
SUSE Manager 4.2

Large Deployments Guide
January 27 2023

Table of Contents

Large Deployments Guide Overview 1
1. Hardware Requirements 2
2. Using a Single Server to Manage Large Scale Deployments 4

2.1. Operation Recommendations . 4
2.1.1. Salt Client Onboarding Rate . 4
2.1.2. Salt Clients and the RNG . 4
2.1.3. Clients Running with Unaccepted Salt Keys . 5
2.1.4. Disabling the Salt Mine . 5
2.1.5. Disable Unnecessary Taskomatic jobs . 5
2.1.6. Swap and Monitoring. 6
2.1.7. AES Key Rotation . 6

3. Using Multiple Servers to Manage Large Scale
Deployments 8

3.1. Hub Requirements . 8
3.1.1. Peripheral Servers . 8

3.2. Hub Installation . 9
3.3. Using the Hub API. 10
3.4. Hub XMLRPC API Namespaces . 10
3.5. Hub XMLRPC API Authentication Modes . 11

3.5.1. Authentication Examples . 11

4. Managing Large Scale Deployments in a Retail
Environment 17
5. Tuning Large Scale Deployments 18

5.1. The Tuning Process . 18
5.2. Environmental Variables . 20
5.3. Parameters . 21

5.3.1. MaxClients . 21
5.3.2. ServerLimit . 22
5.3.3. maxThreads. 22
5.3.4. connectionTimeout . 23
5.3.5. keepAliveTimeout . 23
5.3.6. Tomcat’s -Xmx . 24
5.3.7. java.message_queue_thread_pool_size . 24
5.3.8. java.salt_batch_size . 25
5.3.9. java.salt_event_thread_pool_size . 26
5.3.10. java.salt_presence_ping_timeout . 26

Large Deployments Guide Overview
Updated: 2023-01-27

SUSE Manager is designed by default to work on small and medium scale installations. For

installations with more than 1000 clients per SUSE Manager Server, adequate hardware sizing and

parameter tuning must be performed.

There is no hard maximum number of supported systems. Many factors can affect how many

clients can reliably be used in a particular installation. Factors can include which features are

used, and how the hardware and systems are configured.


Large installations require standard Salt clients. These instructions cannot be

used in environments using traditional clients or Salt SSH minions.

There are two main ways to manage large scale deployments. You can manage them with a

single SUSE Manager Server, or you can use multiple servers in a hub. Both methods are

described in this book.

With large scale environments one should also consider the usage of SUSE Manager Proxies.

Sizing and location of the Proxies will dependent on the deployment topology. For more

information, see Installation › Install-proxy.

Additionally, if you are operating within a Retail environment, you can use SUSE Manager for Retail

to manage large deployments of point-of-service terminals. There is an introduction to SUSE

Manager for Retail in this book.

Tuning and monitoring large scale deployments can differ from smaller installations. This book

contains guidance for both tuning and monitoring within larger installations.

SUSE Manager 4.2 | 1 / 35

Chapter 1. Hardware Requirements
Not all problems can be solved with better hardware, but choosing the right hardware is an

absolute necessity for large scale deployments.

The minimum requirements for the SUSE Manager Server are:

• Eight or more recent x86-64 CPU cores.

• 32 GiB RAM. For installations with thousands of clients, use 64 GB or more.

• Fast I/O storage devices, such as locally attached SSDs. For PostgreSQL data directories, we

recommend locally attached RAID-0 SSDs.

If the SUSE Manager Server is virtualized, enable the elevator=noop kernel command line option,

for the best input/output performance. You can check the current status with cat

/sys/block/<DEVICE>/queue/scheduler. This command will display a list of available schedulers

with the currently active one in brackets. To change the scheduler before a reboot, use echo noop

> /sys/block/<DEVICE>/queue/scheduler.

The minimum requirements for the SUSE Manager Proxy are:

• One SUSE Manager Proxy per 500-1000 clients, depending on available network bandwidth.

• Two or more recent x86-64 CPU cores.

• 16 GB RAM, and sufficient storage for caching.

Clients should never be directly attached to the SUSE Manager Server in production systems.

In large scale installations, the SUSE Manager Proxy is used primarily as a local cache for content

between the server and clients. Using proxies in this way can substantially reduce download time

for clients, and decrease Server egress bandwidth use.

The number of clients per proxy will affect the download time. Always take network structure and

available bandwidth into account.

We recommend you estimate the download time of typical usage to determine how many

clients to connnect to each proxy. To do this, you will need to estimate the number of package

upgrades required in every patch cycle. You can use this formula to calculate the download time:

Size of updates * Number of clients / Theoretical download speed / 60

SUSE Manager 4.2 | Chapter 1. Hardware Requirements 2 / 35

For example, the total time needed to transfer 400 MB of upgrades through a physical link speed

of 1 GB/s to 3000 clients:

400 MB * 3000 / 119 MB/s / 60 = 169 min

SUSE Manager 4.2 | Chapter 1. Hardware Requirements 3 / 35

Chapter 2. Using a Single Server to Manage
Large Scale Deployments
This section discusses how to set up a single SUSE Manager Server to manage a large number of

clients. It contains some recommendations for hardware and networking, and an overview of the

tuning parameters that you need to consider in a large scale deployment.

2.1. Operation Recommendations

This section contains a range of recommendations for large scale deployments.


Always start small and scale up gradually. Monitor the server as you scale to

identify problems early.

2.1.1. Salt Client Onboarding Rate

The rate at which SUSE Manager can onboard clients is limited and depends on hardware

resources. Onboarding clients at a faster rate than SUSE Manager is configured for will build up a

backlog of unprocessed keys. This slows down the process and can potentially exhaust

resources. We recommend that you limit the acceptance key rate programmatically. A safe

starting point would be to onboard a client every 15 seconds. You can do that with this command:

for k in $(salt-key -l un|grep -v Unaccepted); do salt-key -y -a $k; sleep 15; done

2.1.2. Salt Clients and the RNG

All communication to and from Salt clients is encrypted. During client onboarding, Salt uses

asymmetric cryptography, which requires available entropy from the Random Number

Generator (RNG) facility in the kernel. If sufficient entropy is not available from the RNG, it will

significantly slow down communications. This is especially true in virtualized environments.

Ensure enough entropy is present, or change the virtualization host options.

You can check the amount of available entropy with the cat

/proc/sys/kernel/random/entropy_avail. It should never be below 100-200.

2.1. Operation Recommendations

SUSE Manager 4.2 | 2.1. Operation Recommendations 4 / 35

2.1.3. Clients Running with Unaccepted Salt Keys

Idle clients which have not been onboarded, that is clients running with unaccepted Salt keys,

consume more resources than idle clients that have been onboarded. Generally, this consumes

about an extra 2.5 Kb/s of inbound network bandwidth per client. For example, 1000 idle clients

will consume about 2.5 Mb/s extra. This consumption will reduce almost to zero when onboarding

has been completed for all clients. Limit the number of non-onboarded clients for optimal

performance.

2.1.4. Disabling the Salt Mine

In older versions, SUSE Manager used a tool called Salt mine to check client availability. The Salt

mine would cause clients to contact the server every hour, which created significant load. With

the introduction of a more efficient mechanism in SUSE Manager 3.2, the Salt mine is no longer

required. Instead, the SUSE Manager Server uses Taskomatic to ping only the clients that appear

to have been offline for twelve hours or more, with all clients being contacted at least once in

every twenty four hour period by default. You can adjust this by changing the

web.system_checkin_threshold parameter in rhn.conf. The value is expressed in days, and the

default value is 1.

Newly registered Salt clients will have the Salt mine disabled by default. If the Salt mine is running

on your system, you can reduce load by disabling it. This is especially effective if you have a large

number of clients.

Disable the Salt mine by running this command on the server:

salt '*' state.sls util.mgr_mine_config_clean_up

This will restart the clients and generate some Salt events to be processed by the server. If you

have a large number of clients, handling these events could create excessive load. To avoid this,

you can execute the command in batch mode with this command:

salt --batch-size 50 '*' state.sls util.mgr_mine_config_clean_up

You will need to wait for this command to finish executing. Do not end the process with Ctrl  +  C .

2.1.5. Disable Unnecessary Taskomatic jobs

To minimize wasted resources, you can disable non-essential or unused Taskomatic jobs.

2.1. Operation Recommendations

SUSE Manager 4.2 | 2.1. Operation Recommendations 5 / 35

You can see the list of Taskomatic jobs in the SUSE Manager Web UI, at Admin › Task Schedules.

To disable a job, click the name of the job you want to disable, select Disable Schedule, and click

[ Update Schedule ].

To delete a job, click the name of the job you want to delete, and click [ Delete Schedule ].

We recommend disabling these jobs:

• Daily comparison of configuration files: compare-configs-default

• Hourly synchronization of Cobbler files: cobbler-sync-default

• Daily gatherer and subscription matcher: gatherer-matcher-default

Do not attempt to disable any other jobs, as it could prevent SUSE Manager from functioning

correctly.

2.1.6. Swap and Monitoring

It is especially important in large scale deployments that you keep your SUSE Manager Server

constantly monitored and backed up.

Swap space use can have significant impacts on performance. If significant non-transient swap

usage is detected, you can increase the available hardware RAM.

You can also consider tuning the Server to consume less memory. For more information on

tuning, see Salt › Large-scale-tuning.

2.1.7. AES Key Rotation

Communications from the Salt Master to clients is encrypted with a single AES key. The key is

rotated when:

• The salt-master process is restarted, or

• Any minion key is deleted (for example, when a client is deleted from SUSE Manager)

After the AES key has been rotated, all clients must re-authenticate to the master. By default, this

happens next time a client receives a message. If you have a large number of clients (several

thousands), this can cause a high CPU load on the SUSE Manager Server. If the CPU load is

2.1. Operation Recommendations

SUSE Manager 4.2 | 2.1. Operation Recommendations 6 / 35

excessive, we recommend that you delete keys in batches, and in off-peak hours if possible, to

avoid overloading the server.

For more information, see:

• https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-

minions-re-authing

• https://docs.saltstack.com/en/getstarted/system/communication.html

2.1. Operation Recommendations

SUSE Manager 4.2 | 2.1. Operation Recommendations 7 / 35

https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/latest/topics/tutorials/intro_scale.html#too-many-minions-re-authing
https://docs.saltstack.com/en/getstarted/system/communication.html
https://docs.saltstack.com/en/getstarted/system/communication.html
https://docs.saltstack.com/en/getstarted/system/communication.html
https://docs.saltstack.com/en/getstarted/system/communication.html
https://docs.saltstack.com/en/getstarted/system/communication.html
https://docs.saltstack.com/en/getstarted/system/communication.html
https://docs.saltstack.com/en/getstarted/system/communication.html
https://docs.saltstack.com/en/getstarted/system/communication.html
https://docs.saltstack.com/en/getstarted/system/communication.html

Chapter 3. Using Multiple Servers to Manage
Large Scale Deployments
If you need to manage a large number of clients, in most cases you can do so with a single SUSE

Manager Server, tuned appropriately. However, if you need to manage tens of thousands of

clients, you might find it easier to use multiple SUSE Manager Servers, in a hub, to manage them.

SUSE Manager Hub helps you manage very large deployments. The typical Hub topology looks

like this:

Hub

Server1 Server2 Server .. Server ...

Proxy1 Proxy2

Client_1001 Client_1002 Client_1999 Client_2001 Client_2002 Client_2999

3.1. Hub Requirements

To set up a Hub installation, you require:

• One central SUSE Manager Server, which acts as the Hub Server.

• One or more additional SUSE Manager Servers, registered to the Hub as Salt clients. This

document refers to these as peripheral servers.

• Any number of clients registered to the peripheral servers.

• Ensure the Hub Server and all peripheral servers are running SUSE Manager 4.1 or higher.


The Hub Server must not have clients registered to it. Clients should only be

registered to the peripheral servers.

3.1.1. Peripheral Servers

Peripheral servers must be registered to the Hub Server as Salt clients. When you register the

peripheral servers, assign them the appropriate SUSE Manager Server software channel as their

base channel. Additionally, they must be registered to the Hub Server directly, do not use a proxy.

3.1. Hub Requirements

SUSE Manager 4.2 | 3.1. Hub Requirements 8 / 35

For more information about registering clients, see Client-configuration › Registration-webui.

You need credentials to access the XMLRPC APIs on each server, including the Hub Server.

3.2. Hub Installation

Before you begin, you need to install the hub-xmlrpc-api package, and configure the Hub Server

to use the API.

Procedure: Installing and Configuring the Hub XMLRPC API

1. On the Hub Server, or on a host that has access to all peripheral servers' XMLRPC APIs, install

the hub-xmlrpc-api package. The package is available in the SUSE Manager 4.2 repositories.

2. OPTIONAL: Set the Hub XMLRPC API service to start automatically at boot time, and start it

immediately: --- sudo systemctl enable hub-xmlrpc-api.service sudo systemctl start hub-

xmlrpc-api.service ---

3. OPTIONAL: Check that these parameters in the /etc/hub/hub.conf configuration file are

correct:

◦ HUB_API_URL: URL to the Hub Server XMLRPC API endpoint. Use the default value if you are

installing hub-xmlrpc-api on the Hub Server.

◦ HUB_CONNECT_TIMEOUT: the maximum number of seconds to wait for a response when

connecting to a Server. Use the default value in most cases.

◦ HUB_REQUEST_TIMEOUT: the maximum number of seconds to wait for a response when

calling a Server method. Use the default value in most cases.

◦ HUB_CONNECT_USING_SSL: use HTTPS instead of HTTP for communicating with

peripheral Servers. Recommended for a secure environment.

4. Restart services to pick up configuration changes.



To use HTTPS to connect to peripheral Servers, you must set the

HUB_CONNECT_USING_SSL parameter to true, and ensure that the SSL

certificates for all the peripheral Servers are installed on the machine where

the hub-xmlrpc-api service runs. Do this by copying the RHN-ORG-TRUSTED-

SSL-CERT certificate file from each peripheral Server’s http://<server-url>/

pub/ directory to /etc/pki/trust/anchors/, and run update-ca-certificates.

3.2. Hub Installation

SUSE Manager 4.2 | 3.2. Hub Installation 9 / 35

http://<server-url>/pub/
http://<server-url>/pub/
http://<server-url>/pub/

3.3. Using the Hub API

Make sure the hub-xmlrpc-api service is started:

systemctl start hub-xmlrpc-api

Once it is running, connect to the service at port 2830 using any XMLRPC-compliant client

libraries.

For examples, see Large-deployments › Hub-auth.

Logs are saved in /var/log/hub/hub-xmlrpc-api.log. Logs are rotated weekly, or when the log file

size reaches the specified limit. By default, the log file size limit is 10 MB.

3.4. Hub XMLRPC API Namespaces

The Hub XMLRPC API operates in a similar way to the SUSE Manager API. For SUSE Manager API

documentation, see https://documentation.suse.com/suma.

The Hub XMLRPC API exposes the same methods that are available from the server’s XMLRPC API,

with a few differences in parameter and return types. Additionally, the Hub XMLRPC API supports

some Hub-specific end points which are not available in the SUSE Manager API.

The Hub XMLRPC API supports three different namespaces:

• The hub namespace is used to target the Hub XMLRPC API Server. It supports Hub-specific

XMLRPC endpoints which are primarily related to authentication.

• The unicast namespace is used to target a single server registered in the hub. It redirects any

call transparently to one specific server and returns any value as if the server’s XMLRPC API

endpoint was used directly.

• The multicast namespace is used to target multiple peripheral servers registered in the hub.

It redirects any call transparently to all the specified servers and returns the results in the

form of a map.

• If you do not specify a namespace, all calls are transparently redirected to the underlying

SUSE Manager Server XMLRPC API of the Hub Server. This allows you to call all available

methods on the SUSE Manager Server XMLRPC API.

Methods called without specifying any of the above namespaces will be forwarded to the normal

3.3. Using the Hub API

SUSE Manager 4.2 | 3.3. Using the Hub API 10 / 35

https://documentation.suse.com/suma
https://documentation.suse.com/suma
https://documentation.suse.com/suma

XMLRPC API of the hub. This is the API exposed on ports 80 and 443.

Some important considerations for hub namespaces:

• Individual server IDs can be obtained using client.hub.listServerIds(hubSessionKey).

• The unicast namespace assumes all methods receive hubSessionKey and serverID as their

first two parameters, then any other parameter as specified by the regular Server API.

client.unicast.[namespace].[methodName](hubSessionKey, serverId, param1,
param2)

• The hubSessionKey can be obtained using different authentication methods. For more

information, see Large-deployments › Hub-auth.

• The multicast namespace assumes all methods receive hubSessionKey, a list of ServerID

values, then lists of per-server parameters as specified by the regular server XMLRPC API. The

return value is a map, with Successful and Failed entries for each server involved in the call.

client.multicast.[namespace].[methodname](hubSessionKey, [serverId1, serverId2],
[param1_s1, param1_s2], [param2_s1, param2_s2])

3.5. Hub XMLRPC API Authentication Modes

The Hub XMLRPC API supports three different authentication modes:

• Manual mode (default): API credentials must be explicitly provided for each server.

• Relay mode: the credentials used to authenticate with the Hub are also used to authenticate

to each server. You must provide a list of servers to connect to.

• Auto-connect mode: credentials are reused for each server, and any peripheral server you

have access to is automatically connected.

3.5.1. Authentication Examples

This section provides examples of each authentication method.

Example: Manual Authentication

In manual mode, credentials have to be explicitly provided for each peripheral server before you

can connect to it.

3.5. Hub XMLRPC API Authentication Modes

SUSE Manager 4.2 | 3.5. Hub XMLRPC API Authentication Modes 11 / 35

A typical workflow for manual authentication is:

1. Credentials for the Hub are passed to the login method, and a session key for the Hub is

returned (hubSessionKey).

2. Using the session key from the previous step, SUSE Manager Server IDs are obtained for all

the peripheral servers attached to the Hub via the hub.listServerIds method.

3. Credentials for each peripheral server are provided to the attachToServers method. This

performs authentication against each server’s XMLRPC API endpoint.

4. A multicast call is performed on a set of servers. This is defined by serverIds, which contains

the IDs of the servers to target. In the background, system.list_system is called on each

server’s XMLRPC API

5. Hub aggregates the results and returns the response in the form of a map. The map has two

entries:

◦ Successful: list of responses for those peripheral servers where the call succeeded.

◦ Failed: list of responses for those peripheral servers where the call failed.



If you want to call a method on just one SUSE Manager Server, then Hub API also

provides a unicast namespace. In this case, the response will be a single value

and not a map, in the same way as if you called that SUSE Manager server’s API

directly.

3.5. Hub XMLRPC API Authentication Modes

SUSE Manager 4.2 | 3.5. Hub XMLRPC API Authentication Modes 12 / 35

Listing 1. Example Python Script for Manual Authentication:

#!/usr/bin/python
import xmlrpclib

HUB_XMLRPC_API_URL = "<HUB_XMLRPC_API_URL>"
HUB_USERNAME = "<USERNAME>"
HUB_PASSWORD = "<PASSWORD>"

client = xmlrpclib.Server(HUB_XMLRPC_API_URL, verbose=0)

hubSessionKey = client.hub.login(HUB_USERNAME, HUB_PASSWORD)

Get the server IDs
serverIds = client.hub.listServerIds(hubSessionKey)

For simplicity, this example assumes you are using the same username and password
here, as on the hub server.
However, in most cases, every server has its own individual credentials.
usernames = [HUB_USERNAME for s in serverIds]
passwords = [HUB_PASSWORD for s in serverIds]

Each server uses the credentials set above, client.hub.attachToServers needs
them passed as lists with as many elements as there are servers.
client.hub.attachToServers(hubSessionKey, serverIds, usernames, passwords)

Perform the operation
systemsPerServer = client.multicast.system.list_systems(hubSessionKey, serverIds)
successfulResponses = systemsPerServer["Successful"]["Responses"]
failedResponses = systemsPerServer["Failed"]["Responses"]

for system in successfulResponses:
 print (system)

#logout
client.hub.logout(hubSessionKey)

Example: Relay Authentication

In relay authentication mode, the credentials used to sign in to the Hub API are also used to sign

in into the APIs of the peripheral servers the user wants to work with. In this authentication mode,

it is assumed that the same credentials are valid for every server, and that they correspond to a

user with appropriate permissions.

After signing in, you must call the attachToServers method. This method defines the servers to

target in all subsequent calls.

3.5. Hub XMLRPC API Authentication Modes

SUSE Manager 4.2 | 3.5. Hub XMLRPC API Authentication Modes 13 / 35

A typical workflow for relay authentication is:

1. Credentials for the Hub are passed to the loginWithAuthRelayMode method, and a session

key for the Hub is returned (hubSessionKey).

2. Using the session key from the previous step, SUSE Manager Server IDs are obtained for all

the peripheral servers attached to the Hub via the hub.listServerIds method

3. A call to attachToServers is made, and the same credentials used to sign in to the Hub are

passed to each server. This performs authentication against each server’s XMLRPC API

endpoint.

4. A multicast call is performed on a set of servers. This is defined by serverIds, which contains

the IDs of the servers to target. In the background, system.list_system is called on each

server’s XMLRPC API.

5. Hub aggregates the results and returns the response in the form of a map. The map has two

entries:

◦ Successful: list of responses for those peripheral servers where the call succeeded.

◦ Failed: list of responses for those peripheral servers the call failed.

3.5. Hub XMLRPC API Authentication Modes

SUSE Manager 4.2 | 3.5. Hub XMLRPC API Authentication Modes 14 / 35

Listing 2. Example Python Script for Relay Authentication:

#!/usr/bin/python
import xmlrpclib

HUB_XMLRPC_API_URL = "<HUB_XMLRPC_API_URL>"
HUB_USERNAME = "<USERNAME>"
HUB_PASSWORD = "<PASSWORD>"

client = xmlrpclib.Server(HUB_XMLRPC_API_URL, verbose=0)

hubSessionKey = client.hub.loginWithAuthRelayMode(HUB_USERNAME, HUB_PASSWORD)

#Get the server IDs
serverIds = client.hub.listServerIds(hubSessionKey)

#authenticate those servers(same credentials will be used as of hub to authenticate)
client.hub.attachToServers(hubSessionKey, serverIds)

perform the needed operation
systemsPerServer = client.multicast.system.list_systems(hubSessionKey, serverIds)
successfulResponses = systemsPerServer["Successful"]["Responses"]
failedResponses = systemsPerServer["Failed"]["Responses"]

for system in successfulResponses:
 print (system)

#logout
client.hub.logout(hubSessionKey)

Example: Auto-Connect Authentication

Auto-connect mode is similar to relay mode, it uses the Hub credentials to sign in in to all

peripheral servers. However, there is no need to use the attachToServers method, as auto-

connect mode connects to all available peripheral servers. This occurs at the same time as you

sign in to the Hub.

A typical workflow for auto-connect authentication is:

1. Credentials for the Hub are passed to the loginWithAutoconnectMode method, and a session

key for the Hub is returned (hubSessionKey).

2. A multicast call is performed on a set of servers. This is defined by serverIds, which contains

the IDs of the servers to target. In the background, system.list_system is called on each

server’s XMLRPC API.

3.5. Hub XMLRPC API Authentication Modes

SUSE Manager 4.2 | 3.5. Hub XMLRPC API Authentication Modes 15 / 35

3. Hub aggregates the results and returns the response in the form of a map. The map has two

entries:

◦ Successful: list of responses for those peripheral servers where the call succeeded.

◦ Failed: list of responses for those peripheral servers where the call failed.

Listing 3. Example Python Script for Auto-Connect Authentication:

#!/usr/bin/python
import xmlrpclib

HUB_XMLRPC_API_URL = "<HUB_XMLRPC_API_URL>"
HUB_USERNAME = "<USERNAME>"
HUB_PASSWORD = "<PASSWORD>"

client = xmlrpclib.Server(HUB_XMLRPC_API_URL, verbose=0)

loginResponse = client.hub.loginWithAutoconnectMode(HUB_USERNAME, HUB_PASSWORD)
hubSessionKey = loginResponse["SessionKey"]

#Get the server IDs
serverIds = client.hub.listServerIds(hubSessionKey)

perform the needed operation
systemsPerServer = client.multicast.system.list_systems(hubSessionKey, serverIds)
successfulResponses = systemsPerServer["Successful"]["Responses"]
failedResponses = systemsPerServer["Failed"]["Responses"]

for system in successfulResponses:
 print (system)

#logout
client.hub.logout(hubSessionKey)

3.5. Hub XMLRPC API Authentication Modes

SUSE Manager 4.2 | 3.5. Hub XMLRPC API Authentication Modes 16 / 35

Chapter 4. Managing Large
Scale Deployments in a Retail Environment
SUSE Manager for Retail 4.2 is an open source infrastructure management solution, optimized

and tailored specifically for the retail industry. It uses the same technology as SUSE Manager, but

is customized to address the needs of retail organizations.

SUSE Manager for Retail is designed for use in retail situations where customers can use point-of-

service terminals to purchase or exchange goods, take part in promotions, or collect loyalty

points. In addition to retail installations, it can also be used for novel purposes, such as

maintaining student computers in an educational environment, or self-service kiosks in banks or

hospitals.

SUSE Manager for Retail is intended for use in installations that include servers, workstations,

point-of-service terminals, and other devices. It allows administrators to install, configure, and

update the software on their servers, and manage the deployment and provisioning of point-of-

service machines.

Point-of-Service (POS) terminals can come in many different formats, such as point-of-sale

terminals, kiosks, digital scales, self-service systems, and reverse-vending systems. Every

terminal, however, is provided by a vendor, who set basic information about the device in the

firmware. SUSE Manager for Retail accesses this vendor information to determine how best to

work with the terminal in use.

In most cases, different terminals will require a different operating system (OS) image to ensure

they work correctly. For example, an information kiosk has a high-resolution touchscreen, where

a cashier terminal might only have a very basic display. While both of these terminals require

similar processing and network functionality, they will require different OS images. The OS images

ensure that the different display mechanisms work correctly.

For more information about setting up and using SUSE Manager for Retail, see Retail › Retail-

overview.

SUSE Manager 4.2 | Chapter 4. Managing Large Scale Deployments in a Retail Environment 17 / 35

Chapter 5. Tuning Large Scale Deployments
SUSE Manager is designed by default to work on small and medium scale installations. For

installations with more than 1000 clients per SUSE Manager Server, adequate hardware sizing and

parameter tuning must be performed.



The instructions in this section can have severe and catastrophic performance

impacts when improperly used. In some cases, they can cause SUSE Manager

to completely cease functioning. Always test changes before implementing

them in a production environment. During implementation, take care when

changing parameters. Monitor performance before and after each change,

and revert any steps that do not produce the expected result.



We strongly recommend that you contact SUSE Consulting for assistance with

tuning.

SUSE will not provide support for catastrophic failure when these advanced

parameters are modified without consultation.


Tuning is not required on installations of fewer than 1000 clients. Do not perform

these instructions on small or medium scale installations.

5.1. The Tuning Process

Any SUSE Manager installation is subject to a number of design and infrastructure constraints

that, for the purposes of tuning, we call environmental variables. Environmental variables can

include the total number of clients, the number of different operating systems under

management, and the number of software channels.

Environmental variables influence, either directly or indirectly, the value of most configuration

parameters. During the tuning process, the configuration parameters are manipulated to

improve system performance.

Before you begin tuning, you will need to estimate the best setting for each environment variable,

and adjust the configuration parameters to suit.

To help you with the estimation process, we have provided you with a dependency graph. Locate

the environmental variables on the dependency graph to determine how they will influence other

5.1. The Tuning Process

SUSE Manager 4.2 | 5.1. The Tuning Process 18 / 35

variables and parameters.

Environmental variables are represented by graph nodes in a rectangle at the top of the

dependency graph. Each node is connected to the relevant parameters that might need tuning.

Consult the relevant sections in this document for more information about recommended values.

Tuning one parameter might require tuning other parameters, or changing hardware, or the

infrastructure. When you change a parameter, follow the arrows from that node on the graph to

determine what other parameters might need adjustment. Continue through each parameter

until you have visited all nodes on the graph.

Network
Bandwidth

Proxy count

Client count

java.message_queue_thread_pool_size java.salt_batch_size

java.salt_presence_ping_gather_job_timeout

java.salt_presence_ping_timeout

org.quartz.threadPool.threadCount

org.quartz.scheduler.idleWaitTime

rhn-search.java.maxmemory

worker_threads

pub_hwm zmq_backlog

MinionActionExecutor.parallel_threads

connectionTimeout keepAliveTimeout

Channel count

java.taskomatic_channel_repodata_workers

OS mix

taskomatic.java.maxmemory

User count

MaxClients

hibernate.c3p0.max_size thread_pool Tomcat -Xmx

memory usage

work_mem

maxThreadsServerLimit

max_connections

effective_cache_size

RAM

shared_buffersswappiness

Key to the Dependency Graph

• 3D boxes are hardware design variables or constraints

• Oval-shaped boxes are software or system design variables or constraints

• Rectangle-shaped boxes are configurable parameters, color-coded by configuration file:

◦ Red: Apache httpd configuration files

◦ Blue: Salt configuration files

◦ Brown: Tomcat configuration files

◦ Grey: PostgreSQL configuration files

◦ Purple: /etc/rhn/rhn.conf

• Dashed connecting lines indicate a variable or constraint that might require a change to

another parameter

5.1. The Tuning Process

SUSE Manager 4.2 | 5.1. The Tuning Process 19 / 35

• Solid connecting lines indicate that changing a configuration parameter requires checking

another one to prevent issues

After the initial tuning has been completed, you will need to consider tuning again in these cases:

• If your tuning inputs change significantly

• If special conditions arise that require a certain parameter to be changed. For example, if

specific warnings appear in a log file.

• If performance is not satisfactory

To re-tune your installation, you will need to use the dependency graph again. Start from the

node where significant change has happened.

5.2. Environmental Variables

This section contains information about environmental variables (inputs to the tuning process).

Network Bandwidth

A measure of the typically available egress bandwith from the SUSE Manager Server host to

the clients or SUSE Manager Proxy hosts. This should take into account network hardware and

topology as well as possible capacity limits on switches, routers, and other network

equipment between the server and clients.

Channel count

The number of expected channels to manage. Includes any vendor-provided, third-party,

and cloned or staged channels.

Client count

The total number of actual or expected clients. It is important to tune any parameters in

advance of a client count increase, whenever possible.

OS mix

The number of distinct operating system versions that managed clients have installed. This is

ordered by family (SUSE Linux Enterprise, openSUSE, Red Hat Enterprise Linux, or Ubuntu

based). Storage and computing requirements are different in each case.

User count

The expected maximum amount of concurrent users interacting with the Web UI plus the

5.2. Environmental Variables

SUSE Manager 4.2 | 5.2. Environmental Variables 20 / 35

number of programs simultaneously using the XMLRPC API. Includes spacecmd, spacewalk-

clone-by-date, and similar.

5.3. Parameters

This section contains information about the available parameters.

5.3.1. MaxClients

Description The maximum number of HTTP requests served

simultaneously by Apache httpd. Proxies,

Web UI, and XMLRPC API clients each consume

one. Requests exceeding the parameter will be

queued and might result in timeouts.

Tune when User count and proxy count increase

significantly and this line appears in

/var/log/apache2/error_log: […]

[mpm_prefork:error] [pid …] AH00161: server

reached MaxRequestWorkers setting, consider

raising the MaxRequestWorkers setting.

Value default 150

Value recommendation 150-500

Location /etc/apache2/server-tuning.conf, in the

prefork.c section

Example MaxClients = 200

After changing Immediately change ServerLimit and check

maxThreads for possible adjustment.

Notes This parameter was renamed to

MaxRequestWorkers, both names are valid.

More information https://httpd.apache.org/docs/2.4/en/

mod/mpm_common.html#

maxrequestworkers

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 21 / 35

https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#maxrequestworkers

5.3.2. ServerLimit

Description The number of Apache httpd processes serving

HTTP requests simultaneously. The number

must equal MaxClients.

Tune when MaxClients changes

Value default 150

Value recommendation The same value as MaxClients

Location /etc/apache2/server-tuning.conf, in the

prefork.c section

Example ServerLimit = 200

More information https://httpd.apache.org/docs/2.4/en/

mod/mpm_common.html#serverlimit

5.3.3. maxThreads

Description The number of Tomcat threads dedicated to

serving HTTP requests

Tune when MaxClients changes. maxThreads must always

be equal or greater than MaxClients

Value default 150

Value recommendation The same value as MaxClients

Location /etc/tomcat/server.xml

Example <Connector port="8009" protocol="AJP/1.3"

redirectPort="8443" URIEncoding="UTF-8"

address="127.0.0.1" maxThreads="200"

connectionTimeout="20000"/>

More information https://tomcat.apache.org/tomcat-9.0-

doc/config/http.html

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 22 / 35

https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://httpd.apache.org/docs/2.4/en/mod/mpm_common.html#serverlimit
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html

5.3.4. connectionTimeout

Description The number of milliseconds before a non-

responding AJP connection is forcibly closed.

Tune when Client count increases significantly and

AH00992, AH00877, and AH01030 errors appear

in Apache error logs during a load peak.

Value default 900000

Value recommendation 20000-3600000

Location /etc/tomcat/server.xml

Example <Connector port="8009" protocol="AJP/1.3"

redirectPort="8443" URIEncoding="UTF-8"

address="127.0.0.1" maxThreads="200"

connectionTimeout="1000000"

keepAliveTimeout="300000"/>

More information https://tomcat.apache.org/tomcat-9.0-

doc/config/http.html

5.3.5. keepAliveTimeout

Description The number of milliseconds without data

exchange from the JVM before a non-

responding AJP connection is forcibly closed.

Tune when Client count increases significantly and

AH00992, AH00877, and AH01030 errors appear

in Apache error logs during a load peak.

Value default 300000

Value recommendation 20000-600000

Location /etc/tomcat/server.xml

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 23 / 35

https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html

Example <Connector port="8009" protocol="AJP/1.3"

redirectPort="8443" URIEncoding="UTF-8"

address="127.0.0.1" maxThreads="200"

connectionTimeout="1000000"

keepAliveTimeout="400000"/>

More information https://tomcat.apache.org/tomcat-9.0-

doc/config/http.html

5.3.6. Tomcat’s -Xmx

Description The maximum amount of memory Tomcat can

use

Tune when java.message_queue_thread_pool_size is

increased or OutOfMemoryException errors

appear in /var/log/rhn/rhn_web_ui.log

Value default 1 GiB

Value recommendation 4-8 GiB

Location /etc/sysconfig/tomcat

Example JAVA_OPTS="… -Xmx8G …"

After changing Check memory usage

More information https://docs.oracle.com/javase/8/docs/

technotes/tools/windows/java.html

5.3.7. java.message_queue_thread_pool_size

Description The maximum number of threads in Tomcat

dedicated to asynchronous operations

Tune when Client count increases significantly

Value default 5

Value recommendation 50 - 150

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 24 / 35

https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://tomcat.apache.org/tomcat-9.0-doc/config/http.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html
https://docs.oracle.com/javase/8/docs/technotes/tools/windows/java.html

Location /etc/rhn/rhn.conf

Example java.message_queue_thread_pool_size = 50

After changing Check hibernate.c3p0.max_size, as each

thread consumes a PostgreSQL connection,

starvation might happen if the allocated

connection pool is insufficient. Check

thread_pool, as each thread might perform

Salt API calls, starvation might happen if the

allocated Salt thread pool is insufficient. Check

Tomcat’s -Xmx, as each thread consumes

memory, OutOfMemoryException might be

raised if insufficient.

Notes Incoming Salt events are handled in separate

thread pool, see

java.salt_event_thread_pool_size

More information man rhn.conf

5.3.8. java.salt_batch_size

Description The maximum number of minions concurrently

executing a scheduled action.

Tune when Client count reaches several thousands and

actions are not executed quickly enough.

Value default 200

Value recommendation 200-500

Location /etc/rhn/rhn.conf

Example java.salt_batch_size = 300

After changing Check memory usage. Monitor memory

usage closely before and after the change.

More information Salt › Salt-rate-limiting

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 25 / 35

5.3.9. java.salt_event_thread_pool_size

Description The maximum number of threads in Tomcat

dedicated to handling of incoming Salt events.

Tune when The number of queued Salt events grows.

Typically, this can happen during onboarding

of large number of minions with higher value of

java.salt_presence_ping_timeout. The

number of events can be queried by echo

"select count(*) from susesaltevent;" |

spacewalk-sql --select-mode-direct -

Value default 8

Value recommendation 20-100

Location /etc/rhn/rhn.conf

Example java.salt_event_thread_pool_size = 50

After changing Check the length of Salt event queue. Check

hibernate.c3p0.max_size, as each thread

consumes a PostgreSQL connection, starvation

might happen if the allocated connection pool

is insufficient. Check thread_pool, as each

thread might perform Salt API calls, starvation

might happen if the allocated Salt thread pool

is insufficient. Check Tomcat’s -Xmx, as each

thread consumes memory,

OutOfMemoryException might be raised if

insufficient.

More information man rhn.conf

5.3.10. java.salt_presence_ping_timeout

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 26 / 35

Description Before any action is executed on a client, a

presence ping is executed to make sure the

client is reachable. This parameter sets the

amount of time before a second command

(find_job) is sent to the client to verify its

presence. Having many clients typically means

some will respond faster than others, so this

timeout could be raised to accommodate for

the slower ones.

Tune when Client count increases significantly, or some

clients are responding correctly but too slowly,

and SUSE Manager excludes them from calls.

This line appears in

/var/log/rhn/rhn_web_ui.log: "Got no result for

<COMMAND> on minion <MINION_ID> (minion

did not respond in time)"

Value default 4 seconds

Value recommendation 4-400 seconds

Location /etc/rhn/rhn.conf

Example java.salt_presence_ping_timeout = 40

After changing Large java.salt_presence_ping_timeout value

can reduce overall throughput. This can be

compensated by increasing

java.salt_event_thread_pool_size

More information Salt › Salt-timeouts

===

java.salt_presence_ping_gather_job_timeout

[cols="1,1"]

| Description | Before any action is executed on a client, a presence ping is executed to make sure

the client is reachable. After java.salt_presence_ping_timeout seconds have elapsed without a

response, a second command (find_job) is sent to the client for a final check. This parameter

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 27 / 35

sets the number of seconds after the second command after which the client is definitely

considered offline. Having many clients typically means some will respond faster than others, so

this timeout could be raised to accommodate for the slower ones. | Tune when | Client count

increases significantly, or some clients are responding correctly but too slowly, and SUSE

Manager excludes them from calls. This line appears in /var/log/rhn/rhn_web_ui.log: "Got no

result for <COMMAND> on minion <MINION_ID> (minion did not respond in time)" | Value default | 1

second | Value recommendation | 1-100 seconds | Location | /etc/rhn/rhn.conf | Example |

java.salt_presence_ping_gather_job_timeout = 10 | More information | Salt › Salt-timeouts

=== java.taskomatic_channel_repodata_workers

[cols="1,1"]

| Description | Whenever content is changed in a software channel, its metadata needs to be

recomputed before clients can use it. Channel-altering operations include the addition of a

patch, the removal of a package or a repository synchronization run. This parameter specifies the

maximum number of Taskomatic threads that SUSE Manager will use to recompute the channel

metadata. Channel metadata computation is both CPU-bound and memory-heavy, so raising

this parameter and operating on many channels simultaneously could cause Taskomatic to

consume significant resources, but channels will be available to clients sooner. | Tune when |

Channel count increases significantly (more than 50), or more concurrent operations on

channels are expected. | Value default | 2 | Value recommendation | 2-10 | Location |

/etc/rhn/rhn.conf | Example | java.taskomatic_channel_repodata_workers = 4 | After changing |

Check taskomatic.java.maxmemory for adjustment, as every new thread will consume memory |

More information | man rhn.conf

=== taskomatic.java.maxmemory

[cols="1,1"]

| Description | The maximum amount of memory Taskomatic can use. Generation of metadata,

especially for some OSs, can be memory-intensive, so this parameter might need raising

depending on the managed OS mix. | Tune when | java.taskomatic_channel_repodata_workers

increases, OSs are added to SUSE Manager (particularly Red Hat Enterprise Linux or Ubuntu), or

OutOfMemoryException errors appear in /var/log/rhn/rhn_taskomatic_daemon.log. | Value

default | 4096 MiB | Value recommendation | 4096-16384 MiB | Location | /etc/rhn/rhn.conf |

Example | taskomatic.java.maxmemory = 8192 | After changing | Check memory usage. | More

information | man rhn.conf

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 28 / 35

=== org.quartz.threadPool.threadCount

[cols="1,1"]

| Description | The number of Taskomatic worker threads. Increasing this value allows Taskomatic

to serve more clients in parallel. | Tune when | Client count increases significantly | Value default

| 20 | Value recommendation | 20-200 | Location | /etc/rhn/rhn.conf | Example |

org.quartz.threadPool.threadCount = 100 | After changing | Check hibernate.c3p0.max_size and

thread_pool for adjustment | More information | http://www.quartz-scheduler.org/

documentation/2.4.0-SNAPSHOT/configuration.html

=== org.quartz.scheduler.idleWaitTime

[cols="1,1"]

| Description | Cycle time for Taskomatic. Decreasing this value lowers the latency of Taskomatic.

| Tune when | Client count is in the thousands. | Value default | 5000 ms | Value

recommendation | 1000-5000 ms | Location | /etc/rhn/rhn.conf | Example |

org.quartz.scheduler.idleWaitTime = 1000 | More information | http://www.quartz-scheduler.org/

documentation/2.4.0-SNAPSHOT/configuration.html

=== MinionActionExecutor.parallel_threads

[cols="1,1"]

| Description | Number of Taskomatic threads dedicated to sending commands to Salt clients as

a result of actions being executed. | Tune when | Client count is in the thousands. | Value default

| 1 | Value recommendation | 1-10 | Location | /etc/rhn/rhn.conf | Example |

taskomatic.com.redhat.rhn.taskomatic.task.MinionActionExecutor.parallel_threads = 10

=== SSHMinionActionExecutor.parallel_threads

[cols="1,1"]

| Description | Number of Taskomatic threads dedicated to sending commands to Salt SSH

clients as a result of actions being executed. | Tune when | Client count is in the hundreds. |

Value default | 20 | Value recommendation | 20-100 | Location | /etc/rhn/rhn.conf | Example |

taskomatic.com.redhat.rhn.taskomatic.task.SSHMinionActionExecutor.parallel_threads = 40

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 29 / 35

http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html
http://www.quartz-scheduler.org/documentation/2.4.0-SNAPSHOT/configuration.html

=== hibernate.c3p0.max_size

[cols="1,1"]

| Description | Maximum number of PostgreSQL connections simultaneously available to both

Tomcat and Taskomatic. If any of those components requires more concurrent connections, their

requests will be queued. | Tune when | java.message_queue_thread_pool_size or maxThreads

increase significantly, or when org.quartz.threadPool.threadCount has changed significantly.

Each thread consumes one connection in Taskomatic and Tomcat, having more threads than

connections might result in starving. | Value default | 20 | Value recommendation | 100 to 200,

higher than the maximum of java.message_queue_thread_pool_size + maxThreads and

org.quartz.threadPool.threadCount | Location | /etc/rhn/rhn.conf | Example |

hibernate.c3p0.max_size = 100 | After changing | Check max_connections for adjustment. | More

information | https://www.mchange.com/projects/c3p0/#maxPoolSize

=== rhn-search.java.maxmemory

[cols="1,1"]

| Description | The maximum amount of memory that the rhn-search service can use. | Tune

when | Client count increases significantly, and OutOfMemoryException errors appear in

journalctl -u rhn-search. | Value default | 512 MiB | Value recommendation | 512-4096 MiB |

Location | /etc/rhn/rhn.conf | Example | rhn-search.java.maxmemory = 4096 | After changing |

Check memory usage.

=== shared_buffers

[cols="1,1"]

| Description | The amount of memory reserved for PostgreSQL shared buffers, which contain

caches of database tables and index data. | Tune when | RAM changes | Value default | 25% of

total RAM | Value recommendation | 25-40% of total RAM | Location |

/var/lib/pgsql/data/postgresql.conf | Example | shared_buffers = 8192MB | After changing | Check

memory usage. | More information | https://www.postgresql.org/docs/10/runtime-config-

resource.html#GUC-SHARED-BUFFERS

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 30 / 35

https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.mchange.com/projects/c3p0/#maxPoolSize
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-SHARED-BUFFERS

=== max_connections

[cols="1,1"]

| Description | Maximum number of PostgreSQL connections available to applications. More

connections allow for more concurrent threads/workers in various components (in particular

Tomcat and Taskomatic), which generally improves performance. However, each connection

consumes resources, in particular work_mem megabytes per sort operation per connection. |

Tune when | hibernate.c3p0.max_size changes significantly, as that parameter determines the

maximum number of connections available to Tomcat and Taskomatic | Value default | 400 |

Value recommendation | 2 * hibernate.c3p0.max_size + 50, if less than 1000 | Location |

/var/lib/pgsql/data/postgresql.conf | Example | max_connections = 250 | After changing | Check

memory usage. Monitor memory usage closely before and after the change. | More information

| https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-

CONNECTIONS

=== work_mem

[cols="1,1"]

| Description | The amount of memory allocated by PostgreSQL every time a connection needs to

do a sort or hash operation. Every connection (as specified by max_connections) might make

use of an amount of memory equal to a multiple of work_mem. | Tune when | Database

operations are slow because of excessive temporary file disk I/O. To test if that is happening, add

log_temp_files = 5120 to /var/lib/pgsql/data/postgresql.conf, restart PostgreSQL, and monitor the

PostgreSQL log files. If you see lines containing LOG: temporary file: try raising this parameter’s

value to help reduce disk I/O and speed up database operations. | Value recommendation | 2-20

MB | Location | /var/lib/pgsql/data/postgresql.conf | Example | work_mem = 10MB | After changing

| check if the SUSE Manager Server might need additional RAM. | More information |

https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM

=== effective_cache_size

[cols="1,1"]

| Description | Estimation of the total memory available to PostgreSQL for caching. It is the

explicitly reserved memory (shared_buffers) plus any memory used by the kernel as

cache/buffer. | Tune when | Hardware RAM or memory usage increase significantly | Value

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 31 / 35

https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-connection.html#GUC-MAX-CONNECTIONS
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM
https://www.postgresql.org/docs/10/runtime-config-resource.html#GUC-WORK-MEM

recommendation | Start with 75% of total RAM. For finer settings, use shared_buffers + free

memory + buffer/cache memory. Free and buffer/cache can be determined via the free -m

command (free and buff/cache in the output respectively) | Location |

/var/lib/pgsql/data/postgresql.conf | Example | effective_cache_size = 24GB | After changing |

Check memory usage | Notes | This is an estimation for the query planner, not an allocation. |

More information | https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-

EFFECTIVE-CACHE-SIZE

=== thread_pool

[cols="1,1"]

| Description | The number of worker threads serving Salt API HTTP requests. A higher number can

improve parallelism of SUSE Manager Server-initiated Salt operations, but will consume more

memory. | Tune when | java.message_queue_thread_pool_size or

org.quartz.threadPool.threadCount are changed. Starvation can occur when there are more

Tomcat or Taskomatic threads making simultaneous Salt API calls than there are Salt API worker

threads. | Value default | 100 | Value recommendation | 100-500, but should be higher than the

sum of java.message_queue_thread_pool_size and org.quartz.threadPool.threadCount |

Location | /etc/salt/master.d/susemanager.conf, in the rest_cherrypy section. | Example |

thread_pool: 100 | After changing | Check worker_threads for adjustment. | More information |

https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#

performance-tuning

=== worker_threads

[cols="1,1"]

| Description | The number of salt-master worker threads that process commands and replies

from minions and the Salt API. Increasing this value, assuming sufficient resources are available,

allows Salt to process more data in parallel from minions without timing out, but will consume

significantly more RAM (typically about 70 MiB per thread). | Tune when | Client count increases

significantly, thread_pool increases significantly, or SaltReqTimeoutError or Message timed out

errors appear in /var/log/salt/master. | Value default | 8 | Value recommendation | 8-200 |

Location | /etc/salt/master.d/tuning.conf | Example | worker_threads: 50 | After changing | Check

memory usage. Monitor memory usage closely before and after the change. | More information

| https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 32 / 35

https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://www.postgresql.org/docs/10/runtime-config-query.html#GUC-EFFECTIVE-CACHE-SIZE
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/netapi/all/salt.netapi.rest_cherrypy.html#performance-tuning
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads
https://docs.saltstack.com/en/latest/ref/configuration/master.html#worker-threads

=== pub_hwm

[cols="1,1"]

| Description | The maximum number of outstanding messages sent by salt-master. If more than

this number of messages need to be sent concurrently, communication with clients slows down,

potentially resulting in timeout errors during load peaks. | Tune when | Client count increases

significantly and Salt request timed out. The master is not responding. errors appear when pinging

minions during a load peak. | Value default | 1000 | Value recommendation | 10000-100000 |

Location | /etc/salt/master.d/tuning.conf | Example | pub_hwm: 10000 | More information |

https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm,

https://zeromq.org/socket-api/#high-water-mark

=== zmq_backlog

[cols="1,1"]

| Description | The maximum number of allowed client connections that have started but not

concluded the opening process. If more than this number of clients connects in a very short time

frame, connections are dropped and clients experience a delay re-connecting. | Tune when |

Client count increases significantly and very many clients reconnect in a short time frame, TCP

connections to the salt-master process get dropped by the kernel. | Value default | 1000 | Value

recommendation | 1000-5000 | Location | /etc/salt/master.d/tuning.conf | Example |

zmq_backlog: 2000 | More information | https://docs.saltstack.com/en/latest/ref/

configuration/master.html#zmq-backlog, http://api.zeromq.org/3-0:zmq-getsockopt

(ZMQ_BACKLOG)

=== swappiness

[cols="1,1"]

| Description | How aggressively the kernel moves unused data from memory to the swap

partition. Setting a lower parameter typically reduces swap usage and results in better

performance, especially when RAM memory is abundant. | Tune when | RAM increases, or swap is

used when RAM memory is sufficient. | Value default | 60 | Value recommendation | 1-60. For

128 GB of RAM, 10 is expected to give good results. | Location | /etc/sysctl.conf | Example |

vm.swappiness = 20 | More information | https://documentation.suse.com/sles/15-SP3/html/

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 33 / 35

https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://docs.saltstack.com/en/latest/ref/configuration/master.html#pub-hwm
https://zeromq.org/socket-api/#high-water-mark
https://zeromq.org/socket-api/#high-water-mark
https://zeromq.org/socket-api/#high-water-mark
https://zeromq.org/socket-api/#high-water-mark
https://zeromq.org/socket-api/#high-water-mark
https://zeromq.org/socket-api/#high-water-mark
https://zeromq.org/socket-api/#high-water-mark
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
https://docs.saltstack.com/en/latest/ref/configuration/master.html#zmq-backlog
http://api.zeromq.org/3-0:zmq-getsockopt
http://api.zeromq.org/3-0:zmq-getsockopt
http://api.zeromq.org/3-0:zmq-getsockopt
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm

SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 34 / 35

https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm
https://documentation.suse.com/sles/15-SP3/html/SLES-all/cha-tuning-memory.html#cha-tuning-memory-vm

=== Memory Usage

Adjusting some of the parameters listed in this

section can result in a higher amount of RAM

being used by various components. It is

important that the amount of hardware RAM is

adequate after any significant change.

To determine how RAM is being used, you will

need to check each process that consumes it.

Operating system:: Stop all SUSE Manager

services and inspect the output of free -h.

Java-based components:: This includes

Taskomatic, Tomcat, and rhn-search. These

services support a configurable memory cap.

The SUSE Manager Server:: Depends on many

factors and can only be estimated. Measure

PostgreSQL reserved memory by checking

shared_buffers, permanently. You can also

multiply work_mem and max_connections,

and multiply by three for a worst case estimate

of per-query RAM. You will also need to check

the operating system buffers and caches,

which are used by PostgreSQL to host copies of

database data. These often automatically

occupy any available RAM.

It is important that the SUSE Manager Server

has sufficient RAM to accommodate all of

these processes, especially OS buffers and

caches, to have reasonable PostgreSQL

performance. We recommend you keep

several gigabytes available at all times, and

add more as the database size on disk

increases.

Whenever the expected amount of memory

available for OS buffers and caches changes,

tee pidstat-memory.log ----

This command will save a copy of displayed

data in the pidstat-memory.log file for later

analysis.

:leveloffset!:

:leveloffset: +1

= GNU Free Documentation License

Copyright © 2000, 2001, 2002 Free Software

Foundation, Inc. 51 Franklin St, Fifth Floor, Boston,

MA 02110-1301 USA. Everyone is permitted to

copy and distribute verbatim copies of this

license document, but changing it is not

allowed.

[float] == 0. PREAMBLE

The purpose of this License is to make a

manual, textbook, or other functional and

useful document "free" in the sense of freedom:

to assure everyone the effective freedom to

copy and redistribute it, with or without

modifying it, either commercially or

noncommercially. Secondarily, this License

preserves for the author and publisher a way to

get credit for their work, while not being

considered responsible for modifications made

by others.

This License is a kind of "copyleft", which means

that derivative works of the document must

themselves be free in the same sense. It

complements the GNU General Public License,

which is a copyleft license designed for free

software.

5.3. Parameters

SUSE Manager 4.2 | 5.3. Parameters 35 / 35

	SUSE Manager 4.2: Large Deployments Guide
	Table of Contents
	Large Deployments Guide Overview
	Chapter 1. Hardware Requirements
	Chapter 2. Using a Single Server to Manage Large Scale Deployments
	2.1. Operation Recommendations
	2.1.1. Salt Client Onboarding Rate
	2.1.2. Salt Clients and the RNG
	2.1.3. Clients Running with Unaccepted Salt Keys
	2.1.4. Disabling the Salt Mine
	2.1.5. Disable Unnecessary Taskomatic jobs
	2.1.6. Swap and Monitoring
	2.1.7. AES Key Rotation

	Chapter 3. Using Multiple Servers to Manage Large Scale Deployments
	3.1. Hub Requirements
	3.1.1. Peripheral Servers

	3.2. Hub Installation
	3.3. Using the Hub API
	3.4. Hub XMLRPC API Namespaces
	3.5. Hub XMLRPC API Authentication Modes
	3.5.1. Authentication Examples

	Chapter 4. Managing Large Scale Deployments in a Retail Environment
	Chapter 5. Tuning Large Scale Deployments
	5.1. The Tuning Process
	5.2. Environmental Variables
	5.3. Parameters
	5.3.1. MaxClients
	5.3.2. ServerLimit
	5.3.3. maxThreads
	5.3.4. connectionTimeout
	5.3.5. keepAliveTimeout
	5.3.6. Tomcat’s -Xmx
	5.3.7. java.message_queue_thread_pool_size
	5.3.8. java.salt_batch_size
	5.3.9. java.salt_event_thread_pool_size
	5.3.10. java.salt_presence_ping_timeout

