
Novell AppArmor (2.3.1) Quick Start

This document helps you understand the main concepts behind Novell® AppArmor—the content of AppArmor
profiles. Learn how to create or modify AppArmor profiles. You can create and manage AppArmor profiles in
three different ways. The most convenient interface to AppArmor is provided by means of the AppArmor YaST
modules, which can be used either in graphical or ncurses mode. The same functionality is provided by the
AppArmor command line tools or by editing the profiles in a text editor.

AppArmor Modes
complain/learning

In complain or learning mode, violations of AppArmor
profile rules, such as the profiled program accessing files
not permitted by the profile, are detected. The violations
are permitted, but also logged. This mode is convenient
for developing profiles and is used by the AppArmor
tools for generating profiles.

enforce
Loading a profile in enforcement mode enforces the
policy defined in the profile as well as reports policy vi-
olation attempts to syslogd.

Starting and Stopping AppArmor
Use the rcapparmor command with one of the following
parameters:

start
Load the kernel module, mount securityfs, parse and
load profiles. Profiles and confinement are applied to
any application started after this command was executed.
Processes already running at the time AppArmor is
started continue to run unconfined.

stop
Unmount securityfs, and invalidate profiles.

reload
Reload profiles.

status
If AppArmor is enabled, output how many profiles are
loaded in complain or enforce mode.

Use the rcaaeventd command to control event logging
with aa-eventd. Use the start and stop options to toggle
the status of the aa-eventd and check its status using sta-
tus.

AppArmor Command Line Tools
autodep

Guess basic AppArmor profile requirements. autodep
creates a stub profile for the program or application
examined. The resulting profile is called “approximate”
because it does not necessarily contain all of the profile
entries that the program needs in order to be confined
properly.

complain
Set an AppArmor profile to complain mode.

Novell AppArmor (2.3.1) Quick Start

NOVELL® QUICK START CARD

1

Manually activating complain mode (using the command
line) adds a flag to the top of the profile so that
/bin/foo becomes /bin/foo flags=(complain).

enforce
Set an AppArmor profile to enforce mode from complain
mode.

Manually activating enforce mode (using the command
line) removes mode flags from the top of the profile
/bin/foo flags=(complain) becomes /bin/foo.

genprof
Generate or update a profile. When running, you must
specify a program to profile. If the specified program is
not an absolute path, genprof searches the $PATH vari-
able. If a profile does not exist, genprof creates one using
autodep.

logprof
Manage AppArmor profiles. logprof is an interactive tool
used to review the learning or complain mode output
found in the AppArmor syslog entries and to generate
new entries in AppArmor profiles.

unconfined
Output a list of processes with open tcp or udp ports
that do not have AppArmor profiles loaded.

Methods of Profiling
Stand-Alone Profiling

Using genprof. Suitable for profiling small applications.
Systemic Profiling

Suitable for profiling large numbers of programs all at
once and for profiling applications that may run “forev-
er.”

To apply systemic profiling, proceed as follows:
1. Create profiles for the individual programs that make

up your application (autodep).
2. Put relevant profiles into learning or complain mode.
3. Exercise your application.
4. Analyze the log (logprof).
5. Repeat Steps 3-4.
6. Edit the profiles.
7. Return to enforce mode.
8. Reload all profiles (rcapparmor restart).

Learning Mode
When using genprof, logprof, or YaST in learning mode,
you get several options for how to proceed:

Allow
Grant access.

Deny
Prevent access.

Glob
Modify the directory path to include all files in the sug-
gested directory.

Glob w/Ext
Modify the original directory path while retaining the
filename extension. This allows the program to access
all files in the suggested directories that end with the
specified extension.

Edit
Enable editing of the highlighted line. The new (edited)
line appears at the bottom of the list. This option is called
New in the logprof and genprof command line tools.

Abort
Abort logprof or YaST, losing all rule changes entered
so far and leaving all profiles unmodified.

Finish
Close logprof or YaST, saving all rule changes entered
so far and modifying all profiles.

Example Profile

#include<tunables/global>

@{HOME} = /home/*/ /root/ # variable

/usr/bin/foo {
#include <abstractions/base>
network inet tcp,
capability setgid,

/bin/mount ux,
/dev/{,u}random r,
/etc/ld.so.cache r,
/etc/foo/* r,
/lib/ld-*.so* mr,
/lib/lib*.so* mr,
/proc/[0-9]** r,
/usr/lib/** mr,
/tmp/ r,
/tmp/foo.pid wr,
/tmp/foo.* lrw,
/@{HOME}/.foo_file rw,
/@{HOME}/.foo_lock kw,

link /etc/sysconfig/foo -> /etc/foo.conf,
deny /etc/shadow w,
owner /home/*/** rw,

/usr/bin/foobar cx,
/bin/** px -> bin_generic

comment on foo's local profile, foobar.
foobar {
/bin/bash rmix,
/bin/cat rmix,
/bin/more rmix,

2

/var/log/foobar* rwl,
/etc/foobar r,

}
}

Structure of a Profile
Profiles are simple text files in the /etc/apparmor.d di-
rectory. They consist of several parts: #include, capability
entries, rules, and “hats.”

#include
This is the section of an AppArmor profile that refers to an
include file, which mediates access permissions for pro-
grams. By using an include, you can give the program access
to directory paths or files that are also required by other
programs. Using includes can reduce the size of a profile.
It is good practice to select includes when suggested.

To assist you in profiling your applications, AppArmor pro-
vides three classes of #includes: abstractions, program
chunks, and tunables.

Abstractions are #includes that are grouped by common
application tasks. These tasks include access to authentica-
tion mechanisms, access to name service routines, common
graphics requirements, and system accounting (for example,
base, consoles, kerberosclient, perl, user-mail, user-tmp,
authentication, bash, nameservice).

Program chunks are access controls for specific programs
that a system administrator might want to control based
on local site policy. Each chunk is used by a single program.

Tunables are global variable definitions. When used in a
profile, these variables expand to a value that can be
changed without changing the entire profile. Therefore your
profiles become portable to different environments.

Local Variables
Local variables are defined at the head of a profile. Use local
variables to create shortcuts for paths, for example to pro-
vide the base for a chrooted path:

@{CHROOT_BASE}=/tmp/foo
/sbin/syslog-ng {
...
chrooted applications
@{CHROOT_BASE}/var/lib/*/dev/log w,
@{CHROOT_BASE}/var/log/** w,
...
}

Aliases
Alias rules provide an alternative form of path rewriting to
using variables, and are done post variable resolution:

alias /home/ -> /mnt/users/

Network Access Control
AppArmor provides network access mediation based on
network domain and type:

/bin/ping {
network inet dgram,
network inet raw,
...
}

The example would allow IPv4 network access of the data-
gram and raw type for the ping command. For details on
the network rule syntax, refer to the Part “Confining Privi-
leges with Novell AppArmor” (↑Security Guide).

Capability Entries (POSIX.1e)
Capabilities statements are simply the word “capability”
followed by the name of the POSIX.1e capability as defined
in the capabilities(7) man page.

Rules: General Options for Files and
Directories

FileOption
rread

wwrite

llink

kfile locking

afile append (mutually exclusive to w)

Rules: Link Pair
The link mode grants permission to create links to arbitrary
files, provided the link has a subset of the permissions
granted by the target (subset permission test). By specifying
origin and destination, the link pair rule provides greater
control over how hard links are created. Link pair rules by,
default, do not enforce the link subset permission test that
the standard rules link permission requires. To force the
rule to require the test the subset keyword is used. The
following rules are equivalent:

/link l,
link subset /link -> /**,

Rules: Denying rules
AppArmor provides deny rules which are standard rules
but with the keyword deny prepended. They are used to
remember known rejects, and quiet them so the reject
messages don't fill up the log files. For more information
see Part “Confining Privileges with Novell AppArmor” (↑Se-
curity Guide).

3

Rules: Owner Conditional Rules
The file rules can be extended so that they can be condi-
tional upon the the user being the owner of the file by
prepending the keyword owner to the rule. Owner condi-
tional rules accumulate just as regular file rules and are
considered a subset of regular file rules. If a regular file rule
overlaps with an owner conditional file rule, the resulting
permissions will be that of the regular file rule.

Rules: Defining Execute Permissions
For executables that may be called from the confined pro-
grams, the profile creating tools ask you for an appropriate
mode, which is also reflected directly in the profile itself:

DescriptionFileOption
Stay in the same (parent's) profile.ixInherit
Requires that a separate profile
exists for the executed program.

pxProfile

Use Px to make use of environ-
ment scrubbing.
Requires that a local profile exists
for the executed program. Use Cx

cxLocal profile

to make use of environment
scrubbing.
Executes the program without a
profile. Avoid running programs

uxUncon-
strained

in unconstrained or unconfined
mode for security reasons. Use Ux
to make use of environment
scrubbing.
allow PROT_EXEC with mmap(2)
calls

mAllow Exe-
cutable Map-
ping

Running in ux Mode
Avoid running programs in ux mode as much as
possible. A program running in ux mode is not only
totally unprotected by AppArmor, but child process-
es inherit certain environment variables from the
parent that might influence the child's execution
behavior and create possible security risks.

For more information about the different file execute
modes, refer to the apparmor.d(5)man page. For more
information about setgid and setuid environment scrubbing,
refer to the ld.so(8) man page.

Rules: Paths and Globbing
AppArmor supports explicit handling of directories. Use a
trailing / for any directory path that needs to be explicitly
distinguished:

/some/random/example/* r
Allow read access to files in the /some/random/
example directory.

/some/random/example/ r
Allow read access to the directory only.

/some/**/ r
Give read access to any directories below /some.

/some/random/example/** r
Give read access to files and directories under /some/
random/example.

/some/random/example/**[^/] r
Give read access to files under /some/random/
example. Explicitly exclude directories ([^/]).

To spare users from specifying similar paths all over again,
AppArmor supports basic globbing:

DescriptionGlob
Substitutes for any number of charac-
ters, except /.

*

Substitutes for any number of charac-
ters, including /.

**

Substitutes for any single character, ex-
cept /.

?

Substitutes for the single character a, b,
or c.

[abc]

Substitutes for the single character a, b,
or c.

[a-c]

Expand to one rule to match ab and
another to match cd.

{ ab,cd }

Substitutes for any character except a.[^a]

Rules: Auditing rules
AppArmor provides the user with the ability to audit given
rules so that when they are matched, an audit message will
appear in the audit log. To enable audit messages for a
given rule the audit keyword is prepended to the rule:

audit /etc/foo/* rw,

Rules: Setting Capabilities
Normally, AppArmor only restricts existing native Linux
controls and does not grant additional privileges. The only
exception from this strict rule is the set capability rule. For
security reasons, set capability rules will not be inherited.
Once a program leaves the profile, it loses the elevated
privilege. Setting a capability also implicitly adds a capability
rule allowing that capability. Since this rule gives processes
root privileges, it should be used with extreme caution and
only in exceptional cases.

set capabilty cap_chown,

4

Hats
An AppArmor profile represents a security policy for an
individual program instance or process. It applies to an ex-
ecutable program, but if a portion of the program needs
different access permissions than other portions, the pro-
gram can “change hats” to use a different security context,
distinctive from the access of the main program. This is
known as a hat or subprofile.

A profile can have an arbitrary number of hats, but there
are only two levels: a hat cannot have further hats.

The AppArmor ChangeHat feature can be used by applica-
tions to access hats during execution. Currently the packages
apache2-mod_apparmor and tomcat_apparmor utilize
ChangeHat to provide sub-process confinement for the
Apache Web server and the Tomcat servlet container.

Confining Users with pam_apparmor
The pam_apparmor PAM module allows applications to
confine authenticated users into subprofiles based on group
names, user names, or default profile. To accomplish this,
pam_apparmor needs to be registered as a PAM session
module.

Details about how to set up and configure pam_apparmor
can be found in /usr/share/doc/packages/pam
_apparmor/README. A HOWTO on setting up role-based
access control (RBAC) with pam_apparmor is available at
http://developer.novell.com/wiki/index.php/
Apparmor_RBAC_in_version_2.3.

Logging and Auditing
All AppArmor events are logged using the system's audit
interface (the auditd logging to /var/log/audit/audit
.log). On top of this infrastructure, event notification can
be configured. Configure this feature using YaST. It is based
on severity levels according to /etc/apparmor/
severity.db. Notification frequency and type of notifi-
cation (such as e-mail) can be configured.

If auditd is not running, AppArmor logs to the system log
located under /var/log/messages using the LOG_KERN
facility.

Use YaST for generating reports in CSV or HTML format.

The Linux audit framework contains a dispatcher that can
send AppArmor events to any consumer application via
dbus. The GNOME AppArmor Desktop Monitor applet is
one example of an application that gathers AppArmor
events via dbus. To configure audit to use the dbus dispatch-
er, set the dispatcher in your audit configuration in /etc/
audit/auditd.conf to apparmor-dbus and restart
auditd:

dispatcher=/usr/bin/apparmor-dbus

Once the dbus dispatcher is configured correctly, add the
AppArmor Desktop Monitor to the GNOME panel. As soon
as a REJECT event is logged, the applet's panel icon
changes appearance and you can click the applet to see the
number of reject events per confined application. To view
the exact log messages, refer to the audit log under /var/
log/audit/audit.log. Use the YaST Update Profile
Wizard to adjust the respective profile.

Directories and Files
/sys/kernel/security/apparmor/profiles

Virtualized file representing the currently loaded set of
profiles.

/etc/apparmor/
Location of AppArmor configuration files.

/etc/apparmor/profiles/extras/
A local repository of profiles shipped with AppArmor,
but not enabled by default.

/etc/apparmor.d/
Location of profiles, named with the convention of re-
placing the / in pathnames with . (not for the root /)
so profiles are easier to manage. For example, the profile
for the program /usr/sbin/ntpd is named usr.sbin
.ntpd.

/etc/apparmor.d/abstractions/
Location of abstractions.

/etc/apparmor.d/program-chunks/
Location of program chunks.

/proc/*/attr/current
Review the confinement status of a process and the
profile that is used to confine the process. The ps auxZ
command retrieves this information automatically.

For More Information
To learn more about the AppArmor project, visit the
project's home page under http://en.opensuse.org/
AppArmor. Find more information on the concept and the
configuration of AppArmor in Part “Confining Privileges
with Novell AppArmor” (↑Security Guide).

Legal Notice
All content is copyright © 2006–2010 Novell, Inc. All rights
reserved.

This manual is protected under Novell intellectual property
rights. By reproducing, duplicating or distributing this
manual you explicitly agree to conform to the terms and
conditions of this license agreement.

This manual may be freely reproduced, duplicated and dis-
tributed either as such or as part of a bundled package in

5

http://developer.novell.com/wiki/index.php/Apparmor_RBAC_in_version_2.3
http://developer.novell.com/wiki/index.php/Apparmor_RBAC_in_version_2.3
http://en.opensuse.org/AppArmor
http://en.opensuse.org/AppArmor

electronic and/or printed format, provided however that
the following conditions are fulfilled:

That this copyright notice and the names of authors and
contributors appear clearly and distinctively on all repro-
duced, duplicated and distributed copies. That this manual,
specifically for the printed format, is reproduced and/or
distributed for noncommercial use only. The express autho-
rization of Novell, Inc must be obtained prior to any other
use of any manual or part thereof.

For Novell trademarks, see the Novell Trademark and Ser-
vice Mark list http://www.novell.com/company/

legal/trademarks/tmlist.html. Linux* is a regis-
tered trademark of Linus Torvalds. All other third party
trademarks are the property of their respective owners. A
trademark symbol (®, ™ etc.) denotes a Novell trademark;
an asterisk (*) denotes a third party trademark.

All information found in this book has been compiled with
utmost attention to detail. However, this does not guarantee
complete accuracy. Neither Novell, Inc., SUSE LINUX Prod-
ucts GmbH, the authors, nor the translators shall be held
liable for possible errors or the consequences thereof.

6

http://www.novell.com/company/legal/trademarks/tmlist.html
http://www.novell.com/company/legal/trademarks/tmlist.html

Created by SUSE® with XSL-FO

7

	Novell AppArmor (2.3.1) Quick Start
	AppArmor Modes
	Starting and Stopping AppArmor
	AppArmor Command Line Tools
	Methods of Profiling
	Learning Mode
	Example Profile
	Structure of a Profile
	#include
	Local Variables
	Aliases
	Network Access Control
	Capability Entries (POSIX.1e)
	Rules: General Options for Files and Directories
	Rules: Link Pair
	Rules: Denying rules
	Rules: Owner Conditional Rules
	Rules: Defining Execute Permissions
	Rules: Paths and Globbing
	Rules: Auditing rules
	Rules: Setting Capabilities
	Hats

	Confining Users with pam_apparmor
	Logging and Auditing
	Directories and Files
	For More Information
	Legal Notice

