
SUSE Manager 4.2

Salt Guide
February 02 2022

Table of Contents

Salt Guide Overview 1
1. Terminology 2
2. The Salt Command 5

2.1. Salt Targets . 5
2.2. Salt Execution Modules . 6
2.3. Salt Function Arguments . 7

3. Often Used Salt Commands 8
4. Salt States and Pillars 10

4.1. Group States . 10
4.2. Salt Pillars . 11
4.3. Download Endpoint . 12

5. Custom Salt States 14
5.1. Create a New Custom Salt Channel . 14
5.2. Example Custom State Files . 15
5.3. Custom State to Trust a GPG Key . 16
5.4. Apply a custom state at highstate . 18

6. Salt File Locations and Structure 19
7. The gitfs Fileserver Backend 22
8. Install with Yomi 24

8.1. Install the Yomi Formula . 24
8.2. Install the PXE Image . 25
8.3. Register Yomi in Cobbler . 26
8.4. Example Salt Pillar Preparation . 28
8.5. Monitor the Installation . 31

9. Configuration Modules 32
9.1. Install Configuration Modules . 32

10. Formulas 34
10.1. Formulas Provided by SUSE Manager . 34

10.1.1. Install Formulas with Zypper . 34
10.1.2. Activate Formulas from the Web UI . 35

10.2. Bind Formula . 35
10.3. Branch Network Formula . 38

10.3.1. Set Up a Branch Server Networking . 38
10.3.2. Set up Branch Server Terminal Naming . 40

10.4. DHCPd Formula . 40
10.5. Image Synchronization Formula . 42
10.6. Monitoring Formula . 43
10.7. PXE Formula . 46

10.7.1. Saltboot Kernel Command Line Parameters . 47
10.8. Saltboot Formula . 48

10.8.1. Special Partition Types . 50
10.8.2. Disk Selection in Saltboot Formula . 51
10.8.3. Troubleshooting the Saltboot Formula . 52

10.9. TFTPD Formula . 52
10.10. VsFTPd Formula . 53
10.11. Yomi Formula . 53
10.12. Custom Salt Formulas . 58

10.12.1. File Structure Overview . 59
10.12.2. Define Formula with Forms Data . 60
10.12.3. Writing Salt Formulas . 71
10.12.4. Separate Data . 73
10.12.5. Generated Pillar Data . 74

11. Salt SSH 76
11.1. SSH Connection Methods . 76
11.2. Salt SSH Integration . 76
11.3. Authentication . 76
11.4. User Account . 77
11.5. HTTP Redirection . 77
11.6. Call Sequence . 78
11.7. Bootstrap Sequence . 78
11.8. Proxy Support. 81
11.9. Users and SSH Key Management . 84
11.10. Repository Access with a Proxy . 85
11.11. Proxy Setup . 86

12. Rate Limiting 88
12.1. Batching. 88
12.2. Disabling the Salt Mine . 88

13. Large Scale Deployments 90
14. GNU Free Documentation License 91

Salt Guide Overview
Updated: 2022-02-02

Salt is a remote execution engine, configuration management and orchestration system used by

SUSE Manager to manage clients.

In SUSE Manager, the Salt master runs on the SUSE Manager Server, allowing you to register and

manage Salt clients.

This book is designed to be a primer for using Salt with SUSE Manager.

For more information about Salt, see the Salt documentation at https://docs.saltstack.com/

en/latest/contents.html.

The current version of Salt in SUSE Manager is 3002.

Throughout the SUSE Manager documentation, we use the term Salt clients to

refer to Salt machines that are connected to and controlled by the Salt master

on the SUSE Manager Server. This is to clearly differentiate them from traditional

clients. In other documentation, and in some internal references, Salt clients

are sometimes referred to as Salt minions instead. This is a difference in

terminology only.

SUSE Manager 4.2 | 1 / 98

https://docs.saltstack.com/en/latest/contents.html
https://docs.saltstack.com/en/latest/contents.html
https://docs.saltstack.com/en/latest/contents.html
https://docs.saltstack.com/en/latest/contents.html
https://docs.saltstack.com/en/latest/contents.html
https://docs.saltstack.com/en/latest/contents.html
https://docs.saltstack.com/en/latest/contents.html

Chapter 1. Terminology
Beacon

Beacons allow you to use the Salt event system to monitor non-Salt processes. Clients can

use beacons to connect to various system processes for constant monitoring. When a

monitored activity occurs, an event is sent on the Salt event bus that can then trigger a

reactor.

To use beacons on SUSE Linux Enterprise Server Salt clients, install the

python-pyinotify package. For Red Hat Enterprise Linux systems, install the

python-inotify package.

For more information on beacons, see https://docs.saltstack.com/en/latest/topics/

beacons/

Broker

The Salt broker allows clients to pass commands to each other. The broker acts like a switch,

therefore peer communication will only work for clients on the same network, or connected to

the same proxy.

For more information on Salt and peer communication, see https://docs.saltstack.com/en/

latest/ref/peer.html.

Environment

SUSE Manager implements Salt with a single environment. Multiple Salt environments are not

supported.

Formulas

Formulas are collections of Salt States that contain generic parameter fields. Formulas are

used within SUSE Manager to assist with configuring Salt clients. Some formulas have

extensive configuration options, and use forms to help organize them in the SUSE Manager

Web UI.

For more information about formulas, see Salt › Formulas-intro.

Grains

Grains provide information about the hardware of a client. This includes the operating

SUSE Manager 4.2 | Chapter 1. Terminology 2 / 98

https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/topics/beacons/
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/ref/peer.html
https://docs.saltstack.com/en/latest/ref/peer.html

system, IP addresses, network interfaces, and memory. When you run a Salt command any

modules and functions are run locally from the system being called. Salt modules are stored

on clients and the SUSE Manager Server within the /usr/lib/python*/site-packages/salt/

directory.

For more information on grains, see https://docs.saltstack.com/en/latest/topics/grains/.

Highstate

This term is used when you apply all outstanding states to all targeted clients at the same

time. The highstate must be applied when doing changes to systems, including enabling and

disabling formulas.

Key Fingerprints

Key fingerprints are exchanged between the SUSE Manager Server and Salt clients to verify

the identity of the server and the client. This prevents Salt clients from connecting to the

wrong server. You can see the fingerprints of your Salt clients by navigating to Salt › Keys.

Master

The Salt master issues commands to its attached clients. In SUSE Manager, the Salt master

must be the SUSE Manager Server.

Minions

Salt clients that are connected to and controlled by the Salt master on the SUSE Manager

Server. In SUSE Manager, these are referred to as Salt clients, in order to clearly differentiate

them from traditional clients. This is a difference in terminology only.

Modules

Functions within Salt are stored in modules. There are many types of Salt modules, including

state and execution modules. For a complete list of available Salt modules, see

https://docs.saltstack.com/en/latest/ref/index.html. Alternatively, you can write your own

Salt modules using Python.

Pillars

Pillars are created on the SUSE Manager Server. They contain information about a client or

group of clients. Pillars allow you to send confidential information to a targeted client or group

of clients. Pillars are useful for sensitive data, configuration of clients, variables, and any

arbitrary data.

SUSE Manager 4.2 | Chapter 1. Terminology 3 / 98

https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/topics/grains/
https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/ref/index.html
https://docs.saltstack.com/en/latest/ref/index.html

For more information on pillars, see https://docs.saltstack.com/en/latest/

topics/tutorials/pillar.html.

States

States are configuration templates. They allow you to describe what each of your systems

should look like, including the applications and services that are installed and running. States

are applied to the target client. This automates the process of bringing a large number of

systems into a known state, and then maintaining them.

Do not update the salt package using states. Update all other system

packages using states. You can then update the salt package from the

SUSE Manager Web UI as a separate step.

For more information on states, see https://docs.saltstack.com/en/latest/topics/

tutorials/starting_states.html.

For more Salt terminology, see https://docs.saltstack.com/en/latest/glossary.html.

SUSE Manager 4.2 | Chapter 1. Terminology 4 / 98

https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html
https://docs.saltstack.com/en/latest/topics/tutorials/pillar.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/glossary.html
https://docs.saltstack.com/en/latest/glossary.html
https://docs.saltstack.com/en/latest/glossary.html
https://docs.saltstack.com/en/latest/glossary.html
https://docs.saltstack.com/en/latest/glossary.html
https://docs.saltstack.com/en/latest/glossary.html
https://docs.saltstack.com/en/latest/glossary.html

Chapter 2. The Salt Command
Salt commands have three main components: target, function, and arguments. The calls are

constructed in this format:

salt 'target' <function> [arguments]

The target defines the client, or group of clients, on which to run the function.

The function is the particular task to be run.

Arguments provide any extra data required by the function.

2.1. Salt Targets

Salt command targets allow you to specify a client or group of clients. There are several different

targets you can use.

General Targeting

List available grains on all clients:

salt '*' grains.ls

Target a specific client:

salt 'web1.example.com' test.ping

Glob Targeting

Target all clients using a particular domain:

salt '*example.com' test.ping

Target all clients using a particular label:

salt 'label*' test.ping

2.1. Salt Targets

SUSE Manager 4.2 | 2.1. Salt Targets 5 / 98

List Targeting

Specify a flat list of clients, using their IDs:

salt -L 'client_ID1, client_ID2, client_ID3' test.ping

Regular Expression Targeting

You can also define targets with PCRE-compliant regular expressions:

salt -E '(?!web)' test.ping

IP Address Targeting

List available client IP addresses:

salt '*' network.ip_addrs

Target a specific client IP address:

salt -S '172.31.60.74' test.ping

Target all clients on a subnet:

salt -S 172.31.0.0/16 test.ping

For more on targeting, see https://docs.saltstack.com/en/latest/topics/targeting/.

2.2. Salt Execution Modules

When you have specified a target, provide the module and function to execute on the target.

Find which modules can be executed on the target:

salt '*' sys.doc

For a full list of callable modules, see https://docs.saltstack.com/en/latest/ref/modules/all/

index.html.

2.2. Salt Execution Modules

SUSE Manager 4.2 | 2.2. Salt Execution Modules 6 / 98

https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/topics/targeting/
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html
https://docs.saltstack.com/en/latest/ref/modules/all/index.html

2.3. Salt Function Arguments

Functions accept arguments for any extra data.

For example, the pkg.install function requires an argument specifying which package to install:

salt '*' pkg.install yast2

You can provide more than one argument to a function, with spaces between them. For example:

salt '*' cmd.run 'echo "Hello: $FIRST_NAME"' env='{FIRST_NAME: "John"}'

2.3. Salt Function Arguments

SUSE Manager 4.2 | 2.3. Salt Function Arguments 7 / 98

Chapter 3. Often Used Salt Commands
This section contains the most commonly used Salt commands. For a complete list of available

Salt commands, see https://docs.saltstack.com/en/latest/ref/cli/index.html.

salt-run

Display all clients that are running:

salt-run manage.up

Display all clients that are not running:

salt-run manage.down

Display the current status of all Salt clients:

salt-run manage.status

Check the version of Salt running on the SUSE Manager Server and active clients:

salt-run manage.versions

salt-cp

Copy a file to a client or set of clients:

salt-cp '*' foo.conf /root

salt-key -l

List public keys:

salt-key -l all

salt-key -a my-minion

Accept pending key for a minion:

salt-key -a my-minion

SUSE Manager 4.2 | Chapter 3. Often Used Salt Commands 8 / 98

https://docs.saltstack.com/en/latest/ref/cli/index.html
https://docs.saltstack.com/en/latest/ref/cli/index.html
https://docs.saltstack.com/en/latest/ref/cli/index.html
https://docs.saltstack.com/en/latest/ref/cli/index.html
https://docs.saltstack.com/en/latest/ref/cli/index.html
https://docs.saltstack.com/en/latest/ref/cli/index.html
https://docs.saltstack.com/en/latest/ref/cli/index.html
https://docs.saltstack.com/en/latest/ref/cli/index.html
https://docs.saltstack.com/en/latest/ref/cli/index.html
https://docs.saltstack.com/en/latest/ref/cli/index.html
https://docs.saltstack.com/en/latest/ref/cli/index.html

salt-key -A

Accept all pending keys:

salt-key -A

salt grains

List all available grains:

salt '*' grains.ls

List collected grain system data:

salt '*' grains.items

SUSE Manager 4.2 | Chapter 3. Often Used Salt Commands 9 / 98

Chapter 4. Salt States and Pillars
States are configuration templates. They allow you to describe what each of your systems should

look like, including the applications and services that are installed and running. Salt state files are

referred to as SLS (SaLt State) files.

States are applied to the target systems by matching relevant state data to clients. The state

data comes from SUSE Manager in the form of package and custom states.

You can target clients at three specific levels of hierarchy and priority: individual clients, system

groups, and organization. Individual clients have priority over groups, and groups have priority

over the organization.

For example:

• The Organization requires that version 1 is installed. All clients are part of the same

Organization.

• Group A requires that version 2 is installed. Client1, Client2, and Client3 are part of Group A.

• Group B requires any version installed. Client4 is part of Group B.

Leading to these possible scenarios:

• Client1 wants package removed, package is removed (Client Level)

• Client2 wants version 2, gets version 2 (Client Level)

• Client3 wants any version, gets version 2 (Group Level)

• Client4 wants any version, gets version 1 (Organization Level)

For more information on Salt states, see https://docs.saltproject.io/en/latest/topics/states/.

You can create custom Salt states with SUSE Manager. For more information, see Salt › Custom-

states.

4.1. Group States

Pillar data can be used to perform bulk actions, like applying all assigned states to clients within

the group. This section contains some examples of bulk actions that you can take using group

states.

4.1. Group States

SUSE Manager 4.2 | 4.1. Group States 10 / 98

https://docs.saltproject.io/en/latest/topics/states/
https://docs.saltproject.io/en/latest/topics/states/
https://docs.saltproject.io/en/latest/topics/states/
https://docs.saltproject.io/en/latest/topics/states/
https://docs.saltproject.io/en/latest/topics/states/
https://docs.saltproject.io/en/latest/topics/states/
https://docs.saltproject.io/en/latest/topics/states/
https://docs.saltproject.io/en/latest/topics/states/
https://docs.saltproject.io/en/latest/topics/states/

To perform these actions, you will need to determine the ID of the group that you want to

manipulate. You can determine the Group ID by using the spacecmd command:

spacecmd group_details

These examples use an example Group ID of GID.

To apply all states assigned to the group:

salt -I 'group_ids:GID' state.apply custom.group_GID

To apply any state (whether or not it is assigned to the group):

salt -I 'group_ids:GID' state.apply ``state``

To apply a custom state:

salt -I 'group_ids:2130' state.apply manager_org_1.``customstate``

Apply the highstate to all clients in the group:

salt -I 'group_ids:GID' state.apply

4.2. Salt Pillars

SUSE Manager exposes a small amount of internal data as pillars which can be used with custom

states. Pillars are created on the SUSE Manager Server, and contain information about a client or

group of clients. For custom information in pillars, see Client-configuration › Custom-info. Pillars

are useful for sensitive data, configuration of clients, variables, and any arbitrary data.

Pillars are managed either automatically by SUSE Manager, or manually by the user.

To avoid hard-coding organization IDs within SUSE Linux Enterprise Server files, a pillar entry is

added for each organization:

org-files-dir: relative_path_to_files

The specified file is available for all clients which belong to the organization.

4.2. Salt Pillars

SUSE Manager 4.2 | 4.2. Salt Pillars 11 / 98

This is an example of a pillar located at /etc/motd:

file.managed:
 - source: salt://{{ pillar['org-files-dir']}}/motd
 - user: root
 - group: root
 - mode: 644

For more information on Salt pillars, see https://docs.saltproject.io/en/latest/topics/pillar/.

4.3. Download Endpoint

By default, SUSE Manager assumes that the download endpoint to use is the FQDN of the SUSE

Manager Server or Proxy. However, there are some cases where you might like to use a different

FQDN as the download endpoint. The most common example is if you need to use load

balancing, caching proxies, or in environments with complicated networking requirements.

To change the package download endpoint, you can manually adjust three Salt pillars: *

pkg_download_point_protocol, defaults to https. * pkg_download_point_host, defaults to the

FQDN of the SUSE Manager Server (or Proxy, if in use). * pkg_download_point_port, defaults to

443.

If you do not adjust these pillars directly, SUSE Manager will fall back to the default values.

Procedure: Changing the Package Download Endpoint Pillar

1. Navigate to /srv/pillar/ and create a file called top.sls with these contents:

base:
 '*':
 - pkg_download_points

This example directs Salt to look at the pkg_download_points.sls file to determine the base

URL to use. You can adjust this file to target different clients or groups, depending on your

environment.

2. Remain in /srv/pillar/ and create a file called pkg_download_points.sls with the base URLs

you want to use. For example:

4.3. Download Endpoint

SUSE Manager 4.2 | 4.3. Download Endpoint 12 / 98

https://docs.saltproject.io/en/latest/topics/pillar/
https://docs.saltproject.io/en/latest/topics/pillar/
https://docs.saltproject.io/en/latest/topics/pillar/
https://docs.saltproject.io/en/latest/topics/pillar/
https://docs.saltproject.io/en/latest/topics/pillar/
https://docs.saltproject.io/en/latest/topics/pillar/
https://docs.saltproject.io/en/latest/topics/pillar/
https://docs.saltproject.io/en/latest/topics/pillar/
https://docs.saltproject.io/en/latest/topics/pillar/

pkg_download_point_protocol: http
pkg_download_point_host: example.com
pkg_download_point_port: 444

3. OPTIONAL: If you want to use external pillars, for example Group IDs, open the master

configuration file and set the ext_pillar_first parameter to true. You can then use Group IDs to

set conditional values, for example:

{% if pillar['group_ids'] is defined and 8 in pillar['group_ids'] %}
 pkg_download_point_protocol: http
 pkg_download_point_host: example.com
 pkg_download_point_port: 444
{% else %}
 pkg_download_point_protocol: ftp
 pkg_download_point_host: example.com
 pkg_download_point_port: 445
{%- endif %}

4. OPTIONAL: You can also use grains to set conditional values, for example:

{% if grains['fqdn'] == 'client1.example.com' %}
 pkg_download_point: example1.com
{% elif grains['fqdn'] == 'client2.example.com'' %}
 pkg_download_point: example2.com
{% else %}
 pkg_download_point: example.com
{% endif %}

4.3. Download Endpoint

SUSE Manager 4.2 | 4.3. Download Endpoint 13 / 98

Chapter 5. Custom Salt States
You can create your own custom Salt states with SUSE Manager as centrally managed

configuration channels. Custom states are stored as Salt state files on the SUSE Manager Server

with a .sls extension.

5.1. Create a New Custom Salt Channel

You can use the SUSE Manager Web UI to create and edit custom Salt state files. You must create

a state channel first, with an initial state named init.sls. The init.sls file is used to reference all

other state files within the channel. The custom states that you create using the Web UI are

stored on the SUSE Manager Server in the the /srv/susemanager/salt/<organization>/ directory.

After the channel is created with an init.sls file, you can write additional state files in the Web UI.

Alternatively, you can upload existing state files to use within your state channel, or import them

from other channels or clients.

Procedure: Creating a Custom Salt Channel and Initial State

1. In the SUSE Manager Web UI, navigate to Configuration › Channels.

2. Click [ Create State Channel ].

3. In the Name field, type a name for your state.

4. In the Label field, type a label. Use alphanumeric characters, hyphens, and underscores. Do

not use spaces.

5. In the Description field, type a short description of the configuration your state performs.

6. In the SLS Contents field, type the contents of your init.sls state. If you want to reference file

templates in this configuration channel, ensure your file starts by specifying the source of the

managed file, using this syntax:

file.managed:
 - source: salt://<org_name>/<channel_name>/etc/<ID>/<filename>

 Example custom state files are given later in this section.
. Click btn:[Update Channel] to save your state.

Procedure: Adding Additional Files to a Custom State Channel

5.1. Create a New Custom Salt Channel

SUSE Manager 4.2 | 5.1. Create a New Custom Salt Channel 14 / 98

1. In the SUSE Manager Web UI, navigate to Configuration › Channels. . Click the name of the

channel you want to add files to.

2. To create a new file, click btn:Create configuration file and type the contents of the file.

3. To upload an existing file, click [ Upload Configuration Files ] and select the file to upload.

4. To copy an existing file, click [ Import a File from Another Channel or System ] and select the

file to copy.

Procedure: Editing a Custom Salt State

1. In the SUSE Manager Web UI, navigate to Configuration › Channels.

2. Click [ View/Edit <filename>.sls File ].

3. Make your changes to the file.

4. Click [ Update Configuration File ] to save your state.

You can also manage revisions, compare the state to others in your organization, and download

the .sls file from this dialog.

Procedure: Assigning a Client to a Custom Salt State

1. In the SUSE Manager Web UI, navigate to Configuration › Channels.

2. Click the name of the state you want to assign a client to.

3. Navigate to the Systems › Target Systems tab.

4. Check the clients you want to assign.

5. Click [ Subscribe systems ].

For more information about Salt state modules, see https://docs.saltproject.io/en/latest/ref/

states/all/index.html.

5.2. Example Custom State Files

This section contains some example custom state files. Use these as a basis for writing your own

custom states.

5.2. Example Custom State Files

SUSE Manager 4.2 | 5.2. Example Custom State Files 15 / 98

https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html
https://docs.saltproject.io/en/latest/ref/states/all/index.html

Listing 1. Example: Manage a File

my_config_change_id:
 file.managed:
 - name: /etc/my.conf
 - source: salt://example_org/example_channel/etc/my.conf
 - user: root
 - group: root
 - mode: 644
 - template: jinja

Listing 2. Example: Package Management

my_pkg_id:
 pkg.installed:
 - refresh: True
 - pkgs:
 - glibc
 - kernel-default
 - hello: 1.0-42

Listing 3. Example: Remote Command

ip_forward-on:
 cmd.run:
 - name: echo "1" > /proc/sys/net/ipv4/ip_forward
 - onlyif:
 - test `cat /proc/sys/net/ipv4/ip_forward` -eq 0

Listing 4. Example: Service Management

time_service_id:
 service.running:
 - name: chronyd
 - enable: True

5.3. Custom State to Trust a GPG Key

By default, operating systems trust only their own GPG keys when they are installed, and do not

trust keys provided by third party packages. The clients can be successfully bootstrapped

without the GPG key being trusted. However, you cannot install new third party packages or

update them until the keys are trusted.

5.3. Custom State to Trust a GPG Key

SUSE Manager 4.2 | 5.3. Custom State to Trust a GPG Key 16 / 98

Salt clients are set to trust SUSE tools channels GPG keys when they are bootstrapped. For all

other clients and channels, you need to manually trust third party GPG keys.

If you are bootstrapping Salt clients from the SUSE Manager Web UI, you can use a custom Salt

state to trust the GPG key.

Procedure: Trusting a GPG Key With a Custom Salt State

1. Locate the key that you need to trust. Ensure you have the correct key, and that you also

have the fingerprint used to verify the key. This information is available from the vendor or, in

some cases, from a key server.

2. Copy the key to a file location where the client can access it. We recommend saving it in the

/srv/www/htdocs/pub/ directory, where all SUSE public keys are also saved.

3. In the SUSE Manager Web UI, navigate to Configuration › Channels.

4. Click [ Create State Channel ].

5. In the Name field, type a name for your state. For example, GPG Key Trusts.

6. In the Label field, type a label. For example, GPG_Key_Trusts.

7. In the Description field, type a short description of the configuration your state performs. For

example, Trusts GPG Keys for CentOS.

8. In the SLS Contents field, create a state to retrieve the appropriate key from the SUSE

Manager Server and trust it on the client. The exact contents of your state varies depending

on your client operating system. For example:

rpm_trust_gpg_key:
 cmd.run:
 - name: rpm --import https://{{ salt['pillar.get']('mgr_server') }}/pub/<third-party-
gpg>.key
 - unless: rpm -q gpg-pubkey-<key_id>

deb_trust_gpg_key:
 mgrcompat.module_run:
 - name: pkg.add_repo_key
 - path: https://{{ salt['pillar.get']('mgr_server') }}/pub/<third-party-gpg>.key

5.3. Custom State to Trust a GPG Key

SUSE Manager 4.2 | 5.3. Custom State to Trust a GPG Key 17 / 98

 Alternatively, you can add GPG keys to a configuration channel, using a managed
file to deploy them directly on the client.
 In this case, you would use a local path to the key, rather than a URL.
. Click btn:[Update Channel] to save your state.
. Navigate to menu:Configuration[Channels] and click the name of the state you want
to assign a client to.
. Navigate to the menu:Systems[Target Systems] tab and check the clients you want
to assign.
. Click btn:[Subscribe systems].
 When the configuration file is next run on the client, the GPG key is trusted.

Alternatively, you can manage your GPG keys from your own repository hosted on an external file

management system.

5.4. Apply a custom state at highstate

To apply a custom state at highstate create a mapping in /srv/salt/top.sls. This short example

maps the test state to the system group 12:

/srv/salt/top.sls
base:
 'group_ids:12':
 - match: pillar
 - test

5.4. Apply a custom state at highstate

SUSE Manager 4.2 | 5.4. Apply a custom state at highstate 18 / 98

Chapter 6. Salt File Locations and Structure
There are several ways to set up the Salt file structure. This section describes how Salt is

supported and set up as part of SUSE Manager Server. The main configuration file is

/etc/salt/master.d/susemanager.conf.

Do not edit the /etc/salt/master.d/susemanager.conf configuration file. This file

belongs to the spacewalk-setup package and is marked as %config. When SUSE

updates the spacewalk-setup package, the susemanager.conf file is

overwritten, and any customization is lost. Instead, add your own configuration

file to the /etc/salt/master.d/ directory. This prevents the update process from

deleting your settings from the main susemanager.conf configuration file.

Some settings from /etc/salt/master.d/susemanager.conf that can help with finding

configuration options:

Configure different file roots. Custom salt states should only be placed in
/srv/salt.
Users should not touch other directories listed here.
file_roots:
 base:
 - /usr/share/susemanager/salt
 - /usr/share/salt-formulas/states
 - /usr/share/susemanager/formulas/states
 - /srv/susemanager/salt
 - /srv/salt

Configure different pillar roots. Custom pillar data should only be placed
in /srv/pillar.
Users should not touch other directories listed here.
pillar_roots:
 base:
 - /srv/pillar

When you are working with /etc/salt/master.d/susemanager.conf, be aware that:

• Files listed are searched in the order they appear

• The first matching file found is called

The SUSE Manager Server reads Salt state data from five root directories:

SUSE Manager 4.2 | Chapter 6. Salt File Locations and Structure 19 / 98

/usr/share/susemanager/salt

This directory is shipped and updated with SUSE Manager and includes certificate setup and

common state logic to be applied to packages and channels.

 Do not edit or add custom Salt data to this directory.

/usr/share/salt-formulas/states

/usr/share/susemanager/formulas/states

These directories are shipped and updated with SUSE Manager or additional extensions. They

include states for Salt formulas.

 Do not edit or add custom Salt data to this directory.

/srv/susemanager/salt

This directory is generated by SUSE Manager, based on assigned channels and packages for

clients, groups, and organizations. This directory will be overwritten and regenerated. It is the

Salt equivalent of the SUSE Manager database.

 Do not edit or add custom Salt data to this directory.

Within this directory, each organization has a sub-directory.

Listing 5. Example: SLS File Directory Structure

├── manager_org_<org id>
│ ├── files
│ │ ... files needed by states (uploaded by users)...
│ └── state.sls
 ... other SLS files (created by users)...
For example:
├── manager_org_TESTING
│ ├── files
│ │ └── motd # user created
│ │ ... other files needed by states ...
│ └── motd.sls # user created
 ... other SLS files ...

/srv/salt

This directory is used for custom state data, modules, and related data. SUSE Manager does

not operate or use this directory directly. The state data in this directory is used by the client

SUSE Manager 4.2 | Chapter 6. Salt File Locations and Structure 20 / 98

highstate, and is merged with the total state result generated by SUSE Manager. Use this

directory for custom Salt data.

The SUSE Manager Server reads Salt pillar data from two root directories:

/usr/share/susemanager/pillar

This directory is generated by SUSE Manager. It is shipped and updated together with SUSE

Manager.

 Do not edit or add custom Salt data to this directory.

/srv/pillar

By default, SUSE Manager does not operate or use this directory directly. The custom pillar

data in this directory is merged with the pillar result created by SUSE Manager. Use this

directory for custom Salt pillar data.

You can use the gitfs fileserver backend to serve Salt data from git repositories.

For more information, see salt-gitfs.pdf.

SUSE Manager 4.2 | Chapter 6. Salt File Locations and Structure 21 / 98

salt-gitfs.pdf

Chapter 7. The gitfs Fileserver Backend
In SUSE Manager, pygit2 is the supported Python interface to git. When pygit2 is installed the gitfs

fileserver backend is available and it is a supported feature.

Configuration options are set in the /etc/salt/master file, or in a separate configuration file in the

/etc/salt/master.d/ directory. The basic settings are:

fileserver_backend

List of fileserver backends that the Salt master checks for files in the order they are defined.

Options:

• roots: Files local on the Salt master (SUSE Manager Server). roots is required to keep the

product running. You can only enable gitfs optionally. Additionally, SUSE strongly

recommends to prefer roots (local files) over gitfs. The standard backend.

• gitfs: Files stored in one or more git repositories. The repositories are defined with

gitfs_remotes.

Example:

fileserver_backend:
 - roots
 - git

gitfs_remotes

List of git repositories. git://, https://, file://, or ssh:// URLs can be configured. For SSH remotes,

a scp-like syntax is also supported; for example:

gitlab@gitlab.example.com:universe/setup.git. Then you can also specify options for

credentials, file locations, or branches such as pubkey, privkey, root,base.

Example:

gitfs_remotes:
 - https://example.com/myformulas/formula.git
 - gitlab@gitlab.example.com:universe/setup.git:
 - pubkey: /var/lib/salt/.ssh/id_rsa_gitlab.pub
 - privkey: /var/lib/salt/.ssh/id_rsa_gitlab
 - root: srv/salt
 - base: master

SUSE Manager 4.2 | Chapter 7. The gitfs Fileserver Backend 22 / 98

ext_pillar

List of external pillar interfaces. Salt can also serve pillar data from one or more git

repositories. For syntax and options, also see the gitfs_remotes setting.

Example:

ext_pillar:
 - git:
 - master gitlab@gitlab.example.com:universe/setup.git:
 - root: srv/pillar
 - pubkey: /var/lib/salt/.ssh/id_rsa_gitlab.pub
 - privkey: /var/lib/salt/.ssh/id_rsa_gitlab

For more information, see: * https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html

* https://docs.saltstack.com/en/latest/ref/configuration/master.html

SUSE Manager 4.2 | Chapter 7. The gitfs Fileserver Backend 23 / 98

https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html
https://docs.saltstack.com/en/latest/ref/configuration/master.html

Chapter 8. Install with Yomi
Yomi (yet one more installer) is an installer for SUSE and openSUSE operating systems. Yomi is

designed as a Salt state, and can be used for installing SUSE operating systems on new systems.

In SUSE Manager, Yomi can be used as part of provisioning new clients, as an alternative to

AutoYaST.

Yomi consists of two components:

• The Yomi formula, which contains the Salt states and modules required to perform the

installation.

• The operating system image, which includes the pre-configured salt-minion service.

Both components can be used independently of SUSE Manager, or integrated with it. This section

describes how to use it with SUSE Manager.

• For more information about using Yomi independently, see https://github.com/openSUSE/

yomi.

• For build assets, see https://build.opensuse.org/project/show/

systemsmanagement:yomi.

To use Yomi for installing a client operating system, follow this process:

• Install the yomi-formula package.

• Prepare the Salt pillar for the new installation.

• Boot the new client using the PXE boot image for Yomi.

To use Yomi with SUSE Manager, ensure you have enough available memory.

To boot from USB or DVD image, you need at least 512 MB. To boot from a PXE

server, you need at least 2 GB.

8.1. Install the Yomi Formula

Before you begin, you need to install the Yomi formula, which is available as a package in SUSE

Manager.

The yomi-formula package contains the Salt states and modules that describe the Yomi state,

8.1. Install the Yomi Formula

SUSE Manager 4.2 | 8.1. Install the Yomi Formula 24 / 98

https://github.com/openSUSE/yomi
https://github.com/openSUSE/yomi
https://github.com/openSUSE/yomi
https://github.com/openSUSE/yomi
https://github.com/openSUSE/yomi
https://build.opensuse.org/project/show/systemsmanagement:yomi
https://build.opensuse.org/project/show/systemsmanagement:yomi
https://build.opensuse.org/project/show/systemsmanagement:yomi
https://build.opensuse.org/project/show/systemsmanagement:yomi
https://build.opensuse.org/project/show/systemsmanagement:yomi
https://build.opensuse.org/project/show/systemsmanagement:yomi
https://build.opensuse.org/project/show/systemsmanagement:yomi

and the formulas with forms to create the pillar. It also contains documentation about the

different sections of the pillar, and some examples about how to parameterize installations

based on openSUSE, MicroOS, or SLE.

The formula package performs these actions:

• Adds a new configuration file called yomi-formula.conf in the /etc/salt/master.d/ directory.

This configuration file defines the Python module and Salt states required by Yomi.

• Installs the Yomi Salt states in the /usr/share/salt-formulas/states/ directory.

• Provides some example configuration files in the /usr/share/yomi/ directory.

• Installs the required forms and sub-forms in the /usr/share/salt-formulas/metadata/

directory.

• Provides some pillar examples in the /usr/share/yomi/pillar/ directory.

Procedure: Installing the Yomi Formula

1. On the SUSE Manager Server, at the command prompt, as root, install the yomi-formula

package:

zypper in yomi-formula

2. Restart services:

systemctl restart salt-master.service

For more information about the Yomi formula, see Salt › Formula-yomi

8.2. Install the PXE Image

To provision a new client, you need an operating system image to boot from. You can use any

image that contains a salt-minion service enabled, together with a minimal set of tools that are

required during the installation, for example parted or btrfstools.

Yomi provides an already prepared image, based on openSUSE Tumbleweed, openSUSE Leap (for

Uyuni), or SLE (for SUSE Manager). For SUSE Manager, the image is packaged as an RPM. This is

done in a similar way to how pxe-default-image is distributed.

The package installs a standard PXE OEM image generated by Kiwi, the initial kernel and initrd in

8.2. Install the PXE Image

SUSE Manager 4.2 | 8.2. Install the PXE Image 25 / 98

the /srv/pxe-yomi-image/ directory, and the second stage kernel, initrd and image in the

/srv/pxe-yomi-image/image directory.

Procedure: Installing the PXE Image

1. On the SUSE Manager Server, at the command prompt, as root, install the pxe-yomi-image

service:

zypper in pxe-yomi-image-sle15

When you have the package installed, you can register Yomi in Cobbler.

8.3. Register Yomi in Cobbler

SUSE Manager uses Cobbler to manage the PXE boot service, so you will need to register the

image in Cobbler.

Procedure: Registering the Yomi Image in Cobbler

1. On the SUSE Manager Server, at the command prompt, as root, create a directory for the

Yomi image:

mkdir /srv/tftpboot/pxe-yomi-image

2. Define a distribution in Cobbler, including the path to install the second stage kernel and

initrd, the location of the full image, and any further kernel options. Adjust this command to

include the correct version of the product, and the TFTP server address:

8.3. Register Yomi in Cobbler

SUSE Manager 4.2 | 8.3. Register Yomi in Cobbler 26 / 98

cobbler distro add \
 --name=pxe-yomi-image \
 --kernel=/srv/pxe-yomi-image/linux \
 --initrd=/srv/pxe-yomi-image/initrd \
 --boot-files='/srv/tftpboot/pxe-yomi-image/image.initrd=/srv/pxe-yomi
-image/image/pxe-yomi-image-opensuse15.x86_64-1.0.0.initrd /srv/tftpboot/pxe-
yomi-image/image.kernel=/srv/pxe-yomi-image/image/pxe-yomi-image-
opensuse15.x86_64-1.0.0.kernel /srv/tftpboot/pxe-yomi-
image/image.md5=/srv/pxe-yomi-image/image/pxe-yomi-image-
opensuse15.x86_64-1.0.0.md5 /srv/tftpboot/pxe-yomi-
image/image.config.bootoptions=/srv/pxe-yomi-image/image/pxe-yomi-image-
opensuse15-x86_64-1.0.0.config.bootoptions /srv/tftpboot/pxe-yomi-
image/image.xz=/srv/pxe-yomi-image/image/pxe-yomi-image-
opensuse15.x86_64-1.0.0.xz' \
 --kernel-options='rd.kiwi.install.pxe rd.kiwi.install.image=tftp://server-address/pxe-
yomi-image/image.xz rd.kiwi.ramdisk ramdisk_size=2097152 net.ifnames=1'

By default, the salt-minion service in pxe-yomi-image is configured to find the Salt master under

the salt address. If the DNS server is not able to resolve this address, you need to adjust the

kernel-options parameter from the Cobbler command that register the distribution, and add a

new kernel command line of master=master_address. This will override the default configuration

for the salt-minion.

Procedure: Registering the Yomi Profile in Cobbler

1. On the SUSE Manager Server, at the command prompt, as root, define a profile in Cobbler

based on the image.

cobbler profile add \
 --name pxe-yomi-profile \
 --distro=pxe-yomi-image

2. OPTIONAL: Create a system in Cobbler. If you know the MAC address for the new client to be

provisioned, you can have it boot directly from the Yomi image.

cobbler system add \
 --name=yomi \
 --mac=00:11:22:33:44:55 \
 --profile=pxe-yomi-profile

3. When the new node has been provisioned, remove the temporary Cobbler system:

8.3. Register Yomi in Cobbler

SUSE Manager 4.2 | 8.3. Register Yomi in Cobbler 27 / 98

cobbler system remove --name=yomi

8.4. Example Salt Pillar Preparation

The parameters of the new installation are defined with a Salt pillar. The pillar includes

parameters that the Yomi state requires during the installation, including the partitions, file

systems, repositories, packages installed, and services enabled.

The pillar is defined using the formulas with forms. In this example, we prepare the pillar for a

minimal openSUSE Tumbleweed installation. You can find examples for MicroOS or SLES in the

example directory /usr/share/yomi/pillar/.

To begin, boot the client that you want to provision using the Yomi PXE boot image, using the

Cobbler procedures described earlier in this section.

When the salt-minion service is running on the new client, accept the key by navigating to Salt ›

Keys. When the key is accepted, you can view and manage the client by navigating to Systems ›
Overview. Navigate to the Formulas tab, and add all the Yomi Installer formulas to the client.

When you have added all the formulas, complete the forms and sub-forms. This section outlines

each form and provides example settings for a minimal installation. For a detailed explanation of

every option, see Salt › Formula-yomi.

Yomi

The Yomi form contains some general configuration options. For example, the keyboard

language and layout, the locale information, and the option to perform a full reset of the

system after provisioning.

For this example, set the Reboot parameter to yes.

Yomi Storage

This sub-form provides information about the devices, partitioning, file system (including the

BtrFS subvolumes, for example), and LVM and RAID configuration.

For this example, we assume that the new client has a single device named /dev/sda, and that it

belongs to a non-UEFI system. In this case, we have only three partitions: one for the boot loader,

one for swap and one for the system. We also expect to have an ext4 file system for the root

directory.

8.4. Example Salt Pillar Preparation

SUSE Manager 4.2 | 8.4. Example Salt Pillar Preparation 28 / 98

Device 1:

• Device: /dev/sda

• Label: GPT

• Initial Gap: 1 MB

Create three partitions:

• Partition 1:

◦ Partition Number: 1

◦ Partition Size: 1 MB

◦ Partition Type: boot

• Partition 2:

◦ Partition Number: 2

◦ Partition Size: 1024 MB

◦ Partition Type: swap

• Partition 3:

◦ Partition Number: 3

◦ Partition Size: rest

◦ Partition Type: linux

Create two file systems:

• Filesystem 1:

◦ Partition: /dev/sda2

◦ Filesystem: swap

• Filesystem 2:

◦ Partition: /dev/sda3

◦ Filesystem: ext4

◦ Mountpoint: /

8.4. Example Salt Pillar Preparation

SUSE Manager 4.2 | 8.4. Example Salt Pillar Preparation 29 / 98

Yomi Bootloader

This sub-form provides details required for GRUB.

Set these parameters:

• Device: /dev/sda

• Theme: selected

The Kernel parameter can be used for the GRUB append section.

Yomi Software

This form provides the different repositories and packages to install. You can also register the

product in this form, using SUSEConnect, and install the different modules after registering.

For this example we are going to install a very minimal openSUSE Tumbleweed distribution, using

publicly available repositories. For production deployments, you will need to provide a local

repository.

Add a new repository: * Repository Name: repo-oss * Repository URL:

http://download.opensuse.org/tumbleweed/repo/oss/

Add these packages: * pattern:enhanced_base * glibc-locale * kernel-default

You can also add patterns and products, together with packages, by using the correct prefix.

Yomi Services

By default Yomi is installed with the salt-minion service, but you must enable it.

Add a new enabled service:

• Service 1:

◦ Service: salt-minion

Yomi Users

This form sets out the system users. In this example, we have a single root user. To

provide a password, you must use the hashed version of the password, not the plain

text. This behavior is set to be changed in future versions of Yomi.

• User 1:

8.4. Example Salt Pillar Preparation

SUSE Manager 4.2 | 8.4. Example Salt Pillar Preparation 30 / 98

http://download.opensuse.org/tumbleweed/repo/oss/
http://download.opensuse.org/tumbleweed/repo/oss/
http://download.opensuse.org/tumbleweed/repo/oss/
http://download.opensuse.org/tumbleweed/repo/oss/
http://download.opensuse.org/tumbleweed/repo/oss/
http://download.opensuse.org/tumbleweed/repo/oss/
http://download.opensuse.org/tumbleweed/repo/oss/

◦ Username: root

◦ Password Hash: 1wYJUgpM5$RXMMeASDc035eXNbYWFl0

8.5. Monitor the Installation

You can monitor the installation as it progresses, using the monitor tool from Yomi. You can

continue monitoring as the highstate is applied to the new client. To use the tool, you will need to

have enabled Events in the Yomi formula, and have the salt-api service activated.

For more information about the salt-api service, and how to use the monitor tool, see

https://github.com/openSUSE/yomi.

8.5. Monitor the Installation

SUSE Manager 4.2 | 8.5. Monitor the Installation 31 / 98

https://github.com/openSUSE/yomi
https://github.com/openSUSE/yomi
https://github.com/openSUSE/yomi
https://github.com/openSUSE/yomi
https://github.com/openSUSE/yomi

Chapter 9. Configuration Modules

 This feature is a technology preview.

Salt uses execution and state modules to define, apply, and orchestrate configuration of your

devices. SUSE Manager provides a set of modules called Uyuni configuration modules, that you

can use to configure both SUSE Manager and Uyuni Servers.

You can use the Uyuni configuration modules directly or using SLS files. They are are especially

useful if you have multiple SUSE Manager Servers, for example in Hub installations, but they are

also useful for smaller installations.

For more information about using Hub, see Large-deployments › Multi-server.

You can use Uyuni configuration modules to configure:

• Organizations

• Users

• User permissions

• System groups

• Activation Keys

For more information about Salt execution modules, see https://docs.saltstack.com/en/latest/

topics/tutorials/modules.html.

For more information about Salt state modules, see https://docs.saltstack.com/en/latest/

topics/tutorials/starting_states.html.

9.1. Install Configuration Modules

The Uyuni configuration modules are available in the uyuni-config-modules package. On the

SUSE Manager Server, at the command prompt, as root, use this command:

zypper in uyuni-config-modules

This package also installs detailed API descriptions, indications on pillar settings, and examples.

When you have installed the package, navigate to /usr/share/doc/packages/uyuni-config-

9.1. Install Configuration Modules

SUSE Manager 4.2 | 9.1. Install Configuration Modules 32 / 98

https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/modules.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html
https://docs.saltstack.com/en/latest/topics/tutorials/starting_states.html

modules/.

9.1. Install Configuration Modules

SUSE Manager 4.2 | 9.1. Install Configuration Modules 33 / 98

Chapter 10. Formulas
Formulas are collections of Salt States that contain generic parameter fields. Formulas allow for

reliable reproduction of a specific configuration. Some formulas are supplied by SUSE, or you can

install formulas from RPM packages or an external git repository.

Formulas work best for large, non-trivial, configurations. For smaller tasks, use a state rather than

a formula. Formulas and states both act as a kind of configuration documentation. When you

have written and stored the configuration, they provide a snapshot of your infrastructure.

Formula data can be managed using the XMLRPC API.

You can use the SUSE Manager Web UI to apply SUSE Manager formulas. The most commonly

used formulas are documented in this section.

Alternatively, you can use pre-written formulas as a starting point for your own custom formulas.

Pre-written formulas are available from https://github.com/saltstack-formulas. For more

information on custom formulas, see Salt › Formulas-custom.

10.1. Formulas Provided by SUSE Manager

Some formulas are installed by default with SUSE Manager. Other official formulas can be

installed as RPM packages. When the formula is installed, you can activate them using the SUSE

Manager Web UI.

For information about writing custom formulas, see Salt › Formulas-custom.

10.1.1. Install Formulas with Zypper

Formulas are provided in the SUSE Manager pool software channel.

If a formula uses the same name as an existing Salt state, the two names will

collide, and could result in the formula being used instead of the state. Always

check states and formulas to avoid name clashes.

Procedure: Installing Formulas with Zypper

1. On the SUSE Manager Server, at the command prompt, search for available formulas:

10.1. Formulas Provided by SUSE Manager

SUSE Manager 4.2 | 10.1. Formulas Provided by SUSE Manager 34 / 98

https://github.com/saltstack-formulas
https://github.com/saltstack-formulas
https://github.com/saltstack-formulas

zypper se --type package formula

2. Get more information about a formula:

zypper info <formula_name>

3. On the SUSE Manager Server, at the command prompt, as root, install the formula:

zypper in <formula_name>

10.1.2. Activate Formulas from the Web UI

Formulas provided by SUSE Manager, or formulas that you have installed, can be activated using

the SUSE Manager Web UI.

Procedure: Activate Formulas from the Web UI

1. In the SUSE Manager Web UI, navigate to Systems › List, select the client you want to activate

the formula for.

2. Navigate to the Systems › Formulas tab, and check the formula you want to activate.

3. Click [ Save ].

4. Navigate to the new subtab for the formula, and configure the formula as required.

5. Apply the highstate.

10.2. Bind Formula

The Bind formula is used to configure the Domain Name System (DNS) on the branch server. POS

terminals will use the DNS on the branch server for name resolution of saltboot specific

hostnames.

When you are configuring the Bind formula for a branch server with a dedicated internal network,

check that you are using the same fully qualified domain name (FQDN) on both the external and

internal branch networks. If the FQDN does not match on both networks, the branch server will not

be recognized as a proxy server.

10.2. Bind Formula

SUSE Manager 4.2 | 10.2. Bind Formula 35 / 98

The following procedure outlines a standard configuration with two zones.

Adjust it to suit your own environment.

Zone 1 is a regular domain zone. Its main purpose is to resolve saltboot hostnames such as TFTP,

FTP, or Salt. It can also resolve the terminal names if configured.

Zone 2 is the reverse zone of Zone 1. Its main purpose is to resolve IP addresses back to

hostnames. Zone 2 is primarily needed for the correct determination of the FQDNs of the branch.

Procedure: Configuring Bind with Two Zones

1. Check the Bind formula, click Save, and navigate to the Formulas › Bind tab.

2. In the Config section, select Include Forwarders.

3. In the Configured Zones section, use these parameters for Zone 1:

◦ In the Name field, enter the domain name of your branch network (for example:

branch1.example.com).

◦ In the Type field, select master.

4. Click Add item to add a second zone, and set these parameters for Zone 2:

◦ In the Name field, use the reverse zone for the configured IP range (for example:

com.example.branch1).

◦ In the Type field, select master

5. In the Available Zones section, use these parameters for Zone 1:

◦ In the Name field, enter the domain name of your branch network (for example:

branch1.example.org).

◦ In the File field, type the name of your configuration file.

6. In the Start of Authority (SOA) section, use these parameters for Zone 1:

◦ In the Nameserver (NS) field, use the FQDN of the branch server (for example:

branchserver.branch1.example.org).

◦ In the Contact field, use the email address for the domain administrator.

◦ Keep all other fields as their default values.

7. In the Records section, in subsection A, use these parameters to set up an A record for Zone 1:

◦ In the Hostname field, use the hostname of the branch server (for example:

10.2. Bind Formula

SUSE Manager 4.2 | 10.2. Bind Formula 36 / 98

branchserver).

◦ In the IP field, use the IP address of the branch server (for example, 192.168.1.5).

8. In the Records section, subsection NS, use these parameters to set up an NS record for Zone 1:

◦ In the input box, use the hostname of the branch server (for example: branchserver).

9. In the Records section, subsection CNAME, use these parameters to set up CNAME records for

Zone 1:

◦ In the Key field, enter tftp, and in the Value field, type the hostname of the branch server

(for example: branchserver).

◦ Click Add Item. In the Key field, enter ftp, and in the Value field, type the hostname of the

branch server.

◦ Click Add Item. In the Key field, enter dns, and in the Value field, type the hostname of the

branch server.

◦ Click Add Item. In the Key field, enter dhcp, and in the Value field, type the hostname of

the branch server.

◦ Click Add Item. In the Key field, enter salt, and in the Value field, type the FQDN of the

branch server (for example: branchserver.branch1.example.org).

10. Set up Zone 2 using the same parameters as for Zone 1, but ensure you use the reverse

details:

◦ The same SOA section as Zone 1.

◦ Empty A and CNAME records.

◦ Additionally, configure in Zone 2:

▪ Generate Reverse field by the network IP address set in branch server network

formula (for example, 192.168.1.5/24).

▪ For Zones should specify the domain name of your branch network (for example,

branch1.example.org).

11. Click [ Save Formula ] to save your configuration.

12. Apply the highstate.

10.2. Bind Formula

SUSE Manager 4.2 | 10.2. Bind Formula 37 / 98

Reverse name resolution on terminals might not work for networks that are

inside one of these IPv4 private address ranges:

• 10.0.0.0/8

• 172.16.0.0/12

• 192.168.0.0/16

If you encounter this problem, go to the Options section of the Bind formula,

and click [ Add item ]:

• In the Options field, enter empty-zones-enable.

• In the Value field, select No.

10.3. Branch Network Formula

The Branch Network formula is used to configure the networking services required by the branch

server, including DHCP, DNS, TFTP, PXE, and FTP.

10.3.1. Set Up a Branch Server Networking

The branch server can be configured to use networking in many different ways. The most

common ways provide either a dedicated or shared LAN for terminals.

10.3.1.1. Set Up a Branch Server with a Dedicated LAN

In this configuration, the branch server requires at least two network interfaces: one acts as a

WAN to communicate with the SUSE Manager server, and the other one acts as an isolated LAN to

communicate with terminals.

This configuration allows for the branch server to provide DHCP, DNS, TFTP, PXE, and FTP services

to terminals. These services can be configured with Salt formulas in the SUSE Manager Web UI.

Procedure: Setting Up a Branch Server with a Dedicated LAN

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the

Formulas tab.

2. In the Branch Network section, set these parameters:

10.3. Branch Network Formula

SUSE Manager 4.2 | 10.3. Branch Network Formula 38 / 98

◦ Keep Dedicated NIC checked.

◦ In the NIC field, enter the name of the network device that is connected to the internal

LAN.

◦ In the IP field, enter the static IP address to be assigned to the branch server on the

internal LAN.

◦ In the Netmask field, enter the network mask of the internal LAN.

3. Check Enable Route if you want the branch server to route traffic from internal LAN to WAN.

◦ Check Enable NAT if you want the branch server to convert addresses from internal LAN

to WAN.

◦ Select the bind DNS forwarder mode.

◦ Check DNS forwarder fallback if you want to rely on an external DNS if the branch DNS

fails.

◦ Specify the working directory, and the directory owner and group.

10.3.1.2. Set up a Branch Server with a Shared Network

In this configuration, the branch server has only one network interface card, which is used to

connect to the SUSE Manager server as well as the terminals.

This configuration allows for the branch server to provide DNS, TFTP, PXE, and FTP services to

terminals. These services can be configured with Salt formulas in the SUSE Manager Web UI.

Optionally, the branch server can also provide DHCP services in this configuration.

If DHCP services are not provided by the branch server, ensure that your

external DHCP configuration is set correctly:

• The next-server option must point to the branch server for PXE boot to work.

• The filename option must correctly identify the network boot program (by

default, this is /boot/pxelinux).

• The domain-name-servers option must point to the branch server for

correct host name resolution.

Procedure: Setting Up a Branch Server with a Shared Network

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the

10.3. Branch Network Formula

SUSE Manager 4.2 | 10.3. Branch Network Formula 39 / 98

Formulas tab.

2. In the Branch Network section, set these parameters:

◦ Keep Dedicated NIC unchecked.

◦ Enable services on the branch server’s firewall. Ensure you include DNS, TFTP, and FTP

services.

◦ Select the bind DNS forwarder mode.

◦ Check DNS forwarder fallback if you want to rely on an external DNS if the branch DNS

fails.

◦ Specify the working directory, and the directory owner and group.

10.3.2. Set up Branch Server Terminal Naming

In this configuration it is required to fill at least Branch Identification. This identifies Branch Server

in Retail subsystem and is also used to better organize terminals with their respective branch

servers.

Procedure: Setting up a Branch Server Identification

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the

Formulas tab.

2. In the Terminal Naming section, enter the Branch Identification string.

3. Click [ Save ] to save your changes.

4. Apply the highstate.

It is also possible to set various options about terminal naming, for more information about

terminal naming see Retail › Retail-terminal-names.

10.4. DHCPd Formula

The DHCPd formula is used to configure the DHCP service on the branch server.

Procedure: Configuring DHCP

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the

Formulas tab.

10.4. DHCPd Formula

SUSE Manager 4.2 | 10.4. DHCPd Formula 40 / 98

2. Check the Dhcpd formula, and click [ Save ].

3. Navigate to the Formulas › Dhcpd tab, and set these parameters:

◦ In the Domain Name field, enter the domain name for the branch server (for example:

branch1.example.com).

◦ In the Domain Name Server field, enter either the IP address or resolvable FQDN of the

branch DNS server (for example: 192.168.1.5).

◦ In the Listen Interfaces field, enter the name of the network interface used to connect to

the local branch network (for example: eth1).

4. Navigate to the Network Configuration (subnet) section, and use these parameters for

Network1:

◦ In the Network IP field, enter the IP address of the branch server network (for example:

192.168.1.0).

◦ In the Netmask field, enter the network mask of the branch server network (for example:

255.255.255.0).

◦ In the Domain Name field, enter the domain name for the branch server network (for

example: branch1.example.com).

5. In the Dynamic IP Range section, use these parameters to configure the IP range to be served

by the DHCP service:

◦ In the first input box, set the lower bound of the IP range (for example: 192.168.1.51).

◦ In the second input box, set the upper bound of the IP range (for example: 192.168.1.151).

6. In the Broadcast Address field, enter the broadcast IP address for the branch network (for

example: 192.168.1.255).

7. In the Routers field, enter the IP address to be used by routers in the branch server network

(for example: 192.168.1.5).

8. In the Next Server field, enter the hostname or IP address of the branch server (for example:

192.168.1.5).

9. In the Filename field, if you are booting a client using PXE, type the path to the PXE bootloader.

There is usually no need to change the default value of /boot/pxelinux.0.

10. In the Filename Efi field, if you are booting a UEFI client using PXE, type the path to the PXE

bootloader. There is usually no need to change the default value of /boot/shim.efi.

11. In the Filename Http field, if you are booting a UEFI client using HTTP, type

10.4. DHCPd Formula

SUSE Manager 4.2 | 10.4. DHCPd Formula 41 / 98

http://branchserver/saltboot/boot/shim.efi.

12. Click [ Save Formula ] to save your configuration.

13. Apply the highstate.

10.5. Image Synchronization Formula

The Image Synchronization formula is used to configure when OS images are synchronized to the

branch server, and to specify which images to synchronize.

If this formula is not enabled, synchronization must be started manually, and all images will be

synchronized.

Procedure: Configuring Image Synchronization

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the

Formulas tab.

2. Check the Image Synchronize formula, and click [ Save ].

3. Navigate to the Formulas › Image Synchronize tab, and set these parameters:

◦ Check the Include Image Synchronization in Highstate field to have image

synchronization occur every time highstate is applied. This ensures that you do not have

to perform image synchronization manually, however it requires a high bandwidth

environment.

◦ In the Synchronize only the listed images field, click [ Add item ] to add the images you

want to have synchronized automatically. Alternatively, you can leave this list blank to

have all images synchronized.

4. Click [ Save Formula ] to save your configuration.

5. Apply the highstate.

The Image Synchronization state does not delete cached images. If you are

running out of disk space, check the size of the Salt client cache directory, and

delete it if required. By default, the directory is located at

/var/cache/salt/minion.

10.5. Image Synchronization Formula

SUSE Manager 4.2 | 10.5. Image Synchronization Formula 42 / 98

http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi
http://branchserver/saltboot/boot/shim.efi

10.6. Monitoring Formula

The monitoring services in SUSE Manager are configured using formulas with forms. The package

is installed by default, and contains these formulas:

• Grafana

• Prometheus

• Prometheus Exporters

For more information about using monitoring, see Administration › Monitoring.

Procedure: Configuring the Grafana Formula

1. Navigate to the Formulas › Grafana tab, and set these parameters in the Grafana section:

◦ Check the Enabled box to enable Grafana visualizations.

◦ In the Default admin user field, type the name of the default Grafana user.

◦ In the Default admin password field, enter a password for the default user. Alternatively,

click [ Generate new password ] to generate a password and fill the field.

2. For each Prometheus data source you want to use, in the Datasources › Prometheus section,

click [ + ], and set these parameters:

◦ In the Datasource name field, type a name to identify the data source.

◦ In the Prometheus URL field, type the used protocol, the location of the Prometheus

server, and append port 9090. For example, http://example.com:9090. In case TLS

encryption is enabled in Prometheus formula make sure to use https protocol and FQDN.

◦ In the fields Prometheus server username and Prometheus server password, enter basic

authentication credentials for Prometheus server matching the ones in Prometheus

formula.

3. In the Dashboards section, check the dashboards you want to use:

◦ Uyuni server dashboard

◦ Uyuni clients dashboard

◦ PostgreSQL dashboard

◦ Apache HTTPD dashboard

10.6. Monitoring Formula

SUSE Manager 4.2 | 10.6. Monitoring Formula 43 / 98

http://example.com:9090

◦ Kubernetes cluster dashboard

◦ Kubernetes etcd dashboard

◦ Kubernetes namespaces dashboard

4. Click [ Save Formula ] to save your configuration.

Procedure: Configuring the Prometheus Formula

1. Navigate to the Formulas › Prometheus tab, and set these parameters in the Prometheus

section:

◦ Check the Enabled box to enable Prometheus monitoring.

◦ In the Scrape interval field, type the frequency of data scraping, in seconds. For example,

15 will scrape data every fifteen seconds.

◦ In the Evaluation interval field, type the frequency of rules evaluation, in seconds. For

example, 15 will evaluate alerting and aggregation rules every fifteen seconds.

2. In the TLS section, set these parameters:

◦ Check the Enabled box to enable the secure configuration on Prometheus server.

◦ In the Server Certificate field, type the path to the TLS server certificate.

◦ In the Server Key field, type the path to the TLS server key.

◦ In the User field, type the user name for Prometheus server.

◦ In the Password Hash field, type the password for Prometheus server hashed with bcrypt.

3. In the Uyuni Server section, set these parameters:

◦ Check the Enabled box to enable monitoring on this server.

◦ Check the Autodiscover clients box to enable Prometheus to automatically find and

monitor new clients when they are added to the server.

◦ In the Username field, type the user name of the Prometheus account on the server.

◦ In the Password field, type the password of the Prometheus account on the server.

◦ In the Targets TLS section, set these parameters:

▪ Check the Enabled box to enable the secure configuration for auto-discovered

targets.

▪ In the CA Certificate field, type the path to the Certificate Authority certificate.

10.6. Monitoring Formula

SUSE Manager 4.2 | 10.6. Monitoring Formula 44 / 98

▪ In the Client Certificate field, type the path to the TLS client certificate for

authentication.

▪ In the Client Key field, type the path to the TLS client key for authentication.

4. In the Alerting section, set these parameters:

◦ Check the Enable local Alertmanager service box to enable the alert manager service.

◦ Check the Use local Alertmanager box to use the local alert manager service.

5. For each alert manager you want to use, in the Alerting › Alertmanagers section, click [ + ],

and set these parameters:

◦ In the IP Address:Port field, type the location of the alert manager target, including the

port number.

6. To use a rule file, in the Alerting › Rule Files section, click [ + ], and set these parameters:

◦ In the Rule Files field, type the location of the rule file you want to use.

7. To add a custom scrape configuration, in the User defined scrape configurations section, click

[ + ], and set these parameters:

◦ In the Job name field, type a unique job name for your configuration.

◦ In the Files field, type the location pattern of file service discovery files you want to use.

For more information, see the upstream documentation https://prometheus.io/docs/

prometheus/latest/configuration/configuration/#file_sd_config.

8. Click [ Save Formula ] to save your configuration.

The formula does not generate and deploy the TLS certificates and keys. Ensure

the files are present on the Salt client and readable for the user prometheus

before applying the highstate. For more information about generating client

and server certificates, see Administration › Monitoring.

Procedure: Configuring the Prometheus Exporters Formula

1. Navigate to the Formulas › Prometheus Exporters tab, and set these parameters in the Node

Exporter section:

◦ Check the Enabled box to enable the node exporter.

◦ In the Arguments field, type any customized arguments for this exporter. For example,

--web.listen-address=":9100".

10.6. Monitoring Formula

SUSE Manager 4.2 | 10.6. Monitoring Formula 45 / 98

https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config
https://prometheus.io/docs/prometheus/latest/configuration/configuration/#file_sd_config

2. In the Apache Exporter section:

◦ Check the Enabled box to enable the Apache exporter.

◦ In the Arguments field, type any customized arguments for this exporter. For example,

--telemetry.address=":9117".

3. In the Postgres Exporter section:

◦ Check the Enabled box to enable the PostreSQL exporter.

◦ In the Data source Name field, type the name of the data source to use.

◦ In the Arguments field, type any customized arguments for this exporter. For example,

--web.listen-address=":9187".

4. In the TLS section:

◦ Check the Enabled box to enable the secure configuration.

◦ In the CA Certificate field, type the path to the Certificate Authority certificate.

◦ In the Server Certificate field, type the path to the TLS server certificate.

◦ In the Server Key field, type the path to the TLS server key.

5. Click [ Save Formula ] to save your configuration.

The formula does not generate and deploy the TLS certificates and keys. Ensure

the files are present on the Salt client and readable for the user prometheus

before applying the highstate. For more information about generating client

and server certificates, see Administration › Monitoring.

When you have completed and saved all the forms, apply the highstate.

For more information about using monitoring, see Administration › Monitoring.

10.7. PXE Formula

The PXE formula is used to configure PXE booting on the branch server.

Procedure: Configuring PXE Booting

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the

Formulas tab.

10.7. PXE Formula

SUSE Manager 4.2 | 10.7. PXE Formula 46 / 98

2. Select the Pxe formula, and click Save.

3. Navigate to the Formulas › Pxe tab, and set these parameters:

◦ In the Kernel Filename field, keep the default value.

◦ In the Initrd Filename field, keep the default value.

◦ If the terminals connecting to this branch server are running ARM64 architecture, check

the Enable ARM64 UEFI boot box. Leave unchecked for x86-64.

◦ In the Kernel Filename for ARM64 field, keep the default value.

◦ In the Initrd Filename for ARM64 field, keep the default value.

◦ In the Kernel Command Line Parameters field, keep the default value. For more

information about possible values, see Saltboot Kernel Command Line Parameters.

◦ In the PXE root directory field, enter the path to the saltboot directory (for example,

/srv/saltboot).

4. Click Save Formula to save your configuration.

5. Apply the highstate.

10.7.1. Saltboot Kernel Command Line Parameters

Saltboot supports common kernel parameters and saltboot-specific kernel parameters. All the

parameters can be entered in the Kernel Command Line Parameters field of the PXE formula.

kiwidebug=1

Starts a shell on tty2 during boot and enables debug logging in Salt.

Do not use this parameter in a production environment as it creates a

major security hole. This parameter should be used only in a development

environment for debug purposes.

MASTER

Overrides auto-detection of the Salt master. For example:

MASTER=myproxy.domain.com

10.7. PXE Formula

SUSE Manager 4.2 | 10.7. PXE Formula 47 / 98

SALT_TIMEOUT

Overrides the local boot fallback timeout if the Salt master does not apply the saltboot state

within this timeout (default: 60 seconds). For example:

SALT_TIMEOUT=300

DISABLE_HOSTNAME_ID

If the terminal has a hostname assigned by DHCP, it is by default used as a minion ID. Setting

this option to 1 disables this mechanism, and SMBios information will be used as a minion ID.

DISABLE_UNIQUE_SUFFIX

Setting this option to 1 disables adding random generated suffix to terminal minion ID.

If you set this parameter make sure your terminal has either a unique hostname provided by

DHCP and DNS, or the terminal hardware comes with a unique serial number stored in its

SMBios memory. Otherwise there is a risk of terminal minion ID duplicity, and bootstrapping

the minion will fail.

The following parameters (MINION_ID_PREFIX, salt_device, root) are usually autoconfigured and

should be used only in specific conditions such as debugging or development:

MINION_ID_PREFIX

Branch ID set in the Branch Network formula form.

salt_device

Device that contains the Salt configuration.

root

Device that contains the already deployed root file system. Used for falling back to local boot.

10.8. Saltboot Formula

The Saltboot formula is used to configure disk images and partitioning for the selected hardware

type.

The Saltboot formula is meant to be used as a group formula. Enable and

configure Saltboot formula for hardware type groups.

10.8. Saltboot Formula

SUSE Manager 4.2 | 10.8. Saltboot Formula 48 / 98

To apply changes to a terminal, terminal needs to be restarted. Applying

highstate does not have any effect on running terminals.

Procedure: Configuring the Hardware Type Group with Saltboot

1. Open the details page for your new hardware type group, and navigate to the Formulas tab.

2. Select the Saltboot formula and click [ Save ].

3. Navigate to the Formulas › Saltboot tab.

4. In the Disk 1 section, set these parameters:

◦ In the Disk symbolic ID field, enter a custom name for the disk (for example, disk1).

◦ In the Device type field, select DISK.

◦ In the Disk device field, select the device that corresponds to the device name on the

target machine or asterisk *, see Disk Selection in Saltboot Formula.

◦ In the RAID level field, leave it empty.

◦ In the Disk Label field, select gpt.

5. In the Partition section, set these parameters for Partition 1:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example, p1).

◦ In the Partition size use value 500.

◦ In the Device mount point use /boot/efi.

◦ In the Filesystem format use vfat.

◦ In the OS Image to deploy field, leave it empty.

◦ In the Partition encryption password field, leave it empty.

◦ In the Partition flags use boot.

6. In the Partition section, set these parameters for Partition 2:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example, p2).

◦ In the Partition size field, specify a size for the partition in Mebibytes (MiB).

◦ In the Device mount point field, select a location to mount the partition (for example,

/data).

◦ In the Filesystem format field, select your preferred format (for example, xfs).

10.8. Saltboot Formula

SUSE Manager 4.2 | 10.8. Saltboot Formula 49 / 98

◦ In the OS Image to deploy field, leave it empty.

◦ In the Partition encryption password field, enter a password if you want to encrypt the

partition.

◦ In the Partition flags field, leave it empty.

7. In the Partition section, set these parameters for Partition 3:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example, p3).

◦ In the Partition size field, specify a size for the partition in Mebibytes (MiB).

◦ In the Device mount point field, leave it empty.

◦ In the Filesystem format field, select swap.

◦ In the OS Image to deploy field, leave it empty.

◦ In the Partition encryption password field, enter a password if you want to encrypt the

partition.

◦ In the Partition flags field, select swap.

8. In the Partition section, set these parameters for Partition 4:

◦ In the Partition symbolic ID field, enter a custom name for the partition (for example, p4).

◦ In the Partition size field, leave it empty. This will ensure the partition uses up all

remaining space.

◦ In the Device mount point field, select /.

◦ In the Filesystem format field, leave it empty.

◦ In the OS Image to deploy field, enter the name of the image to deploy.

◦ In the Image version field, leave it empty. This will ensure you use the latest available

version.

◦ In the Partition encryption password field, enter a password if you want to encrypt the

partition.

◦ In the Partition flags field, leave it empty.

9. Click [ Save Formula ] to save your configuration.

10.8.1. Special Partition Types

The Saltboot formula helps you with setting up special partition types.

10.8. Saltboot Formula

SUSE Manager 4.2 | 10.8. Saltboot Formula 50 / 98

For terminal to be able to boot locally, either BIOS grub or EFI partition must be

configured.

10.8.1.1. BIOS grub Partition

A BIOS grub partition is needed for local booting from a GPT disk on non-EFI machines. For more

information, see https://en.wikipedia.org/wiki/BIOS_boot_partition.

In the formula, enter the following options:

Partition Symbolic ID: p1
Partition Size (MiB): 50
Partition Flags: bios_grub

Leave the other fields empty.

10.8.1.2. EFI Partition

An EFI partition is needed for local booting on EFI machines, Partition Table Type must be GPT. For

more information, see https://en.wikipedia.org/wiki/EFI_system_partition.

In the formula, enter the following options:

Partition Symbolic ID: p1
Partition Size (MiB): 500
Device Mount Point: /boot/efi
Filesystem Format: vfat
Partition Flags: boot

Leave the other fields empty.

10.8.2. Disk Selection in Saltboot Formula

When there is only one disk present on target hardware (including USB drives), use an asterisk *

to automatically select the disk device.

When there are multiple disks, use an asterisk * in the device path. In this example, SATA disks are

differentiated from USB disks:

10.8. Saltboot Formula

SUSE Manager 4.2 | 10.8. Saltboot Formula 51 / 98

https://en.wikipedia.org/wiki/BIOS_boot_partition
https://en.wikipedia.org/wiki/BIOS_boot_partition
https://en.wikipedia.org/wiki/BIOS_boot_partition
https://en.wikipedia.org/wiki/BIOS_boot_partition
https://en.wikipedia.org/wiki/BIOS_boot_partition
https://en.wikipedia.org/wiki/EFI_system_partition
https://en.wikipedia.org/wiki/EFI_system_partition
https://en.wikipedia.org/wiki/EFI_system_partition
https://en.wikipedia.org/wiki/EFI_system_partition
https://en.wikipedia.org/wiki/EFI_system_partition

/dev/disk/by-path/*-ata-1
/dev/disk/by-path/*usb*

If the entered value does not contain /, the entered value is automatically prepended by

/dev/disk/by-path/. For example, *usb* is the same as /dev/disk/by-path/*usb*.

If you prefer to select specific devices, you can this format in the disk device field:

• symbolic names (for example: /dev/sda)

• by-path (for example: /dev/disk/by-path/..)

• by-id (for example: /dev/disk/by-id/…)

To see a list of available devices from the command prompt, press Esc while waiting for key

approval.

10.8.3. Troubleshooting the Saltboot Formula

msdos Disklabel Limitations

On the msdos disk label, you can create a maximum of four primary partitions. Extended

partitions are not supported. If you need more than four partitions, use the GPT disk label

instead.

For more information on troubleshooting problems with the Saltboot formula, see Administration

› Tshoot-saltboot.

10.9. TFTPD Formula

The TFTPD formula is used to configure the TFTP service on the SUSE Manager for Retail branch

server.

Procedure: Configuring TFTP

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the

Formulas tab.

2. Select the Tftpd formula, and click [ Save ].

3. Navigate to the Formulas › Tftpd tab, and set these parameters:

◦ In the Internal Network Address field, enter the IP address of the branch server (for

10.9. TFTPD Formula

SUSE Manager 4.2 | 10.9. TFTPD Formula 52 / 98

example: 192.168.1.5).

◦ In the TFTP Base Directory field, enter the path to the saltboot directory (for example,

/srv/saltboot).

◦ In the Run TFTP Under User field, enter saltboot.

4. Click [ Save Formula ] to save your configuration.

5. Apply the highstate.

10.10. VsFTPd Formula

The VsFTPd formula is used to configure the FTP service on the branch server.

Procedure: Configuring VsFTPd

1. In the SUSE Manager Web UI, open the details page for the branch server, and navigate to the

Formulas tab.

2. Select the Vsftpd formula, and click [ Save ].

3. Navigate to the Formulas › Vsftpd tab, and set these parameters:

◦ In the FTP server directory field, enter /srv/saltboot.

◦ In the Internal Network Address field, enter the IP address of the branch server (for

example: 192.168.1.5).

◦ All other fields can retain their default values.

4. Click [ Save Formula ] to save your configuration.

5. Apply the highstate.

10.11. Yomi Formula

The Yomi (yet one more installer) installer for SUSE and openSUSE operating systems is

configured using formulas with forms.

The yomi-formula package provides these formulas:

• Yomi

• Yomi Storage

• Yomi Bootloader

10.10. VsFTPd Formula

SUSE Manager 4.2 | 10.10. VsFTPd Formula 53 / 98

• Yomi Software

• Yomi Services

• Yomi Users

Procedure: Install the Yomi Formulas with Forms

1. On the SUSE Manager Server, at the command prompt, as root, install the yomi-formula

package:

zypper in yomi-formula

2. Restart services:

systemctl restart salt-master.service

When the formula package is installed, you need to install the PXE Yomi image on the client, boot

the client you want to provision, and enable the Yomi formulas on the client. For more information

on preparing Yomi clients for provisioning, see Salt › Yomi.

Procedure: Configuring the Yomi Formula

1. Navigate to the Formulas › Yomi tab, and set these parameters in the General Configuration

section:

◦ Check the Events box to allow monitoring.

◦ In the Reboot field, select yes to instruct the client to reboot after installation.

◦ Check the Snapper box if you are using the btrfs file system on the client.

◦ In the Locale field, select the region and encoding for systemd to use on the client. For

example: en_US.utf8 for US English and UTF-8.

◦ In the Keymap field, select the appropriate keyboard layout. For example: us for a US

keyboard layout.

◦ In the Timezone field, select the timezone for the client to use. For example:

America/New_York for EST.

◦ In the Hostname field, enter the hostname for the client to use. Leave this blank if you are

using DHCP to provide the hostname.

10.11. Yomi Formula

SUSE Manager 4.2 | 10.11. Yomi Formula 54 / 98

◦ In the Machine Id field, enter a machine identification number for the client. Leave this

blank to have systemd generate one automatically.

◦ In the Target field, enter a systemd target unit.

2. Click [ Save Formula ] to save your configuration.

Procedure: Configuring the Yomi Storage Formula

1. Navigate to the Formulas › Yomi Storage tab, and set these parameters in the Partitions ›
Config section:

◦ In the Labels field, select the default partition table type to use.

◦ In the Initial Gap field, select the default amount of space to leave before the first

partition. For example: 1 MB, or use 0 to leave no space between partitions.

2. For each device that you want to configure, in the Partitions › Devices section, click [ + ], and

set these parameters:

◦ In the Device field, type the mount point for the device. For example, /dev/sda.

◦ In the Label field, select the partition table type to use, if it is different from the default

label you selected.

◦ In the Initial Gap field, select the amount of space to leave before the first partition, if it is

different from the default space you specified.

3. For each partition that you want to create, in the Partitions › Devices › Partitions section, click

[ + ], and set these parameters:

◦ In the Partition Number field, enter a number for the partition. The number you enter here

is appended to the device name to identify the partition. For example, partition number 1

on device /dev/sda can be identified as /dev/sda1.

◦ In the Partition Name field, enter a name for the partition. Leave this blank if you have

entered a partition number in the previous field.

◦ In the Partition Size field, enter a size for the partition. For example: 500 MB. Use rest to use

all the remaining free space.

4. For each file system that you want to create, in the Filesystems section, click [ + ], and set

these parameters:

◦ In the Partition field, select the partition to create the file system on. For example,

/dev/sda1.

10.11. Yomi Formula

SUSE Manager 4.2 | 10.11. Yomi Formula 55 / 98

◦ In the Filesystem field, select the file system type to create.

◦ In the Mountpoint field, type the mount point for the file system. For example: / for root.

5. Click [ Save Formula ] to save your configuration.

If you want to use LVM or RAID on your devices, click [ + ] in the appropriate

sections, and complete the details for your environment.

Procedure: Configuring the Yomi Bootloader Formula

1. Navigate to the Formulas › Yomi Bootloader tab, and set these parameters in the Bootloader

section:

◦ In the Device field, type the path for the bootloader. For example, /dev/sda.

◦ In the Timeout field, select the number of seconds grub will wait before booting the

default menu entry.

◦ In the Kernel field, type any additional kernel parameters you want to use. Any kernel

parameters you add here will be appended to the GRUB_CMDLINE_LINUX_DEFAULT line

during boot.

◦ In the Terminal field, type the terminal to use for both terminal input and output.

◦ In the Serial Command field, type parameters for using the serial port. Use this only if you

are using the serial console as the default terminal.

◦ In the Gfxmode field, type the resolution to use for the graphical terminal. Use this only if

you are using the graphical console as the default terminal.

◦ Check the Theme box to use GRUB2 default branding package.

◦ Check the Disable OS Prober box to disable using the OS prober to discover other

installed operating systems.

2. Click [ Save Formula ] to save your configuration.

Procedure: Configuring the Yomi Software Formula

1. Navigate to the Formulas › Yomi Software tab, and set these parameters in the Software ›
Configuration section:

◦ Check the Minimal box to use a minimal installation, which only installs packages listed

as Required.

10.11. Yomi Formula

SUSE Manager 4.2 | 10.11. Yomi Formula 56 / 98

2. For each repository that you want to add, in the Software › Repositories section, click [ + ],

and set these parameters:

◦ In the Repository Name field, type a name for the repository.

◦ In the Repository URL field, type the location of the repository.

3. To add packages from each repository, in the Software › Packages section, click [ + ], and set

these parameters:

◦ In the Software › Packages field, type the names of the packages to install, or type a

pattern to search for the appropriate packages. For example, pattern:enhanced_base

glibc-locale, or kernel-default.

4. In the Software › Image section, set these parameters:

◦ In the Image URL field, type the location of the operating system ISO image to use.

◦ In the Md5 field, type the MD5 hash to use to verify the ISO.

5. In the SUSEConect › Config section, set these parameters:

◦ In the Registration Code field, type the registration code for the client you are installing.

You can obtain this code from SUSE Customer Center.

◦ In the Email field, type the administrator email address to use.

◦ In the Url field, type the address of the registration server to use. For example, use

https://scc.suse.com, to register with SUSE Customer Center.

◦ In the Version field, type the version of the product you are registering.

6. For each product that you want to register, in the SUSEConnect › Products section, click [ + ],

and set these parameters:

◦ In the Product field, type each product you want to register. For example,

<product_name>/1.1/x86, for version 1.1 with x86 architecture.

◦ In the SUSEConnect › Packages field, type the names of the packages to install, or type a

pattern to search for the appropriate packages. For example, pattern:enhanced_base

glibc-locale, or kernel-default.

7. Click [ Save Formula ] to save your configuration.

Procedure: Configuring the Yomi Services Formula

10.11. Yomi Formula

SUSE Manager 4.2 | 10.11. Yomi Formula 57 / 98

https://scc.suse.com

1. Navigate to the Formulas › Yomi Services tab, and set these parameters:

◦ Check the Install salt-minion box to install and configure the client as a Salt client.

2. For each service you want to enable, in the Services › Enabled section, click [ + ], and set

these parameters:

◦ In the Service field, type the name of the service to enable. For example, salt-minion.

3. For each service you want to disable, in the Services › Disabled section, click [ + ], and set

these parameters:

◦ In the Service field, type the name of the service to disable.

4. Click [ Save Formula ] to save your configuration.

Procedure: Configuring the Yomi Users Formula

1. Navigate to the Formulas › Yomi Users tab.

2. For each user you want to create, in the Users section, click [ + ], and set these parameters:

◦ In the Username field, type the name of the new user.

◦ In the Password Hash field, type the hashed version of the password to use.

3. To add a certificate for each user, in the Users › Certificates section, click [ + ], and add the

certificate to the Certificate field.

4. Click [ Save Formula ] to save your configuration.

When you have completed and saved all the forms, apply the highstate.

For more information about using Yomi, see Salt › Yomi.

10.12. Custom Salt Formulas

You can also write your own custom formulas, and make them available to your clients in the

SUSE Manager Web UI. This section contains information about writing custom formulas,

including formulas with forms.

For information about the formulas provided by SUSE Manager, see Salt › Formulas-suma.

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 58 / 98

10.12.1. File Structure Overview

RPM-based formulas must be placed in a specific directory structure to ensure that they work

correctly. A formula contains two separate directories: states, and metadata. Folders in these

directories need to have exactly matching names.

Based on the operating system, the placeholder <serving directory> should be replaced with srv

for SUSE based systems or var for Red Hat based systems.

The formula states directory contains anything necessary for a Salt state to work independently.

This includes .sls files, a map.jinja file and any other required files. This directory should only be

modified by RPMs and should not be edited manually. For example, the locale-formula states

directory is located in:

/usr/share/salt-formulas/states/locale/

To create formulas with forms, the metadata directory contains a form.yml file. The form.yml file

defines the forms for SUSE Manager. The metadata directoy also contains an optional

metadata.yml file that contains additional information about a formula. For example, the locale-

formula metadata directory is located in:

/usr/share/susemanager/formulas/metadata/locale/

If you have a custom formula that is not in an RPM, it must be in a state directory configured as a

Salt file root. Custom state formula data must be in:

/<serving directory>/salt/<custom-formula-name>/

Custom metadata information must be in:

/<serving directory>/formula_metadata/<custom-formula-name>/

All custom folders must contain a form.yml file. These files are detected as form recipes and are

applied to groups and systems from the Web UI:

/<serving directory>/formula_metadata/<custom-formula-name>/form.yml

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 59 / 98

The Salt formula directory changed in SUSE Manager 4.0. The old directory

location, /usr/share/susemanager/formulas, will continue to work for some

time. You should ensure that you update to the new directory location,

/usr/share/salt-formulas/ as soon as possible.

10.12.2. Define Formula with Forms Data

SUSE Manager requires a file called form.yml, to describe how formula data should look within the

Web UI. The form.yml file is used by SUSE Manager to generate the desired formula with forms,

with values editable by a user.

The file contains a list of editable attributes that start with a $ sign. These attributes are used to

determine how to display the formula in the SUSE Manager Web UI.

For example, the form.yml that is included with the locale-formula is in:

/usr/share/susemanager/formulas/metadata/locale/form.yml

Part of that file looks like this:

timezone:
 $type: group

 name:
 $type: select
 $values: ["CET",
 "Etc/Zulu"
]
 $default: CET

 hardware_clock_set_to_utc:
 $type: boolean
 $default: True
...

All values that start with a $ sign are annotations used to display the UI that users interact with.

These annotations are not part of pillar data itself and are handled as metadata.

This section lists the available attributes:

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 60 / 98

$type

The most important attribute is the $type attribute. It defines the type of the pillar value and

the form-field that is generated. The supported types are:

• text

• password

• number

• url

• email

• date

• time

• datetime

• boolean

• color

• select

• group

• edit-group

• namespace

• hidden-group (obsolete, renamed to namespace)

 The text attribute is the default and does not need to be specified explicitly.

Many of these values are self-explanatory:

• The text type generates a simple text field

• The password type generates a password field

• The color type generates a color picker

The group, edit-group, and namespace (formerly hidden-group) types do not generate an

editable field and are used to structure form and pillar data. All these types support nesting.

The group and namespace types differ slightly. The group type generates a visible border with a

heading. The namespace type shows nothing visually, and is only used to structure pillar data.

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 61 / 98

The edit-group type allows you to structure and restrict editable fields in a more flexible way. The

edit-group type is a collection of items of the same kind. Collections can have these four shapes:

• List of primitive items

• List of dictionaries

• Dictionary of primitive items

• Dictionary of dictionaries

The size of each collection is variable. Users can add or remove elements.

For example, edit-group supports the $minItems and $maxItems attributes, which simplifies

complex and repeatable input structures. These, and also itemName, are optional.

$default

Allows you to specify a default value to be displayed. This default value will be used if no other

value is entered. In an edit-group it allows you to create initial members of the group and

populate them with specified data.

$optional

This type is a Boolean attribute. If it is true and the field is empty in the form, then this field will

not be generated in the formula data and the generated dictionary will not contain the field

name key. If it is false and the field is empty, the formula data will contain a <field name>: null

entry.

$ifEmpty

This type is used if the field is empty. This usually occurs because the user did not provide a

value. The ifEmpty type can only be used when $optional is false or not defined. If $optional is

true, then $ifEmpty is ignored. In this example, the DP2 string would be used if the user leaves

the field empty:

displayName:
 $type: string
 $ifEmpty: DP2

$name

Allows you to specify the name of a value that is shown in the form. If this value is not set, the

pillar name is used and capitalized without underscores and dashes. Reference it in the same

section with ${name}.

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 62 / 98

$help and $placeholder

These attributes are used to give a user a better understanding of what the value should be.

The $help type defines the message a user sees when hovering over a field The $placeholder

type displays a gray placeholder text in the field

Use $placeholder only with text fields like text, password, email or date fields. Do not add a

placeholder if you also use $default, as it will hide the placeholder.

$key

Applicable only if the edit-group has the shape of a dictionary. When the pillar data is a

dictionary, the $key attribute determines the key of an entry in the dictionary.

For example:

user_passwords:
 $type: edit-group
 $minItems: 1
 $prototype:
 $key:
 $type: text
 $type: text
 $default:
 alice: secret-password
 bob: you-shall-not-pass

Pillar:

user_passwords:
 alice:
 secret-password
 bob:
 you-shall-not-pass

$minItems and $maxItems

In an edit-group, $minItems and $maxItems specifies the lowest and highest numbers for the

group.

$itemName

In an edit-group, $itemName defines a template for the name to be used for the members of

the group.

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 63 / 98

$prototype

In an edit-group, $prototype is mandatory and defines the default pre-filled values for newly

added members in the group.

$scope

Specifies a hierarchy level at which a value may be edited. Possible values are system, group,

and readonly.

The default value is $scope: system, allows values to be edited at group and system levels. A

value can be entered for each system but if no value is entered the system will fall back to the

group default.

The $scope: group option makes a value editable only for a group. On the system level you will

be able to see the value, but not edit it.

The $scope: readonly option makes a field read-only. It can be used to show data to the user,

but will not allow them to edit it. This option should be used in combination with the $default

attribute.

$visibleIf

 Deprecated in favor of $visible.

Allows you to show a field or group if a simple condition is met. An example condition is:

some_group#another_group#my_checkbox == true

The left part of the condition is the path to another value, and groups are separated by $

signs. The middle section of the condition should be either == for a value to be equal or != for

values that should be not equal. The last field in the statement can be any value which a field

should have or not have.

The field with this attribute associated with it will be shown only when the condition is met. In

this example the field will be shown only if my_checkbox is checked. The ability to use

conditional statements is not limited to check boxes. It may also be used to check values of

select-fields, text-fields, and similar.

A check box should be structured like this:

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 64 / 98

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

Relative paths can be specified using prefix dots. One dot indicates a sibling, two dots

indicate a parent, and so on. This is mostly useful for edit-group.

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

 my_text:
 $visibleIf: .my_checkbox

 yet_another_group:
 $type: group

 my_text2:
 $visibleIf: ..another_group#my_checkbox

If you use multiple groups with the attribute, you can allow a users to select an option and

show a completely different form, dependent upon the selected value.

Values from hidden fields can be merged into the pillar data and sent to the client. A formula

must check the condition again and use the appropriate data. For example:

show_option:
 $type: checkbox
some_text:
 $visibleIf: show_option == true

{% if pillar.show_option %}
do_something:
 with: {{ pillar.some_text }}
{% endif %}

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 65 / 98

$values

Can only be used together with $type Use to specify the different options in the select-field.

$values must be a list of possible values to select. For example:

select_something:
 $type: select
 $values: ["option1", "option2"]

Or:

select_something:
 $type: select
 $values:
 - option1
 - option2

$visible

Allows you to show a field or group if a condition is met. You must use the jexl expression

language to write the condition.

Example structure:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

An example condition is:

formValues.some_group.another_group.my_checkbox == true

The field with this attribute will only show if the condition is met. In this example, the field will

show only if my_checkbox is checked. You can also choose other elements for the conditional

statement, such as select fields or text fields.

If you use multiple groups with the attribute, users can select an option that will show a

completely different form, depending on the selected value.

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 66 / 98

https://github.com/TomFrost/jexl

Values from hidden fields can be merged into the pillar data and sent to the client. A formula

must check the condition again and use the appropriate data. For example:

show_option:
 $type: checkbox
some_text:
 $visible: this.parent.value.show_option == true

{% if pillar.show_option %}
do_something:
 with: {{ pillar.some_text }}
{% endif %}

$disabled

Allows you to disable a field or group if a condition is met. You must use the jexl expression

language to write the condition.

If specified at group level it will disable all fields in that group.

$required

Fields with this attribute are mandatory. Supports using the jexl expresion language.

$match

Allows using a regular expression to validate the content of a text field.

It supports the regular expression features existing in JavaScript.

Example:

 hardware:
 $type: text
 $name: Hardware Type and Address
 $placeholder: Enter hardware-type hardware-address (for example, "ethernet
AA:BB:CC:DD:EE:FF")
 $help: Hardware Identifier - prefix is mandatory
 $match: "\\w+ [A-Z]{2}:[A-Z]{2}:[A-Z]{2}:[A-Z]{2}:[A-Z]{2}:[A-Z]{2}"

10.12.2.1. Expression language

You must use the jexl expression language to write conditions.

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 67 / 98

https://github.com/TomFrost/jexl
https://github.com/TomFrost/jexl
https://github.com/TomFrost/jexl

Given a structure like this:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

An example condition is:

formValues.some_group.another_group.my_checkbox == true

Absolute paths must begin with formValues.

Specify relative paths using this.parent.value to define the value of the parent.

You can also refer to the parent of the parent, with this.parent.parent.value. This is mostly useful

for edit-group elements.

Example for relative paths:

some_group:
 $type: group

 another_group:
 $type: group

 my_checkbox:
 $type: boolean

 my_text:
 $visible: this.parent.value.my_checkbox

 yet_another_group:
 $type: group

 my_text2:
 $visible: this.parent.parent.value.another_group.my_checkbox

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 68 / 98

Listing 6. Example: Basic edit-group

partitions:
 $name: "Hard Disk Partitions"
 $type: "edit-group"
 $minItems: 1
 $maxItems: 4
 $itemName: "Partition ${name}"
 $prototype:
 name:
 $default: "New partition"
 mountpoint:
 $default: "/var"
 size:
 $type: "number"
 $name: "Size in GB"
 $default:
 - name: "Boot"
 mountpoint: "/boot"
 - name: "Root"
 mountpoint: "/"
 size: 5000

Click [ Add ] to fill the form with the default values.

The formula is called hd-partitions and will appear as Hd Partitions in the Web UI.

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 69 / 98

To remove the definition of a partition click the minus symbol in the title line of an inner group.

When you are finished, click [ Save Formula ].

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 70 / 98

Listing 7. Example: Nested edit-group

users:
 $name: "Users"
 $type: edit-group
 $minItems: 2
 $maxItems: 5
 $prototype:
 name:
 $default: "username"
 password:
 $type: password
 groups:
 $type: edit-group
 $minItems: 1
 $prototype:
 group_name:
 $type: text
 $default:
 - name: "root"
 groups:
 - group_name: "users"
 - group_name: "admins"
 - name: "admin"
 groups:
 - group_name: "users"

10.12.3. Writing Salt Formulas

Salt formulas are pre-written Salt states. You can use Jinja to configure formulas with pillar data.

Basic Jinja syntax is:

pillar.some.value

When you are sure a pillar exists, use this syntax:

salt['pillar.get']('some:value', 'default value')

You can also replace the pillar value with grains. For example, grains.some.value.

Using data this way makes the formula configurable. In this example, a specified package is

installed in the package_name pillar:

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 71 / 98

install_a_package:
 pkg.installed:
 - name: {{ pillar.package_name }}

You can also use more complex constructs such as if/else and for-loops to provide greater

functionality:

{% if pillar.installSomething %}
something:
 pkg.installed
{% else %}
anotherPackage:
 pkg.installed
{% endif %}

Another example:

{% for service in pillar.services %}
start_{{ service }}:
 service.running:
 - name: {{ service }}
{% endfor %}

Jinja also provides other helpful functions. For example, you can iterate over a dictionary:

{% for key, value in some_dictionary.items() %}
do_something_with_{{ key }}: {{ value }}
{% endfor %}

You can have Salt manage your files (for example, configuration files for a program), and

change them with pillar data.

In this example, Salt copies the file salt-file_roots/my_state/files/my_program.conf on the server

to /etc/my_program/my_program.conf on the client and template it with Jinja:

/etc/my_program/my_program.conf:
 file.managed:
 - source: salt://my_state/files/my_program.conf
 - template: jinja

This example allows you to use Jinja in the file, like the previous example for states:

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 72 / 98

some_config_option = {{ pillar.config_option_a }}

10.12.4. Separate Data

Separating data from a state can increase flexibility and make it easier to re-use. You can do this

by writing values into a separate file named map.jinja. This file must be within the same directory

as the state files.

This example sets data to a dictionary with different values, depending on which system the state

runs on. It will also merge data with the pillar using the some.pillar.data value so you can access

some.pillar.data.value by using data.value.

You can choose to override defined values from pillars. For example, by overriding

some.pillar.data.package in this example:

{% set data = salt['grains.filter_by']({
 'Suse': {
 'package': 'packageA',
 'service': 'serviceA'
 },
 'RedHat': {
 'package': 'package_a',
 'service': 'service_a'
 }
}, merge=salt['pillar.get']('some:pillar:data')) %}

When you have created a map file, you can maintain compatibility with multiple system types

while accessing deep pillar data in a simpler way.

Now you can import and use data in any file. For example:

{% from "some_folder/map.jinja" import data with context %}

install_package_a:
 pkg.installed:
 - name: {{ data.package }}

You can define multiple variables by copying the {% set …%} statement with different values and

then merge it with other pillars. For example:

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 73 / 98

{% set server = salt['grains.filter_by']({
 'Suse': {
 'package': 'my-server-pkg'
 }
}, merge=salt['pillar.get']('myFormula:server')) %}
{% set client = salt['grains.filter_by']({
 'Suse': {
 'package': 'my-client-pkg'
 }
}, merge=salt['pillar.get']('myFormula:client')) %}

To import multiple variables, separate them with a comma. For example:

{% from "map.jinja" import server, client with context %}

For more information about conventions to use when writing formulas, see

https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html.

10.12.5. Generated Pillar Data

Pillar data is generated by SUSE Manager when events occur like generating the highstate. You

can use an external pillar script to generate pillar data for packages and group IDs, and include

all pillar data for a system:

/usr/share/susemanager/modules/pillar/suma_minion.py

The process is executed like this:

1. The suma_minion.py script starts and finds all formulas for a system by checking the

group_formulas.json and server_formulas.json files.

2. The script loads the values for each formula (groups and from the system) and merges

them with the highstate. By default, if no values are found, a group overrides a system if

$scope: group.

3. The script also includes a list of formulas applied to the system in a pillar named formulas.

This structure makes it possible to include states. In this example, the top file is specifically

generated by the mgr_master_tops.py script. The top file includes a state called formulas for

each system. This includes the formulas.sls file located in

/usr/share/susemanager/formulas/states or /usr/share/salt-formulas/states/. The content looks

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 74 / 98

https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html
https://docs.saltstack.com/en/latest/topics/development/conventions/formulas.html

similar to this:

include: {{ pillar["formulas"] }}

This pillar includes all formulas that are specified in the pillar data generated from the external

pillar script.

Formulas should be created directly after SUSE Manager is installed. If you encounter any

problems with formulas check these things first:

• The external pillar script (suma_minion.py) must include formula data.

• Data is saved to /srv/susemanager/formula_data and the pillar and group_pillar sub-

directories. These directories should be automatically generated by the server.

• Formulas must be included for every client listed in the top file. Currently this process is

initiated by the mgr_master_tops.py script which includes the formulas.sls file located in

/usr/share/susemanager/formulas/states/ or /usr/share/salt-formulas/states/. This directory

must be a salt file root. File roots are configured on the salt-master (SUSE Manager) located

at /etc/salt/master.d/susemanager.conf.

10.12. Custom Salt Formulas

SUSE Manager 4.2 | 10.12. Custom Salt Formulas 75 / 98

Chapter 11. Salt SSH
Salt SSH allows Salt commands and states to be issued directly over SSH. SSH connections are

created on demand, when the server executes an action on a client.

For more information about Salt SSH, see https://docs.saltstack.com/en/latest/topics/ssh/.

11.1. SSH Connection Methods

In SUSE Manager there are two SSH connection methods, ssh-push and ssh-push-tunnel. In both

methods the server initiates an SSH connection to the client to execute a Salt call.

In the ssh-push method, the package manager works as normal, and the HTTP or HTTPS

connection is directly created.

In the ssh-push-tunnel method, the server creates an HTTP or HTTPS connection through an SSH

tunnel. The HTTP connection initiated by the package manager is redirected through the tunnel

using /etc/hosts aliasing. Use this method for in-place firewall environments that block HTTP or

HTTPS connections between server and client.

11.2. Salt SSH Integration

As with all Salt calls, SUSE Manager invokes salt-ssh via the salt-api.

Salt SSH relies on a roster to obtain details such as hostname, ports, and the SSH parameters of a

client. SUSE Manager keeps these details in the database and makes them available to Salt by

generating a temporary roster file for each Salt SSH call. The location of the temporary roster file

is supplied to salt-ssh using the --roster-file= option.

11.3. Authentication

Salt SSH supports both password and key authentication. SUSE Manager uses both methods:

Password authentication is used only when bootstrapping. During the bootstrap step the key of

the server is not authorized on the client and therefore a password must be used for a

connection to be made. The password is used transiently in a temporary roster file used for

bootstrapping. This password is not stored.

All other common Salt calls use key authentication. During the bootstrap step the SSH key of the

11.1. SSH Connection Methods

SUSE Manager 4.2 | 11.1. SSH Connection Methods 76 / 98

https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/topics/ssh/
https://docs.saltstack.com/en/latest/topics/ssh/

server is authorized on the client and added to the client /.ssh/authorized_keys file. Subsequent

calls no longer require a password.

11.4. User Account

The user for Salt SSH calls made by SUSE Manager is taken from the ssh_push_sudo_user setting.

By default, the user is root.

If bootstrapping with default settings fail, check whether the client allows root

login with ssh.

If the value of ssh_push_sudo_user is not root, then the --sudo options of salt-ssh are used. For

this user you must configure the NOPASSWD option in the sudoers file. At least, set the python

binary with the version number; for example:

<USER> ALL=(ALL) NOPASSWD:/usr/bin/python3.6

11.5. HTTP Redirection

The ssh-push-tunnel method requires traffic to be redirected through an SSH tunnel. This allows

traffic to bypass firewalls blocking a direct connection between the client and the server.

This is achieved by using port 1233 in the repository URL:

https://suma-server:1233/repourl...

You can alias the suma-server hostname to localhost in /etc/hosts:

127.0.0.1 localhost suma-server

The server creates a reverse SSH tunnel that connects localhost:1233 on the client to suma-

server:443:

ssh ... -R 1233:suma-server:443

This means that the package manager will actually connect to localhost:1233, which is then

forwarded to suma-server:443 by the SSH tunnel.

11.4. User Account

SUSE Manager 4.2 | 11.4. User Account 77 / 98

The package manager can contact the server only if the tunnel is open, which occurs only when

the server executes an action on the client.

Manual package manager operations that require server connectivity are not possible in this

case.

11.6. Call Sequence

Salt SSH calls run in this sequence:

1. Prepare the Salt roster for the call

a. Create remote port forwarding option if the contact method is ssh-push-tunnel

b. Compute the ProxyCommand if the client is connected through a proxy

c. Create Roster content

2. Create a temporary roster file

3. Execute a synchronous salt-ssh call using the API

4. Remove the temporary roster file

The roster content contains:

• hostname

• user

• port

• remote_port_forwards: The remote port forwarding SSH option

• ssh_options: Other ssh options:

◦ ProxyCommand: If the client connects through a proxy

• timeout: defaults to 180 seconds

• minion_opts:

◦ master: Set to the minion ID if the contact method is ssh-push-tunnel

11.7. Bootstrap Sequence

This section describes the sequence of events when clients are registered to a Salt master. While

bootstrapping is a type of Salt SSH call, the sequence differs slightly from regular SSH calls.

11.6. Call Sequence

SUSE Manager 4.2 | 11.6. Call Sequence 78 / 98

Bootstrapping uses Salt SSH for communication between the master and the client. This happens

for both regular and SSH clients.

1. For a regular Salt client, generate and pre-authorize the Salt key of the client.

2. For an SSH client, if a proxy was selected, retrieve the SSH public key of the proxy using the

mgrutil.chain_ssh_cmd runner. The runner copies the public key of the proxy to the server

using SSH. If needed, it can chain multiple SSH commands to reach the proxy across multiple

hops.

3. Generate pillar data for bootstrap. The pillar data is compiled and stored on the Salt master,

and retrieved by the client.

4. Generate the roster for bootstrapping into a temporary file on the client. You can generate

the roster using the Salt API, with this command:

salt-ssh --roster-file=<temporary_bootstrap_roster> minion state.apply
certs,<bootstrap_state>`

For bootstrap_state, use bootstrap for regular clients or ssh_bootstrap for SSH clients.

The way the client retrieves the pillar data depends on the contact method you have chosen for

your client:

• If you are using the ssh-push-tunnel contact method, ensure you have completed the

remote port forwarding option.

• If the client connects through a proxy, ensure you have completed the ProxyCommand

option. This depends on your proxy configuration, including how many proxies you need to

connect through.

Pillar data contains:

• mgr_server: The hostname of the Salt master

• mgr_origin_server: The hostname of the SUSE Manager Server

• minion_id: The hostname of the client to bootstrap

• contact_method: The connection type

• mgr_sudo_user: The user for salt-ssh

• activation_key: If selected

11.7. Bootstrap Sequence

SUSE Manager 4.2 | 11.7. Bootstrap Sequence 79 / 98

• minion_pub: The pre-authorized public client key

• minion_pem: The pre-authorized private client key

• proxy_pub_key: The public SSH key that was retrieved from the proxy if the target is an SSH

client and a proxy was selected

The roster content contains:

• hostname

• user

• password

• port

• remote_port_forwards: the remote port forwarding SSH option

• ssh_options: other SSH options:

◦ ProxyCommand if the client connects through a proxy

• timeout: defaults to 180 seconds

This image provides an overview of the Salt SSH bootstrap process.

Figure 1. Salt SSH Bootstrap Process

11.7. Bootstrap Sequence

SUSE Manager 4.2 | 11.7. Bootstrap Sequence 80 / 98

11.8. Proxy Support

Salt SSH works with SUSE Manager Proxy by chaining the SSH connection from one server or proxy

to the next. This is also known as a multi-hop or multi-gateway SSH connection.

SUSE Manager uses ProxyCommand to redirect SSH connections through proxies. This options

invokes an arbitrary command that is expected to connect to the SSH port on the target host. The

SSH process uses standard input and output of the command to communicate with the remote

SSH daemon.

ProxyCommand replaces a TCP/IP connection. It does not perform any authorization or

encryption. Its role is simply to create a byte stream to the remote SSH daemon port.

This image depicts a client connecting to a server that is behind a gateway. In this example

netcat is used to pipe port 22 of the target host into the SSH standard input/output:

11.8. Proxy Support

SUSE Manager 4.2 | 11.8. Proxy Support 81 / 98

The Salt SSH calls run in this sequence when a proxy is in use:

1. SUSE Manager initiates the SSH connection.

2. ProxyCommand uses SSH to create a connection from the server to the client through the

proxies.

This example uses ProxyCommand with two proxies and the ssh-push method:

Connect the server to the first proxy:
/usr/bin/ssh -i /srv/susemanager/salt/salt_ssh/mgr_ssh_id -o
StrictHostKeyChecking=no -o User=mgrsshtunnel proxy1

Connect the first proxy to the second, and forward standard input/output on the client
to client:22 using the `-W` option:
/usr/bin/ssh -i /var/lib/spacewalk/mgrsshtunnel/.ssh/id_susemanager_ssh_push -o
StrictHostKeyChecking=no -o User=mgrsshtunnel -W client:22 proxy2

11.8. Proxy Support

SUSE Manager 4.2 | 11.8. Proxy Support 82 / 98

This example uses ProxyCommand with two proxies and the ssh-push-tunnel method:

Connect the server to the first proxy:
/usr/bin/ssh -i /srv/susemanager/salt/salt_ssh/mgr_ssh_id -o User=mgrsshtunnel
proxy1

Connect the first proxy to the second:
/usr/bin/ssh -i /home/mgrsshtunnel/.ssh/id_susemanager_ssh_push -o
User=mgrsshtunnel proxy2

Connect the second proxy to the client and open an reverse tunnel (-R 1233:proxy2:443)
from the client to the HTTPS port on the second proxy:
/usr/bin/ssh -i /home/mgrsshtunnel/.ssh/id_susemanager_ssh_push -o User=root -R
1233:proxy2:443 client

Connect the client to itself and forward the standard input/output of the server to the
SSH port of the client (-W client:22).
This is equivalent to `ssh ... proxy2 netcat client 22`` and is needed because SSH does not
allow both the reverse tunnel (-R 1233:proxy2:443) and the standard input/output forward
(-W client:22) in the same command.
/usr/bin/ssh -i /root/.ssh/mgr_own_id -W client:22 -o User=root client

11.8. Proxy Support

SUSE Manager 4.2 | 11.8. Proxy Support 83 / 98

11.9. Users and SSH Key Management

To connect to a proxy, the parent server or proxy uses a specific user called mgrsshtunnel. When

mgrsshtunnel connects, the SSH configuration of the proxy will force the execution of

/usr/sbin/mgr-proxy-ssh-force-cmd. This is a simple shell script that allows only the execution of

scp, ssh, or cat commands.

The connection to the proxy or client is authorized using SSH keys in this sequence:

1. The server connects to the client and to the first proxy using the key in

`/srv/susemanager/salt/salt_ssh/mgr_ssh_id.

2. Each proxy has its own key pair in `/home/mgrsshtunnel/.ssh/id_susemanager_ssh_push.

3. Each proxy authorizes the key of the parent proxy or server.

4. The client authorizes its own key.

11.9. Users and SSH Key Management

SUSE Manager 4.2 | 11.9. Users and SSH Key Management 84 / 98

11.10. Repository Access with a Proxy

When SUSE Manager connects to a repository using a proxy, it can use either ssh-push or ssh-

push-tunnel.

In both methods the client connects to the proxy to retrieve package and repository information.

In the ssh-push method, the package manager connects directly to the proxy using HTTP or

HTTPS. This works in cases where there is no firewall between the client and the proxy that blocks

HTTP connections initiated by the client.

In the ssh-push-tunnel method, the HTTP connection to the proxy is redirected through a reverse

SSH tunnel.

11.10. Repository Access with a Proxy

SUSE Manager 4.2 | 11.10. Repository Access with a Proxy 85 / 98

11.11. Proxy Setup

When the spacewalk-proxy package is installed on the proxy, the mgrsshtunnel user is created.

The initial configuration with configure-proxy.sh occurs using this sequence:

1. An SSH key pair is generated, or an existing keypair is imported.

2. The SSH key of the parent server or proxy is retrieved to authorize it on the proxy.

3. The ssh daemon on the proxy is configured to restrict the mgrsshtunnel user. This is done by

the mgr-proxy-ssh-push-init script, which is called from configure-proxy.sh. It does not have

to be manually invoked.

The parent key is retrieved by calling an HTTPS endpoint on the parent server or proxy. The first

endpoint tried is https://$PARENT/pub/id_susemanager_ssh_push.pub. If the parent is a

proxy then this will return the public SSH key of the proxy.

If a 404 error is received from that endpoint, then the parent is assumed to be a server not a

proxy, and https://$PARENT/rhn/manager/download/saltssh/pubkey is tried instead.

If an SSH key exists at /srv/susemanager/salt/salt_ssh/mgr_ssh_id.pub on the server it is

returned.

If the public key does not exist because salt-ssh has not been invoked yet, a key will be generates

by calling the mgrutil.ssh_keygen runner.

11.11. Proxy Setup

SUSE Manager 4.2 | 11.11. Proxy Setup 86 / 98

https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/pub/id_susemanager_ssh_push.pub
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey
https://$PARENT/rhn/manager/download/saltssh/pubkey

Salt SSH generates a keypair the first time it is invoked with

/srv/susemanager/salt/salt_ssh/mgr_ssh_id. The sequence in this section is

needed if a proxy is configured before Salt SSH was invoked for the first time.

11.11. Proxy Setup

SUSE Manager 4.2 | 11.11. Proxy Setup 87 / 98

Chapter 12. Rate Limiting
Salt is able to run commands in parallel on a large number of clients. This can potentially create

large amounts of load on your infrastructure. You can use these rate-limiting parameters to

control the load in your environment.

These parameters are all configured in the /etc/rhn/rhn.conf configuration file.

Salt commands that are executed from the command line are not subject to

these parameters.

12.1. Batching

There are two parameters that control how actions are sent to clients, one for the batch size, and

one for the delay.

When the SUSE Manager Server sends a batch of actions to the target clients, it will send it to the

number of clients determined in the batch size parameter. After the specified delay period,

commands will be sent to the next batch of clients. The number of clients in each subsequent

batch is equal to the number of clients that have completed in the previous batch.

Choosing a lower batch size will reduce system load and parallelism, but might reduce overall

performance for processing actions.

The batch size parameter sets the maximum number of clients that can execute a single action

at the same time. Adjust the java.salt_batch_size parameter. Defaults to 200.

Increasing the delay increases the chance that multiple clients will have completed before the

next action is issued (more clients are grouped together in subsequent batches), resulting in

fewer overall commands, and reducing load.

The batch delay parameter sets the amount of time, in seconds, to wait after a command from

the previous batch is processed before beginning to process the command on the next client.

Adjust the java.salt_batch_delay parameter. Defaults to 1.0 seconds.

12.2. Disabling the Salt Mine

In older versions, SUSE Manager used a tool called Salt mine to check client availability. The Salt

mine would cause clients to contact the server every hour, which created significant load. With

12.1. Batching

SUSE Manager 4.2 | 12.1. Batching 88 / 98

the introduction of a more efficient mechanism in SUSE Manager 3.2, the Salt mine is no longer

required. Instead, the SUSE Manager Server uses Taskomatic to ping only the clients that appear

to have been offline for twelve hours or more, with all clients being contacted at least once in

every twenty four hour period by default. You can adjust this by changing the

web.system_checkin_threshold parameter in rhn.conf. The value is expressed in days, and the

default value is 1.

Newly registered Salt clients will have the Salt mine disabled by default. If the Salt mine is running

on your system, you can reduce load by disabling it. This is especially effective if you have a large

number of clients.

Disable the Salt mine by running this command on the server:

salt '*' state.sls util.mgr_mine_config_clean_up

This will restart the clients and generate some Salt events to be processed by the server. If you

have a large number of clients, handling these events could create excessive load. To avoid this,

you can execute the command in batch mode with this command:

salt --batch-size 50 '*' state.sls util.mgr_mine_config_clean_up

You will need to wait for this command to finish executing. Do not end the process with Ctrl  +  C .

12.2. Disabling the Salt Mine

SUSE Manager 4.2 | 12.2. Disabling the Salt Mine 89 / 98

Chapter 13. Large Scale Deployments
SUSE Manager is designed by default to work on small and medium scale installations. For

installations with more than 1000 clients per SUSE Manager Server, adequate hardware sizing and

parameter tuning must be performed.

For more information on managing large scale deployments, see Large-deployments › Large-

deployments-overview.

SUSE Manager 4.2 | Chapter 13. Large Scale Deployments 90 / 98

Chapter 14. GNU Free Documentation License
Copyright © 2000, 2001, 2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA

02110-1301 USA. Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful

document "free" in the sense of freedom: to assure everyone the effective freedom to copy and

redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,

this License preserves for the author and publisher a way to get credit for their work, while not

being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must

themselves be free in the same sense. It complements the GNU General Public License, which is a

copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free

software needs free documentation: a free program should come with manuals providing the

same freedoms that the software does. But this License is not limited to software manuals; it can

be used for any textual work, regardless of subject matter or whether it is published as a printed

book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed

by the copyright holder saying it can be distributed under the terms of this License. Such a notice

grants a world-wide, royalty-free license, unlimited in duration, to use that work under the

conditions stated herein. The "Document", below, refers to any such manual or work. Any member

of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or

distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,

either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals

exclusively with the relationship of the publishers or authors of the Document to the Document’s

overall subject (or to related matters) and contains nothing that could fall directly within that

SUSE Manager 4.2 | Chapter 14. GNU Free Documentation License 91 / 98

overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section

may not explain any mathematics.) The relationship could be a matter of historical connection

with the subject or with related matters, or of legal, commercial, philosophical, ethical or political

position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being

those of Invariant Sections, in the notice that says that the Document is released under this

License. If a section does not fit the above definition of Secondary then it is not allowed to be

designated as Invariant. The Document may contain zero Invariant Sections. If the Document

does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-

Cover Texts, in the notice that says that the Document is released under this License. A Front-

Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a

format whose specification is available to the general public, that is suitable for revising the

document straightforwardly with generic text editors or (for images composed of pixels) generic

paint programs or (for drawings) some widely available drawing editor, and that is suitable for

input to text formatters or for automatic translation to a variety of formats suitable for input to

text formatters. A copy made in an otherwise Transparent file format whose markup, or absence

of markup, has been arranged to thwart or discourage subsequent modification by readers is not

Transparent. An image format is not Transparent if used for any substantial amount of text. A

copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo

input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-

conforming simple HTML, PostScript or PDF designed for human modification. Examples of

transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary

formats that can be read and edited only by proprietary word processors, SGML or XML for which

the DTD and/or processing tools are not generally available, and the machine-generated HTML,

PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are

needed to hold, legibly, the material this License requires to appear in the title page. For works in

formats which do not have any title page as such, "Title Page" means the text near the most

prominent appearance of the work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely

XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here

SUSE Manager 4.2 | Chapter 14. GNU Free Documentation License 92 / 98

XYZ stands for a specific section name mentioned below, such as "Acknowledgements",

"Dedications", "Endorsements", or "History".) To "Preserve the Title" of such a section when you

modify the Document means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License

applies to the Document. These Warranty Disclaimers are considered to be included by reference

in this License, but only as regards disclaiming warranties: any other implication that these

Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or

noncommercially, provided that this License, the copyright notices, and the license notice saying

this License applies to the Document are reproduced in all copies, and that you add no other

conditions whatsoever to those of this License. You may not use technical measures to obstruct

or control the reading or further copying of the copies you make or distribute. However, you may

accept compensation in exchange for copies. If you distribute a large enough number of copies

you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly

display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the

Document, numbering more than 100, and the Document’s license notice requires Cover Texts,

you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-

Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also

clearly and legibly identify you as the publisher of these copies. The front cover must present the

full title with all words of the title equally prominent and visible. You may add other material on

the covers in addition. Copying with changes limited to the covers, as long as they preserve the

title of the Document and satisfy these conditions, can be treated as verbatim copying in other

respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones

listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent

pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must

SUSE Manager 4.2 | Chapter 14. GNU Free Documentation License 93 / 98

either include a machine-readable Transparent copy along with each Opaque copy, or state in

or with each Opaque copy a computer-network location from which the general network-using

public has access to download using public-standard network protocols a complete

Transparent copy of the Document, free of added material. If you use the latter option, you must

take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to

ensure that this Transparent copy will remain thus accessible at the stated location until at least

one year after the last time you distribute an Opaque copy (directly or through your agents or

retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before

redistributing any large number of copies, to give them a chance to provide you with an updated

version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of

sections 2 and 3 above, provided that you release the Modified Version under precisely this

License, with the Modified Version filling the role of the Document, thus licensing distribution and

modification of the Modified Version to whoever possesses a copy of it. In addition, you must do

these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and

from those of previous versions (which should, if there were any, be listed in the History

section of the Document). You may use the same title as a previous version if the original

publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship

of the modifications in the Modified Version, together with at least five of the principal

authors of the Document (all of its principal authors, if it has fewer than five), unless they

release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

F. Include, immediately after the copyright notices, a license notice giving the public

permission to use the Modified Version under the terms of this License, in the form shown in

the Addendum below.

SUSE Manager 4.2 | Chapter 14. GNU Free Documentation License 94 / 98

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least

the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If

there is no section Entitled "History" in the Document, create one stating the title, year,

authors, and publisher of the Document as given on its Title Page, then add an item

describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a

Transparent copy of the Document, and likewise the network locations given in the

Document for previous versions it was based on. These may be placed in the "History"

section. You may omit a network location for a work that was published at least four years

before the Document itself, or if the original publisher of the version it refers to gives

permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the

section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.

Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the

Modified Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any

Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as

Secondary Sections and contain no material copied from the Document, you may at your option

designate some or all of these sections as invariant. To do this, add their titles to the list of

Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any

other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements

of your Modified Version by various parties—for example, statements of peer review or that the

text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25

SUSE Manager 4.2 | Chapter 14. GNU Free Documentation License 95 / 98

words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one

passage of Front-Cover Text and one of Back-Cover Text may be added by (or through

arrangements made by) any one entity. If the Document already includes a cover text for the

same cover, previously added by you or by arrangement made by the same entity you are

acting on behalf of, you may not add another; but you may replace the old one, on explicit

permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use

their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the

terms defined in section 4 above for modified versions, provided that you include in the

combination all of the Invariant Sections of all of the original documents, unmodified, and list

them all as Invariant Sections of your combined work in its license notice, and that you preserve

all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant

Sections may be replaced with a single copy. If there are multiple Invariant Sections with the

same name but different contents, make the title of each such section unique by adding at the

end of it, in parentheses, the name of the original author or publisher of that section if known, or

else a unique number. Make the same adjustment to the section titles in the list of Invariant

Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original

documents, forming one section Entitled "History"; likewise combine any sections Entitled

"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections Entitled

"Endorsements".

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this

License, and replace the individual copies of this License in the various documents with a single

copy that is included in the collection, provided that you follow the rules of this License for

verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under

this License, provided you insert a copy of this License into the extracted document, and follow

SUSE Manager 4.2 | Chapter 14. GNU Free Documentation License 96 / 98

this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent

documents or works, in or on a volume of a storage or distribution medium, is called an

"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of

the compilation’s users beyond what the individual works permit. When the Document is included

in an aggregate, this License does not apply to the other works in the aggregate which are not

themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if

the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be

placed on covers that bracket the Document within the aggregate, or the electronic equivalent of

covers if the Document is in electronic form. Otherwise they must appear on printed covers that

bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the

Document under the terms of section 4. Replacing Invariant Sections with translations requires

special permission from their copyright holders, but you may include translations of some or all

Invariant Sections in addition to the original versions of these Invariant Sections. You may include

a translation of this License, and all the license notices in the Document, and any Warranty

Disclaimers, provided that you also include the original English version of this License and the

original versions of those notices and disclaimers. In case of a disagreement between the

translation and the original version of this License or a notice or disclaimer, the original version

will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the

requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual

title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided

for under this License. Any other attempt to copy, modify, sublicense or distribute the Document

is void, and will automatically terminate your rights under this License. However, parties who have

SUSE Manager 4.2 | Chapter 14. GNU Free Documentation License 97 / 98

received copies, or rights, from you under this License will not have their licenses terminated so

long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation

License from time to time. Such new versions will be similar in spirit to the present version, but

may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies

that a particular numbered version of this License "or any later version" applies to it, you have the

option of following the terms and conditions either of that specified version or of any later version

that has been published (not as a draft) by the Free Software Foundation. If the Document does

not specify a version number of this License, you may choose any version ever published (not as

a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled{ldquo}GNU
 Free Documentation License{rdquo}.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “ with…Texts.”

line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge

those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these

examples in parallel under your choice of free software license, such as the GNU General Public

License, to permit their use in free software.

SUSE Manager 4.2 | Chapter 14. GNU Free Documentation License 98 / 98

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

	SUSE Manager 4.2: Salt Guide
	Table of Contents
	Salt Guide Overview
	Chapter 1. Terminology
	Chapter 2. The Salt Command
	2.1. Salt Targets
	2.2. Salt Execution Modules
	2.3. Salt Function Arguments

	Chapter 3. Often Used Salt Commands
	Chapter 4. Salt States and Pillars
	4.1. Group States
	4.2. Salt Pillars
	4.3. Download Endpoint

	Chapter 5. Custom Salt States
	5.1. Create a New Custom Salt Channel
	5.2. Example Custom State Files
	5.3. Custom State to Trust a GPG Key
	5.4. Apply a custom state at highstate

	Chapter 6. Salt File Locations and Structure
	Chapter 7. The gitfs Fileserver Backend
	Chapter 8. Install with Yomi
	8.1. Install the Yomi Formula
	8.2. Install the PXE Image
	8.3. Register Yomi in Cobbler
	8.4. Example Salt Pillar Preparation
	8.5. Monitor the Installation

	Chapter 9. Configuration Modules
	9.1. Install Configuration Modules

	Chapter 10. Formulas
	10.1. Formulas Provided by SUSE Manager
	10.1.1. Install Formulas with Zypper
	10.1.2. Activate Formulas from the Web UI

	10.2. Bind Formula
	10.3. Branch Network Formula
	10.3.1. Set Up a Branch Server Networking
	10.3.2. Set up Branch Server Terminal Naming

	10.4. DHCPd Formula
	10.5. Image Synchronization Formula
	10.6. Monitoring Formula
	10.7. PXE Formula
	10.7.1. Saltboot Kernel Command Line Parameters

	10.8. Saltboot Formula
	10.8.1. Special Partition Types
	10.8.2. Disk Selection in Saltboot Formula
	10.8.3. Troubleshooting the Saltboot Formula

	10.9. TFTPD Formula
	10.10. VsFTPd Formula
	10.11. Yomi Formula
	10.12. Custom Salt Formulas
	10.12.1. File Structure Overview
	10.12.2. Define Formula with Forms Data
	10.12.3. Writing Salt Formulas
	10.12.4. Separate Data
	10.12.5. Generated Pillar Data

	Chapter 11. Salt SSH
	11.1. SSH Connection Methods
	11.2. Salt SSH Integration
	11.3. Authentication
	11.4. User Account
	11.5. HTTP Redirection
	11.6. Call Sequence
	11.7. Bootstrap Sequence
	11.8. Proxy Support
	11.9. Users and SSH Key Management
	11.10. Repository Access with a Proxy
	11.11. Proxy Setup

	Chapter 12. Rate Limiting
	12.1. Batching
	12.2. Disabling the Salt Mine

	Chapter 13. Large Scale Deployments
	Chapter 14. GNU Free Documentation License

