the boot loader configuration and runs Kexec with the same kernel options as the normal
boot loader does. kexec-bootloader -h gives you the list of possible options.

To set up an environment that helps you obtain useful debug information in case of a
kernel crash, you need to install makedumpfile in addition.

The preferred method to use Kdump in the SUSE environment is through the YaST
Kdump module. Install the package yast2-kdump by entering zypper install
yast2-kdump in the command line as root.

18.3 Kexec Internals
The most important component of Kexec is the /sbin/kexec command. You can
load a kernel with Kexec in two different ways:

• With kexec -l kernel_image to load the kernel to the address space of a
production kernel for regular reboot. You can later boot to this kernel with kexec
-e.

• With kexec -p kernel_image to load the kernel to a reserved area of
memory. This kernel will be booted automatically when the system crashes.

If you want to boot another kernel and preserve the data of the production kernel when
the system crashes, you need to reserve a dedicated area of the system memory. The
production kernel never loads to this area because it must be available at all times. It

202 System Analysis and Tuning Guide

is used for the capture kernel so that the memory pages of the production kernel can be
preserved. You reserve the area with crashkernel = size@offset as a command
line parameter of the production kernel. Note that this is not a parameter of the capture
kernel. The capture kernel does not use Kexec at all.

The capture kernel is loaded to the reserved area and waits for the kernel to crash. Then
Kdump tries to invoke the capture kernel in the most simple way because the production
kernel is no longer reliable at this stage. This means that even Kdump can fail.

To load the capture kernel, you need to include the kernel boot parameters. Usually,
the initial RAM file system is used for booting. You can specify it with --initrd =
filename. With --append = cmdline , you append options to the command line
of the kernel to boot. It is helpful to include the command line of the production kernel
if these options are necessary for the kernel to boot. You can simply copy the command
line with --append = "$(cat /proc/cmdline)" or add more options with
--append = "$(cat /proc/cmdline) more_options" .

You can always unload the previously loaded kernel. To unload a kernel that was
loaded with the -l option, use the kexec -u command. To unload a crash kernel
loaded with the -p option, use kexec -p -u command.

18.4 Basic Kexec Usage
To verify if your Kexec environment works properly, follow these steps:

1 Make sure no users are currently logged in and no important services are running
on the system.

2 Log in as root.

3 Switch to runlevel 1 with telinit 1

4 Load the new kernel to the address space of the production kernel with the fol-
lowing command:

kexec -l /boot/vmlinuz --append="$(cat /proc/cmdline)"
--initrd=/boot/initrd

Kexec and Kdump 203

5 Unmount all mounted file systems except the root file system with umount -a

IMPORTANT: Unmounting Root Filesystem

Unmounting all file systems will most likely produce a device is busy
warning message. The root file system cannot be unmounted if the system
is running. Ignore the warning.

6 Remount the root file system in read-only mode:

mount -o remount,ro /

7 Initiate the reboot of the kernel that you loaded in Step 4 (page 203) with kexec
-e

It is important to unmount the previously mounted disk volumes in read-write mode.
The reboot syscall acts immediately upon calling. Hard drive volumesmounted in read-
write mode neither synchronize nor unmount automatically. The new kernel may find
them “dirty”. Read-only disk volumes and virtual file systems do not need to be un-
mounted. Refer to /etc/mtab to determine which file systems you need to unmount.

The new kernel previously loaded to the address space of the older kernel rewrites it
and takes control immediately. It displays the usual start-up messages. When the new
kernel boots, it skips all hardware and firmware checks.Make sure no warningmessages
appear. All the file systems are supposed to be clean if they had been unmounted.

18.5 How to Configure Kexec for
Routine Reboots

Kexec is often used for frequent reboots. For example, if it takes a long time to run
through the hardware detection routines or if the start-up is not reliable.

NOTE: Rebooting with Kexec

In previous versions of SUSE® Linux Enterprise Server, you had to manually
edit the configuration file /etc/sysconfig/shutdown and the init script

204 System Analysis and Tuning Guide

/etc/init.d/halt to use Kexec to reboot the system. You no longer need
to edit any system files, since version 11 is already configured for Kexec reboots.

Note that firmware as well as the boot loader are not used when the system reboots
with Kexec. Any changes you make to the boot loader configuration will be ignored
until the computer performs a hard reboot.

18.6 Basic Kdump Configuration
You can use Kdump to save kernel dumps. If the kernel crashes, it is useful to copy the
memory image of the crashed environment on the file system. You can then debug the
dump file to find the cause of the kernel crash. This is called “core dump” .

Kdump works similar to Kexec (seeChapter 18, Kexec and Kdump (page 201)). The
capture kernel is executed after the running production kernel crashes. The difference
is that Kexec replaces the production kernel with the capture kernel. With Kdump, you
still have access to the memory space of the crashed production kernel. You can save
the memory snapshot of the crashed kernel in the environment of the Kdump kernel.

You can either configure Kdump manually or with YaST.

18.6.1 Manual Kdump Configuration
Kdump reads its configuration from the /etc/sysconfig/kdump file. To make
sure that Kdump works on your system, its default configuration is sufficient. To use
Kdump with the default settings,follow these steps:

1 Append the following kernel command line option to your boot loader configu-
ration, and reboot the system:

crashkernel=size@offset

You can find the corresponding values for size and offset in the following
table:

Kexec and Kdump 205

Table 18.1 Recommended Values for Additional Kernel Command Line Parameters

Recommended valueArchitecture

crashkernel=64M@16Mi386 and x86-64

crashkernel=256M (small systems) or crashker-
nel=512M (larger systems)

IA64

crashkernel=128M or crashkernel=256M (larger
systems)

ppc64

2 Enable Kdump init script:

chkconfig boot.kdump on

3 You can edit the options in /etc/sysconfig/kdump. Reading the comments
will help you understand the meaning of individual options.

4 Execute the init script once with rckdump start, or reboot the system.

After configuring Kdump with the default values, check if it works as expected. Make
sure that no users are currently logged in and no important services are running on your
system. Then follow these steps:

1 Switch to runlevel 1 with telinit 1

2 Unmount all the disk file systems except the root file system with umount -a

3 Remount the root file system in read-only mode: mount -o remount,ro
/

4 Invoke “kernel panic” with the procfs interface to Magic SysRq keys:

echo c >/proc/sysrq-trigger

206 System Analysis and Tuning Guide

IMPORTANT: The Size of Kernel Dumps

The KDUMP_KEEP_OLD_DUMPS option controls the number of preserved
kernel dumps (default is 5). Without compression, the size of the dump can
take up to the size of the physical RAM memory. Make sure you have sufficient
space on the /var partition.

The capture kernel boots and the crashed kernel memory snapshot is saved to the file
system. The save path is given by the KDUMP_SAVEDIR option and it defaults to
/var/crash. If KDUMP_IMMEDIATE_REBOOT is set to yes , the system automat-
ically reboots the production kernel. Log in and check that the dump has been created
under /var/crash.

WARNING: Screen Freezes in X11 Session

When Kdump takes control and you are logged in an X11 session, the screen
will freeze without any notice. Some Kdump activity can be still visible (for ex-
ample, deformed messages of a booting kernel on the screen).

Do not reset the computer because Kdump always needs some time to complete
its task.

18.6.2 YaST Configuration
In order to configure Kdump with YaST, you need to install the yast2-kdump
package. Then either start the Kernel Kdump module in the System category of YaST
Control Center, or enter yast2 kdump in the command line as root.

Kexec and Kdump 207

Figure 18.1 YaST2 Kdump Module - Start-Up Page

In the Start-Up window, select Enable Kdump. The default value for Kdump memory
is sufficient on most systems.

Click Dump Filtering in the left pane, and check what pages to include in the dump.
You do not need to include the following memory content to be able to debug kernel
problems:

• Pages filled with zero

• Cache pages

• User data pages

• Free pages

In the Dump Target window, select the type of the dump target and the URL where
you want to save the dump. If you selected a network protocol, such as FTP or SSH,
you need to enter relevant access information as well.

208 System Analysis and Tuning Guide

Fill the Email Notificationwindow information if you want Kdump to inform you about
its events via E-mail and confirm your changes with OK after fine tuning Kdump in
the Expert Settings window. Kdump is now configured.

18.7 Analyzing the Crash Dump
After you obtain the dump, it is time to analyze it. There are several options.

The original tool to analyze the dumps is GDB. You can even use it in the latest envi-
ronments, although it has several disadvantages and limitations:

• GDB was not specifically designed to debug kernel dumps.

• GDB does not support ELF64 binaries on 32-bit platforms.

• GDB does not understand other formats than ELF dumps (it cannot debug com-
pressed dumps).

That is why the crash utility was implemented. It analyzes crash dumps and debugs the
running system as well. It provides functionality specific to debugging the Linux kernel
and is much more suitable for advanced debugging.

If you want to debug the Linux kernel, you need to install its debugging information
package in addition. Check if the package is installed on your system with zypper
se kernel | grep debug.

IMPORTANT: Repository for Packages with Debugging Information

If you subscribed your system for online updates, you can find “debuginfo”
packages in the *-Debuginfo-Updates online installation repository relevant
for SUSE Linux Enterprise Server 11 SP1. Use YaST to enable the repository.

To open the captured dump in crash on the machine that produced the dump, use a
command like this:

crash /boot/vmlinux-2.6.32.8-0.1-default.gz
/var/crash/2010-04-23-11\:17/vmcore

Kexec and Kdump 209

The first parameter represents the kernel image. The second parameter is the dump file
captured by Kdump. You can find this file under /var/crash by default.

18.7.1 Kernel Binary Formats
The Linux kernel comes in Executable and Linkable Format (ELF). This file is usually
called vmlinux and is directly generated in the compilation process. Not all boot
loaders, especially on x86 (i386 and x86_64) architecture, support ELF binaries. The
following solutions exist on different architectures supported by SUSE® Linux Enter-
prise Server.

x86 (i386 and x86_64)
Mostly for historic reasons, the Linux kernel consists of two parts: the Linux kernel itself
(vmlinux) and the setup code run by the boot loader.

These two parts are linked together in a file called bzImage, which can be found in
the kernel source tree. The file is now called vmlinuz (note z vs. x) in the kernel
package.

The ELF image is never directly used on x86. Therefore, the main kernel package
contains the vmlinux file in compressed form called vmlinux.gz.

To sum it up, an x86 SUSE kernel package has two kernel files:

• vmlinuz which is executed by the boot loader.

• vmlinux.gz, the compressed ELF image that is required by crash and GDB.

IA64
The elilo boot loader, which boots the Linux kernel on the IA64 architecture, supports
loading ELF images (even compressed ones) out of the box. The IA64 kernel package
contains only one file called vmlinuz. It is a compressed ELF image. vmlinuz on
IA64 is the same as vmlinux.gz on x86.

210 System Analysis and Tuning Guide

PPC and PPC64
The yaboot boot loader on PPC also supports loading ELF images, but not compressed
ones. In the PPC kernel package, there is an ELF Linux kernel file vmlinux. Consid-
ering crash, this is the easiest architecture.

If you decide to analyze the dump on another machine, you must check both the archi-
tecture of the computer and the files necessary for debugging.

You can analyze the dump on another computer only if it runs a Linux system of the
same architecture. To check the compatibility, use the command uname -i on both
computers and compare the outputs.

If you are going to analyze the dump on another computer, you also need the appropriate
files from the kernel and kernel debug packages.

1 Put the kernel dump, the kernel image from /boot, and its associated debugging
info file from /usr/lib/debug/boot into a single empty directory.

2 Additionally, copy the kernel modules from/lib/modules/$(uname -r)/
kernel/ and the associated debug info files from /usr/lib/debug/lib/
modules/$(uname -r)/kernel/ into a subdirectory named modules.

3 In the directory with the dump, the kernel image, its debug info file, and the
modules subdirectory, launch the crash utility: crash vmlinux-version
vmcore.

NOTE: Support for Kernel Images

Compressed kernel images (gzip, not the bzImage file) are supported by SUSE
packages of crash since SUSE® Linux Enterprise Server 11. For older versions,
you have to extract the vmlinux.gz (x86) or the vmlinuz (IA64) to
vmlinux.

Regardless of the computer on which you analyze the dump, the crash utility will produce
an output similar to this:
tux@mercury:~> crash /boot/vmlinux-2.6.32.8-0.1-default.gz
/var/crash/2010-04-23-11\:17/vmcore

crash 4.0-7.6

Kexec and Kdump 211

Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008 Red Hat, Inc.
Copyright (C) 2004, 2005, 2006 IBM Corporation
Copyright (C) 1999-2006 Hewlett-Packard Co
Copyright (C) 2005, 2006 Fujitsu Limited
Copyright (C) 2006, 2007 VA Linux Systems Japan K.K.
Copyright (C) 2005 NEC Corporation
Copyright (C) 1999, 2002, 2007 Silicon Graphics, Inc.
Copyright (C) 1999, 2000, 2001, 2002 Mission Critical Linux, Inc.
This program is free software, covered by the GNU General Public License,
and you are welcome to change it and/or distribute copies of it under
certain conditions. Enter "help copying" to see the conditions.
This program has absolutely no warranty. Enter "help warranty" for details.

GNU gdb 6.1
Copyright 2004 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "x86_64-unknown-linux-gnu"...

KERNEL: /boot/vmlinux-2.6.32.8-0.1-default.gz
DEBUGINFO: /usr/lib/debug/boot/vmlinux-2.6.32.8-0.1-default.debug
DUMPFILE: /var/crash/2009-04-23-11:17/vmcore

CPUS: 2
DATE: Thu Apr 23 13:17:01 2010

UPTIME: 00:10:41
LOAD AVERAGE: 0.01, 0.09, 0.09

TASKS: 42
NODENAME: eros
RELEASE: 2.6.32.8-0.1-default
VERSION: #1 SMP 2010-03-31 14:50:44 +0200
MACHINE: x86_64 (2999 Mhz)
MEMORY: 1 GB
PANIC: "SysRq : Trigger a crashdump"
PID: 9446

COMMAND: "bash"
TASK: ffff88003a57c3c0 [THREAD_INFO: ffff880037168000]
CPU: 1

STATE: TASK_RUNNING (SYSRQ)
crash>

The command output prints first useful data: There were 42 tasks running at the moment
of the kernel crash. The cause of the crash was a SysRq trigger invoked by the task
with PID 9446. It was a Bash process because the echo that has been used is an internal
command of the Bash shell.

The crash utility builds upon GDB and provides many useful additional commands. If
you enter bt without any parameters, the backtrace of the task running at the moment
of the crash is printed:

212 System Analysis and Tuning Guide

crash> bt
PID: 9446 TASK: ffff88003a57c3c0 CPU: 1 COMMAND: "bash"
#0 [ffff880037169db0] crash_kexec at ffffffff80268fd6
#1 [ffff880037169e80] __handle_sysrq at ffffffff803d50ed
#2 [ffff880037169ec0] write_sysrq_trigger at ffffffff802f6fc5
#3 [ffff880037169ed0] proc_reg_write at ffffffff802f068b
#4 [ffff880037169f10] vfs_write at ffffffff802b1aba
#5 [ffff880037169f40] sys_write at ffffffff802b1c1f
#6 [ffff880037169f80] system_call_fastpath at ffffffff8020bfbb

RIP: 00007fa958991f60 RSP: 00007fff61330390 RFLAGS: 00010246
RAX: 0000000000000001 RBX: ffffffff8020bfbb RCX: 0000000000000001
RDX: 0000000000000002 RSI: 00007fa959284000 RDI: 0000000000000001
RBP: 0000000000000002 R8: 00007fa9592516f0 R9: 00007fa958c209c0
R10: 00007fa958c209c0 R11: 0000000000000246 R12: 00007fa958c1f780
R13: 00007fa959284000 R14: 0000000000000002 R15: 00000000595569d0
ORIG_RAX: 0000000000000001 CS: 0033 SS: 002b

crash>

Now it is clear what happened: The internal echo command of Bash shell sent a
character to /proc/sysrq-trigger. After the corresponding handler recognized
this character, it invoked thecrash_kexec() function. This function calledpanic()
and Kdump saved a dump.

In addition to the basic GDB commands and the extended version of bt, the crash
utility defines many other commands related to the structure of the Linux kernel. These
commands understand the internal data structures of the Linux kernel and present their
contents in a human readable format. For example, you can list the tasks running at the
moment of the crash with ps. With sym, you can list all the kernel symbols with the
corresponding addresses, or inquire an individual symbol for its value. With files,
you can display all the open file descriptors of a process. With kmem, you can display
details about the kernel memory usage. With vm, you can inspect the virtual memory
of a process, even at the level of individual page mappings. The list of useful commands
is very long and many of these accept a wide range of options.

The commands that we mentioned reflect the functionality of the common Linux
commands, such as ps and lsof. If you would like to find out the exact sequence of
events with the debugger, you need to know how to use GDB and to have strong debug-
ging skills. Both of these are out of the scope of this document. In addition, you need
to understand the Linux kernel. Several useful reference information sources are given
at the end of this document.

Kexec and Kdump 213

18.8 Advanced Kdump Configuration
The configuration for Kdump is stored in /etc/sysconfig/kdump. You can also
use YaST to configure it. Kdump configuration options are available under System >
Kernel Kdump in YaST Control Center. The following Kdump options may be useful
for you:

You can change the directory for the kernel dumps with the KDUMP_SAVEDIR option.
Keep in mind that the size of kernel dumps can be very large. Kdump will refuse to
save the dump if the free disk space, subtracted by the estimated dump size, drops below
the value specified by the KDUMP_FREE_DISK_SIZE option. Note that
KDUMP_SAVEDIR understands URL format protocol://specification,
where protocol is one of file, ftp, sftp, nfs or cifs, and specification
varies for each protocol. For example, to save kernel dump on an FTP server, use the
following URL as a template:
ftp://username:password@ftp.example.com:123/var/crash.

Kernel dumps are usually huge and contain many pages that are not necessary for
analysis. With KDUMP_DUMPLEVEL option, you can omit such pages. The option un-
derstands numeric value between 0 and 31. If you specify 0, the dump size will be
largest. If you specify 31, it will produce the smallest dump. For a complete table of
possible values, see the manual page of kdump (man 7 kdump).

Sometimes it is very useful to make the size of the kernel dump smaller. For example,
if you want to transfer the dump over the network, or if you need to save some disk
space in the dump directory. This can be done with KDUMP_DUMPFORMAT set to
compressed. The crash utility supports dynamic uncompression of the compressed
dumps.

IMPORTANT: Changes to Kdump Configuration File

You always need to execute rckdump restart after you make manual
changes to /etc/sysconfig/kdump. Otherwise these changes will take effect
next time you reboot the system.

214 System Analysis and Tuning Guide

18.9 For More Information
Since there is no single comprehensive reference to Kexec and Kdump usage, you have
to explore several resources to get the information you need. Here are some of them:

• For the Kexec utility usage, see the manual page of Kexec.

• You can find general information about Kexec at http://www.ibm.com/
developerworks/linux/library/l-kexec.html . Might be slightly
outdated.

• For more details on Kdump specific to SUSE Linux, see http://ftp.suse
.com/pub/people/tiwai/kdump-training/kdump-training.pdf
.

• An in-depth description of Kdump internals can be found at http://lse
.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper
.pdf .

For more details on crash dump analysis and debugging tools, use the following re-
sources:

• Very useful information about kernel dump debugging with crash can be found
at http://en.opensuse.org/Crashdump_Debugging .

• In addition to the info page of GDB (info gdb), you might want to read the
printable guides at http://sourceware.org/gdb/documentation/ .

• A white paper with a comprehensive description of the crash utility usage can be
foundathttp://people.redhat.com/anderson/crash_whitepaper/
.

• The crash utility also features a comprehensive online help. Just write help
command to display the online help for command.

• If you have the necessary Perl skills, you can use Alicia to make the debugging
easier. This Perl-based front end to the crash utility can be found at http://
alicia.sourceforge.net/ .

Kexec and Kdump 215

http://www.ibm.com/developerworks/linux/library/l-kexec.html
http://www.ibm.com/developerworks/linux/library/l-kexec.html
http://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf
http://ftp.suse.com/pub/people/tiwai/kdump-training/kdump-training.pdf
http://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
http://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
http://lse.sourceforge.net/kdump/documentation/ols2oo5-kdump-paper.pdf
http://en.opensuse.org/Crashdump_Debugging
http://sourceware.org/gdb/documentation/
http://people.redhat.com/anderson/crash_whitepaper/
http://alicia.sourceforge.net/
http://alicia.sourceforge.net/

• If you prefer Python instead, you may want to install Pykdump. This package helps
you control GDB through Python scripts and can be downloaded from http://
sf.net/projects/pykdump .

• A very comprehensive overview of the Linux kernel internals is given in Under-
standing the Linux Kernel by Daniel P. Bovet and Marco Cesati (ISBN 978-0-596-
00565-8).

216 System Analysis and Tuning Guide

http://sf.net/projects/pykdump
http://sf.net/projects/pykdump

	System Analysis and Tuning Guide
	About This Guide
	1. Available Documentation
	2. Feedback
	3. Documentation Conventions

	I. Basics
	1. General Notes on System Tuning
	1.1. Be Sure What Problem to Solve
	1.2. Rule Out Common Problems
	1.3. Finding the Bottleneck
	1.4. Step-by-step Tuning

	II. System Monitoring
	2. System Monitoring Utilities
	2.1. Multi-Purpose Tools
	2.1.1. vmstat
	2.1.2. System Activity Information: sar and sadc
	. Automatically Collecting Daily Statistics With sadc
	. Generating reports with sar
	. CPU Utilization Report: sar
	. Memory Usage Report: sar -r
	. Paging Statistics Report: sar -B
	. Block Device Statistics Report: sar -d
	. Network Statistics Reports: sar -n KEYWORD

	. Visualizing sar Data

	2.2. System Information
	2.2.1. Device Load Information: iostat
	2.2.2. Processor Activity Monitoring: mpstat
	2.2.3. Task Monitoring: pidstat
	2.2.4. Kernel Ring Buffer: dmesg
	2.2.5. List of Open Files: lsof
	2.2.6. Kernel and udev Event Sequence Viewer: udevadm monitor
	2.2.7. Information on Security Events: audit

	2.3. Processes
	2.3.1. Interprocess Communication: ipcs
	2.3.2. Process List: ps
	2.3.3. Process Tree: pstree
	2.3.4. Table of Processes: top
	2.3.5. Modify a process' niceness: nice and renice

	2.4. Memory
	2.4.1. Memory Usage: free
	2.4.2. Detailed Memory Usage: /proc/​meminfo
	2.4.3. Process Memory Usage: smaps

	2.5. Networking
	2.5.1. Show the Network Status: netstat
	2.5.2. Interactive Network Monitor: iptraf

	2.6. The /proc File System
	2.6.1. procinfo

	2.7. Hardware Information
	2.7.1. PCI Resources: lspci
	2.7.2. USB Devices: lsusb

	2.8. Files and File Systems
	2.8.1. Determine the File Type: file
	2.8.2. File Systems and Their Usage: mount, df and du
	2.8.3. Additional Information about ELF Binaries
	2.8.4. File Properties: stat

	2.9. User Information
	2.9.1. User Accessing Files: fuser
	2.9.2. Who Is Doing What: w

	2.10. Time and Date
	2.10.1. Time Measurement with time

	2.11. Graph Your Data: RRDtool
	2.11.1. How RRDtool Works
	2.11.2. Simple Real Life Example
	. Collecting Data
	. Creating Database
	. Updating Database Values
	. Viewing Measured Values

	2.11.3. For More Information

	3. Monitoring with Nagios
	3.1. Features of Nagios
	3.2. Installing Nagios
	3.3. Nagios Configuration Files
	3.3.1. Object Definition Files

	3.4. Configuring Nagios
	3.4.1. Monitoring Remote Services with Nagios
	3.4.2. Monitoring Remote Host-Resources with Nagios

	3.5. Troubleshooting
	3.6. For More Information

	4. Analyzing and Managing System Log Files
	4.1. System Log Files in /var/​log/
	4.2. Viewing and Parsing Log Files
	4.3. Managing Log Files with logrotate
	4.4. Monitoring Log Files with logwatch

	III. Kernel Monitoring
	5. SystemTap—Filtering and Analyzing System Data
	5.1. Conceptual Overview
	5.1.1. SystemTap Scripts
	5.1.2. Tapsets
	5.1.3. Commands and Privileges
	5.1.4. Important Files and Directories

	5.2. Installation and Setup
	5.2.1. Classic Setup and Initial Test
	5.2.2. Client-Server Setup
	. Installing SystemTap
	. Setting Up the Server
	. Setting Up the Client
	. Using the Client
	. Troubleshooting

	5.3. Script Syntax
	5.3.1. Probe Format
	5.3.2. SystemTap Events (Probe Points)
	5.3.3. SystemTap Handlers (Probe Body)
	. Functions
	. Other Basic Constructs
	. Variables
	. Conditional Statements

	5.4. Example Script
	5.5. For More Information

	6. Kernel Probes
	6.1. Supported Architectures
	6.2. Types of Kernel Probes
	6.2.1. Kprobe
	6.2.2. Jprobe
	6.2.3. Return Probe

	6.3. Kernel probes API
	6.4. Debugfs Interface
	6.4.1. How to List Registered Kernel Probes
	6.4.2. How to Switch All Kernel Probes On or Off

	6.5. For More Information

	7. Perfmon2—Hardware-Based Performance Monitoring
	7.1. Conceptual Overview
	7.1.1. Perfmon2 Structure
	7.1.2. Sampling and Counting

	7.2. Installation
	7.3. Using Perfmon
	7.3.1. Getting Event Information
	7.3.2. Enabling System Wide Sessions
	7.3.3. Monitoring Running Tasks

	7.4. Retrieving Metrics From DebugFS
	7.5. For More Information

	8. OProfile—System-Wide Profiler
	8.1. Conceptual Overview
	8.2. Installation and Requirements
	8.3. Available OProfile Utilities
	8.4. Using OProfile
	8.4.1. General Steps
	8.4.2. Getting Event Configurations

	8.5. Using OProfile's GUI
	8.6. Generating Reports
	8.7. For More Information

	IV. Resource Management
	9. General System Resource Management
	9.1. Planning the Installation
	9.1.1. Partitioning
	9.1.2. Installation Scope
	9.1.3. Default Runlevel

	9.2. Disabling Unnecessary Services
	9.3. File Systems and Disk Access
	9.3.1. File Systems
	. NFS

	9.3.2. Disabling Access Time (atime) Updates
	9.3.3. Prioritizing Disk Access with ionice

	10. Kernel Control Groups
	10.1. Technical Overview and Definitions
	10.2. Scenario
	10.3. Control Group Subsystems
	10.4. Using Controller Groups
	10.4.1. Prerequisites
	10.4.2. Checking the Environment
	10.4.3. Example: Cpusets
	10.4.4. Example: cgroups

	10.5. For More Information

	11. Power Management
	11.1. Power Management at CPU Level
	11.1.1. C-States (Processor Operating States)
	11.1.2. P-States (Processor Performance States)
	11.1.3. T-States (Processor Throttling States)

	11.2. The Linux Kernel CPUfreq Infrastructure
	11.2.1. In-Kernel Governors
	11.2.2. Related Files and Directories

	11.3. Tuning Options for P-states
	11.3.1. Viewing Current Settings with cpufreq-info
	11.3.2. Modifying Current Settings with cpufreq-set
	11.3.3. Modifying Further Settings

	11.4. Tuning Options for C-states
	11.5. Creating and Using Power Management Profiles
	11.6. Monitoring Power Consumption with powerTOP
	11.7. Troubleshooting
	11.8. For More Information

	V. Kernel Tuning
	12. Installing Multiple Kernel Versions
	12.1. Enabling Multiversion Support
	12.2. Installing/Removing Multiple Kernel Versions with YaST
	12.3. Installing/Removing Multiple Kernel Versions with zypper

	13. Tuning Per-Device I/O Performance
	13.1. I/O Scheduler -- /​sys/​block/<device>/​queue/​scheduler
	13.1.1. CFQ
	13.1.2. NOOP
	13.1.3. DEADLINE

	13.2. I/O Barrier Tuning

	14. Tuning the Task Scheduler
	14.1. Introduction
	14.1.1. Preemption
	14.1.2. Timeslice
	14.1.3. Process Priority

	14.2. Process Classification
	14.3. O(1) Scheduler
	14.4. Completely Fair Scheduler
	14.4.1. How CFS Works
	14.4.2. Grouping Processes
	14.4.3. Kernel Configuration Options
	14.4.4. Terminology
	14.4.5. Runtime Tuning
	14.4.6. Debugging Interface and Scheduler Statistics

	14.5. For More Information

	15. Tuning the Memory Management Subsystem
	15.1. Memory Usage
	15.1.1. Anonymous Memory
	15.1.2. Pagecache
	15.1.3. Buffercache
	15.1.4. Buffer Heads
	15.1.5. Writeback
	15.1.6. Readahead
	15.1.7. VFS caches
	. Inode Cache
	. Directory Entry Cache

	15.2. Reducing Memory Usage
	15.2.1. Reducing malloc (Anonymous) Usage
	15.2.2. Reducing Kernel Memory Overheads
	15.2.3. Memory Controller (Memory Cgroups)

	15.3. Virtual Memory Manager (VM) Tunable Parameters
	15.3.1. Reclaim Ratios
	15.3.2. Writeback Parameters
	15.3.3. Readahead parameters
	15.3.4. Further VM Parameters

	15.4. Non-Uniform Memory Access (NUMA)
	15.5. Monitoring VM Behavior

	16. Tuning the Network
	16.1. Configurable Kernel Socket Buffers
	16.2. Detecting Network Bottlenecks and Analyzing Network Traffic
	16.3. Netfilter
	16.4. For More Information

	VI. Handling System Dumps
	17. Tracing Tools
	17.1. Tracing System Calls with strace
	17.2. Tracing Library Calls with ltrace
	17.3. Debugging and Profiling with Valgrind
	17.3.1. Installation
	17.3.2. Supported Architectures
	17.3.3. General Information
	17.3.4. Default Options
	17.3.5. How Valgrind Works
	17.3.6. Messages
	17.3.7. Error Messages

	17.4. For More Information

	18. Kexec and Kdump
	18.1. Introduction
	18.2. Required Packages
	18.3. Kexec Internals
	18.4. Basic Kexec Usage
	18.5. How to Configure Kexec for Routine Reboots
	18.6. Basic Kdump Configuration
	18.6.1. Manual Kdump Configuration
	18.6.2. YaST Configuration

	18.7. Analyzing the Crash Dump
	18.7.1. Kernel Binary Formats
	. x86 (i386 and x86_64)
	. IA64
	. PPC and PPC64

	18.8. Advanced Kdump Configuration
	18.9. For More Information

