Contents

1 The Future for Python 2.x

2 Changes to the Handling of Deprecation Warnings

3 Python 3.1 Features

4 PEP 372: Adding an Ordered Dictionary to collections

5 PEP 378: Format Specifier for Thousands Separator

6 PEP 389: The argparse Module for Parsing Command Lines

7 PEP 391: Dictionary-Based Configuration For Logging

8 PEP 3106: Dictionary Views

9 PEP 3137: The memoryview Object

10 Other Language Changes
10.1 Interpreter Changes oo
10.2 Optimizations o v v it e e

11 New and Improved Modules
11.1 New module: importlib
11.2 New module: sysconfig
11.3 ttk: Themed Widgetsfor Tk
11.4 Updated module: unittest
11.5 Updated module: ElementTree 1.3

12 Build and C API Changes
12.1 Capsules oo e
12.2 Port-Specific Changes: Windows
12.3 Port-Specific Changes: MacOS X
12.4 Port-Specific Changes: FreeBSD

13 Other Changes and Fixes

What’s New in Python

Release 2.7.7

A. M. Kuchling

June 20, 2014

Python Software Foundation
Email: docs@python.org

ii
iii
iii

iv
vi

vii

ix

xxvii

................... XXViii
................... XXiX

14 Porting to Python 2.7 XXX

15 New Features Added to Python 2.7 Maintenance Releases XXXii
15.1 PEP 434: IDLE Enhancement Exception for All Branches XXXil
15.2 PEP 466: Network Security Enhancements for Python2.7 XXXii

16 Acknowledgements Xxxii

Indexxxxiii

Author A.M. Kuchling (amk at amk.ca)
This article explains the new features in Python 2.7. Python 2.7 was released on July 3, 2010.

Numeric handling has been improved in many ways, for both floating-point numbers and for the Decimal class.
There are some useful additions to the standard library, such as a greatly enhanced unittest module, the
argparse module for parsing command-line options, convenient OrderedDict and Counter classes in the
collections module, and many other improvements.

Python 2.7 is planned to be the last of the 2.x releases, so we worked on making it a good release for the long term. To
help with porting to Python 3, several new features from the Python 3.x series have been included in 2.7.

This article doesn’t attempt to provide a complete specification of the new features, but instead provides a convenient
overview. For full details, you should refer to the documentation for Python 2.7 at http://docs.python.org. If you want
to understand the rationale for the design and implementation, refer to the PEP for a particular new feature or the issue
on http://bugs.python.org in which a change was discussed. Whenever possible, “What’s New in Python” links to the
bug/patch item for each change.

1 The Future for Python 2.x

Python 2.7 is the last major release in the 2.x series, as the Python maintainers have shifted the focus of their new
feature development efforts to the Python 3.x series. This means that while Python 2 continues to receive bug fixes,
and to be updated to build correctly on new hardware and versions of supported operated systems, there will be no
new full feature releases for the language or standard library.

However, while there is a large common subset between Python 2.7 and Python 3, and many of the changes involved in
migrating to that common subset, or directly to Python 3, can be safely automated, some other changes (notably those
associated with Unicode handling) may require careful consideration, and preferably robust automated regression test
suites, to migrate effectively.

This means that Python 2.7 will remain in place for a long time, providing a stable and supported base platform for
production systems that have not yet been ported to Python 3. The full expected lifecycle of the Python 2.7 series is
detailed in PEP 373.

Some key consequences of the long-term significance of 2.7 are:

* Asnoted above, the 2.7 release has a much longer period of maintenance when compared to earlier 2.x versions.
Python 2.7 is currently expected to remain supported by the core development team (receiving security updates
and other bug fixes) until at least 2020 (10 years after its initial release, compared to the more typical support
period of 18-24 months).

 As the Python 2.7 standard library ages, making effective use of the Python Package Index (either directly or via
a redistributor) becomes more important for Python 2 users. In addition to a wide variety of third party packages
for various tasks, the available packages include backports of new modules and features from the Python 3
standard library that are compatible with Python 2, as well as various tools and libraries that can make it easier
to migrate to Python 3. The Python Packaging User Guide provides guidance on downloading and installing
software from the Python Package Index.

http://docs.python.org
http://bugs.python.org
http://www.python.org/dev/peps/pep-0373
https://packaging.python.org

e While the preferred approach to enhancing Python 2 is now the publication of new packages on the Python
Package Index, this approach doesn’t necessarily work in all cases, especially those related to network security.
In exceptional cases that cannot be handled adequately by publishing new or updated packages on PyPI, the
Python Enhancement Proposal process may be used to make the case for adding new features directly to the
Python 2 standard library. Any such additions, and the maintenance releases where they were added, will be
noted in the New Features Added to Python 2.7 Maintenance Releases section below.

For projects wishing to migrate from Python 2 to Python 3, or for library and framework developers wishing to support
users on both Python 2 and Python 3, there are a variety of tools and guides available to help decide on a suitable
approach and manage some of the technical details involved. The recommended starting point is the pyporting-howto
HOWTO guide.

2 Changes to the Handling of Deprecation Warnings

For Python 2.7, a policy decision was made to silence warnings only of interest to developers by default.
DeprecationWarning and its descendants are now ignored unless otherwise requested, preventing users from
seeing warnings triggered by an application. This change was also made in the branch that became Python 3.2. (Dis-
cussed on stdlib-sig and carried out in issue 7319.)

In previous releases, DeprecationWarning messages were enabled by default, providing Python developers with
a clear indication of where their code may break in a future major version of Python.

However, there are increasingly many users of Python-based applications who are not directly involved in the devel-
opment of those applications. DeprecationWarning messages are irrelevant to such users, making them worry
about an application that’s actually working correctly and burdening application developers with responding to these
concerns.

You can re-enable display of DeprecationWarning messages by running Python with the ~wWdefault (short
form: -wd) switch, or by setting the PYTHONWARNINGS environment variable to "default" (or "d") before
running Python. Python code can also re-enable them by calling warnings.simplefilter (‘default’).

The unittest module also automatically reenables deprecation warnings when running tests.

3 Python 3.1 Features

Much as Python 2.6 incorporated features from Python 3.0, version 2.7 incorporates some of the new features in
Python 3.1. The 2.x series continues to provide tools for migrating to the 3.x series.

A partial list of 3.1 features that were backported to 2.7:
* The syntax for set literals ({1, 2, 3} is a mutable set).
* Dictionary and set comprehensions ({1: 1ix2 for i in range (3) }).
* Multiple context managers in a single with statement.
* A new version of the io library, rewritten in C for performance.
* The ordered-dictionary type described in PEP 372: Adding an Ordered Dictionary to collections.
e The new ", " format specifier described in PEP 378: Format Specifier for Thousands Separator.
* The memoryview object.
* A small subset of the import1lib module, described below.

e The repr () of afloat x is shorter in many cases: it’s now based on the shortest decimal string that’s guaranteed
to round back to x. As in previous versions of Python, it’s guaranteed that f1oat (repr (x)) recovers x.

http://bugs.python.org/issue7319

¢ Float-to-string and string-to-float conversions are correctly rounded. The round () function is also now cor-
rectly rounded.

* The PyCapsule type, used to provide a C API for extension modules.
¢ The PyLong_AsLongAndOverflow () C API function.
Other new Python3-mode warnings include:

e operator.isCallable () and operator.sequenceIncludes (), which are not supported in 3.x,
now trigger warnings.

e The —3 switch now automatically enables the —~Owa rn switch that causes warnings about using classic division
with integers and long integers.

4 PEP 372: Adding an Ordered Dictionary to collections

Regular Python dictionaries iterate over key/value pairs in arbitrary order. Over the years, a number of authors have
written alternative implementations that remember the order that the keys were originally inserted. Based on the
experiences from those implementations, 2.7 introduces a new OrderedDict class in the collections module.

The OrderedDict API provides the same interface as regular dictionaries but iterates over keys and values in a
guaranteed order depending on when a key was first inserted:

>>> from collections import OrderedDict

>>> d = OrderedDict ([(' first’, 1),

(" second’, 2),

c. ("third’”, 3)1)

>>> d.items ()

[("first’, 1), ('second’, 2), ("third’, 3)]

If a new entry overwrites an existing entry, the original insertion position is left unchanged:

>>> d[’second’] = 4
>>> d.items ()
[("first’, 1), ('second’, 4), ('"third’, 3)]

Deleting an entry and reinserting it will move it to the end:

>>> del d[’second’]

>>> d[’second’] =5

>>> d.items ()

[("first’, 1), ("third’, 3), ('second’, 5)]

The popitem () method has an optional last argument that defaults to True. If /ast is True, the most recently added
key is returned and removed; if it’s False, the oldest key is selected:

>>> od = OrderedDict ([(x,0) for x in range (20)1])
>>> od.popitem/()

(19, 0)

>>> od.popitem/()

(18, 0)

>>> od.popitem(last=False)

(0, 0)

>>> od.popitem(last=False)

(1, 0)

Comparing two ordered dictionaries checks both the keys and values, and requires that the insertion order was the
same:

>>> odl = OrderedDict ([(' first’, 1),
(" second’, 2),

Ce ("third”, 3)1)

>>> od2 = OrderedDict ([('third’, 3),
(" first’, 1),

ce ("second’, 2)1)

>>> odl == o0d2

False

>>> # Move ’third’ key to the end

>>> del od2[’third’]; od2[’'third’"] = 3
>>> odl == od2

True

Comparing an OrderedDict with a regular dictionary ignores the insertion order and just compares the keys and
values.

How does the OrderedDict work? It maintains a doubly-linked list of keys, appending new keys to the list as they’re
inserted. A secondary dictionary maps keys to their corresponding list node, so deletion doesn’t have to traverse the
entire linked list and therefore remains O(1).

The standard library now supports use of ordered dictionaries in several modules.

e The ConfigParser module uses them by default, meaning that configuration files can now be read, modified,
and then written back in their original order.

e The _asdict () method for collections.namedtuple () now returns an ordered dictionary with the
values appearing in the same order as the underlying tuple indices.

¢ The json module’s JSONDecoder class constructor was extended with an object_pairs_hook parameter to
allow OrderedDict instances to be built by the decoder. Support was also added for third-party tools like
PyYAML.

See Also:

PEP 372 - Adding an ordered dictionary to collections PEP written by Armin Ronacher and Raymond Hettinger;
implemented by Raymond Hettinger.

5 PEP 378: Format Specifier for Thousands Separator

To make program output more readable, it can be useful to add separators to large numbers, rendering them as
18,446,744,073,709,551,616 instead of 18446744073709551616.

The fully general solution for doing this is the 1ocale module, which can use different separators (”,” in North
America, ”.” in Europe) and different grouping sizes, but locale is complicated to use and unsuitable for multi-
threaded applications where different threads are producing output for different locales.

Therefore, a simple comma-grouping mechanism has been added to the mini-language used by the str. format ()
method. When formatting a floating-point number, simply include a comma between the width and the precision:

>>> 7 {:20,.2f}’ .format (18446744073709551616.0)
718,446,744,073,709,551,616.00"

When formatting an integer, include the comma after the width:

>>> 7 {:20,d}’ .format (18446744073709551616)
"18,446,744,073,709,551,616

This mechanism is not adaptable at all; commas are always used as the separator and the grouping is always into
three-digit groups. The comma-formatting mechanism isn’t as general as the 1ocale module, but it’s easier to use.

http://pyyaml.org/
http://www.python.org/dev/peps/pep-0372

See Also:

PEP 378 - Format Specifier for Thousands Separator PEP written by Raymond Hettinger; implemented by Eric
Smith.

6 PEP 389: The argparse Module for Parsing Command Lines

The argparse module for parsing command-line arguments was added as a more powerful replacement for the
optparse module.

This means Python now supports three different modules for parsing command-line arguments: getopt, optparse,
and argparse. The getopt module closely resembles the C library’s getopt () function, so it remains useful
if you’re writing a Python prototype that will eventually be rewritten in C. optparse becomes redundant, but there
are no plans to remove it because there are many scripts still using it, and there’s no automated way to update these
scripts. (Making the argparse API consistent with optparse‘s interface was discussed but rejected as too messy
and difficult.)

In short, if you’re writing a new script and don’t need to worry about compatibility with earlier versions of Python,
use argparse instead of optparse.

Here’s an example:

import argparse
parser = argparse.ArgumentParser (description='Command-line example.’)

Add optional switches
parser.add_argument (' -v’, action=’store_true’, dest=’'is_verbose’,
help=’'produce verbose output’)
parser.add_argument (' —o’, action=’store’, dest=’output’,
metavar="FILE’,
help='direct output to FILE instead of stdout’)
parser.add_argument (' -C’, action=’store’, type=int, dest=’context’,
metavar='NUM’, default=0,
help='display NUM lines of added context’)

Allow any number of additional arguments.
parser.add_argument (nargs=’'«’, action=’store’, dest=’inputs’,
help=’'input filenames (default is stdin)’)

args = parser.parse_args ()

print args.__dict___

Unless you override it, —h and ——he 1p switches are automatically added, and produce neatly formatted output:
-> ./python.exe argparse-example.py —-help

usage: argparse-example.py [-h] [-v] [-o FILE] [-C NUM] [inputs [inputs ...]]

Command-line example.

positional arguments:
inputs input filenames (default is stdin)

optional arguments:
-h, —--help show this help message and exit
-V produce verbose output

http://www.python.org/dev/peps/pep-0378

-o FILE direct output to FILE instead of stdout
-C NUM display NUM lines of added context

As with optparse, the command-line switches and arguments are returned as an object with attributes named by the
dest parameters:

-> ./python.exe argparse-example.py -v
{’output’ : None,

"is_verbose’: True,

"context’: O,

"inputs’: []}

-> ./python.exe argparse-example.py -v —-o /tmp/output -C 4 filel file2
{’output’: ’/tmp/output’,

"is_verbose’: True,

"context’: 4,

"inputs’: [’filel’, "file2’']}

argparse has much fancier validation than opt parse; you can specify an exact number of arguments as an integer,
0 or more arguments by passing ’ =/, 1 or more by passing ’ +’, or an optional argument with * 2. A top-level
parser can contain sub-parsers to define subcommands that have different sets of switches, as in svn commit, svn
checkout, etc. You can specify an argument’s type as FileType, which will automatically open files for you and
understands that ’ —’ means standard input or output.

See Also:
argparse documentation The documentation page of the argparse module.
argparse-from-optparse Part of the Python documentation, describing how to convert code that uses optparse.

PEP 389 - argparse - New Command Line Parsing Module PEP written and implemented by Steven Bethard.

7 PEP 391: Dictionary-Based Configuration For Logging

The 1ogging module is very flexible; applications can define a tree of logging subsystems, and each logger in this
tree can filter out certain messages, format them differently, and direct messages to a varying number of handlers.

All this flexibility can require a lot of configuration. You can write Python statements to create objects and set their
properties, but a complex set-up requires verbose but boring code. logging also supports a fileConfig()
function that parses a file, but the file format doesn’t support configuring filters, and it’s messier to generate program-
matically.

Python 2.7 adds a dictConfig () function that uses a dictionary to configure logging. There are many ways to
produce a dictionary from different sources: construct one with code; parse a file containing JSON; or use a YAML
parsing library if one is installed. For more information see logging-config-api.

The following example configures two loggers, the root logger and a logger named “network”. Messages sent to the
root logger will be sent to the system log using the syslog protocol, and messages to the “network” logger will be
written to a network . Log file that will be rotated once the log reaches IMB.

import logging
import logging.config

configdict = {
"version’: 1, # Configuration schema in use; must be 1 for now
"formatters’ : {
"standard’ : {
"format’: (' !

http://www.python.org/dev/peps/pep-0389

"% (levelname)-8s % (message)s’)}},

"handlers’: {’netlog’: {’backupCount’: 10,

"class’: ’"logging.handlers.RotatingFileHandler’,

filename’: ’/logs/network.log’,

"formatter’: ’'standard’,

"level’ : "INFO’,

"maxBytes’: 1000000},

"syslog’: {’class’: 'logging.handlers.SysLogHandler’,

"formatter’: ’standard’,
’level’: "ERROR’}},

Specify all the subordinate loggers
"loggers’: {
"network’” : {
"handlers’: ['netlog’]

s
Specify properties of the root logger
"root’ : {
"handlers’: [’'syslog’]
by

Set up configuration
logging.config.dictConfig(configdict)

As an example, log two error messages
logger = logging.getLogger (' /')
logger.error (' Database not found’)

netlogger = logging.getLogger ('network’)
netlogger.error (' Connection failed’)
Three smaller enhancements to the 10ogging module, all implemented by Vinay Sajip, are:

* The SysLogHandler class now supports syslogging over TCP. The constructor has a socktype parameter
giving the type of socket to use, either socket . SOCK_DGRAM for UDP or socket .SOCK_STREAM for
TCP. The default protocol remains UDP.

* Logger instances gained a getChild () method that retrieves a descendant logger using a rela-
tive path. For example, once you retrieve a logger by doing log = getLogger (' app’), calling
log.getChild (' network.listen’) isequivalent to getLogger (' app.network.listen’).

* The LoggerAdapter class gained a isEnabledFor () method that takes a level and returns whether the
underlying logger would process a message of that level of importance.

See Also:
PEP 391 - Dictionary-Based Configuration For Logging PEP written and implemented by Vinay Sajip.

8 PEP 3106: Dictionary Views

The dictionary methods keys (), values (),and items () are different in Python 3.x. They return an object called
a view instead of a fully materialized list.

http://www.python.org/dev/peps/pep-0391

It’s not possible to change the return values of keys (), values (), and items () in Python 2.7 because too much
code would break. Instead the 3.x versions were added under the new names viewkeys (), viewvalues (), and
viewitems ().

>>> d = dict ((i%x10, chr(65+i)) for i in range(26))

>>> d

{0: A", 130: ’'N’, 10: 'B’, 140: '0O’, 20: ..., 250: ’'Z2"}
>>> d.viewkeys ()

dict_keys ([0, 130, 10, 140, 20, 150, 30, ..., 250])

Views can be iterated over, but the key and item views also behave like sets. The & operator performs intersection, and
| performs a union:

>>> dl dict ((1i+*10, chr(65+i)) for i in range (26))
>>> d2 = dict ((i**.5, i) for i in range (1000))

>>> dl.viewkeys () & d2.viewkeys()

set ([0.0, 10.0, 20.0, 30.0])

>>> dl.viewkeys () | range (0, 30)

set ([0, 1, 130, 3, 4, 5, 6, ..., 120, 2501)

The view keeps track of the dictionary and its contents change as the dictionary is modified:

>>> vk = d.viewkeys()

>>> vk

dict_keys ([0, 130, 10, ..., 2501)

>>> d[260] = "&’

>>> vk

dict_keys ([0, 130, 260, 10, ..., 2501)

However, note that you can’t add or remove keys while you’re iterating over the view:

>>> for k in vk:
d[k*2] = k

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
RuntimeError: dictionary changed size during iteration

You can use the view methods in Python 2.x code, and the 2to3 converter will change them to the standard keys (),
values (), and items () methods.

See Also:

PEP 3106 - Revamping dict.keys(), .values() and .items() PEP written by Guido van Rossum. Backported to 2.7
by Alexandre Vassalotti; issue 1967.

9 PEP 3137: The memoryview Object

The memoryview object provides a view of another object’s memory content that matches the bytes type’s inter-
face.

>>> import string
>>> m memoryview (string.letters)

>>> m

<memory at 0x37£850>

>>> len (m) # Returns length of underlying object
52

>>> m[0], m[25], m[26] # Indexing returns one byte

http://www.python.org/dev/peps/pep-3106
http://bugs.python.org/issue1967

(ra”, 'z", 'A")

>>> m2 = m[0:26] # Slicing returns another memoryview
>>> m2

<memory at 0x37£080>

The content of the view can be converted to a string of bytes or a list of integers:

>>> m2.tobytes ()

"abcdefghijklmnopgrstuvwxyz’

>>> m2.tolist ()

(97, 98, 99, 100, 101, 102, 103, ... 121, 122]
>>>

memoryview objects allow modifying the underlying object if it’s a mutable object.

>>> m2[0] = 75
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot modify read-only memory
>>> b = bytearray(string.letters) # Creating a mutable object
>>> b
bytearray (b’ abcdefghijklmnopgrstuvwxyzABCDEFGHI JKLMNOPQRSTUVWXYZ')
>>> mb = memoryview (b)

>>> mb[0] = 7' # Assign to view, changing the bytearray.
>>> b[0:5] # The bytearray has been changed.
bytearray (b’ xbcde’)

>>>

See Also:

PEP 3137 - Immutable Bytes and Mutable Buffer PEP written by Guido van Rossum. Implemented by Travis
Oliphant, Antoine Pitrou and others. Backported to 2.7 by Antoine Pitrou; issue 2396.

10 Other Language Changes

Some smaller changes made to the core Python language are:

 The syntax for set literals has been backported from Python 3.x. Curly brackets are used to surround the contents
of the resulting mutable set; set literals are distinguished from dictionaries by not containing colons and values.
{ } continues to represent an empty dictionary; use set () for an empty set.

>>> {1, 2, 3, 4, 5}
set ([1, 2, 3, 4, 5])

>>> set () # empty set
set ([1])
>>> {} # empty dict

{}
Backported by Alexandre Vassalotti; issue 2335.

¢ Dictionary and set comprehensions are another feature backported from 3.x, generalizing list/generator compre-
hensions to use the literal syntax for sets and dictionaries.

>>> {x: x*x for x in range (6)}

{0: 0, 1: 1, 2: 4, 3: 9, 4: 1lo, 5: 25}

>>> {("a’xx) for x in range (6)}

set(["’, "a’', '"aa', 'aaa’, ’'aaaa’, ’'aaaaa’'l)

http://www.python.org/dev/peps/pep-3137
http://bugs.python.org/issue2396
http://bugs.python.org/issue2335

Backported by Alexandre Vassalotti; issue 2333.

* The with statement can now use multiple context managers in one statement. Context managers are processed
from left to right and each one is treated as beginning a new with statement. This means that:

with A() as a, B() as b:
suite of statements

is equivalent to:

with A() as a:
with B() as b:
suite of statements

The contextlib.nested () function provides a very similar function, so it’s no longer necessary and has
been deprecated.

(Proposed in http://codereview.appspot.com/53094; implemented by Georg Brandl.)

» Conversions between floating-point numbers and strings are now correctly rounded on most platforms. These
conversions occur in many different places: str () on floats and complex numbers; the f1oat and complex
constructors; numeric formatting; serializing and deserializing floats and complex numbers using the marshal,
pickle and json modules; parsing of float and imaginary literals in Python code; and Decimal-to-float
conversion.

Related to this, the repr () of a floating-point number x now returns a result based on the shortest decimal
string that’s guaranteed to round back to x under correct rounding (with round-half-to-even rounding mode).
Previously it gave a string based on rounding x to 17 decimal digits.

The rounding library responsible for this improvement works on Windows and on Unix platforms using the gcc,
icc, or suncc compilers. There may be a small number of platforms where correct operation of this code cannot
be guaranteed, so the code is not used on such systems. You can find out which code is being used by checking
sys.float_repr_style, which will be short if the new code is in use and 1egacy if itisn’t.

Implemented by Eric Smith and Mark Dickinson, using David Gay’s dtoa . c library; issue 7117.

* Conversions from long integers and regular integers to floating point now round differently, returning the
floating-point number closest to the number. This doesn’t matter for small integers that can be converted ex-
actly, but for large numbers that will unavoidably lose precision, Python 2.7 now approximates more closely.
For example, Python 2.6 computed the following:

>>> n = 295147905179352891391
>>> float (n)
2.9514790517935283e+20

>>> n - long(float (n))

65535L

Python 2.7’s floating-point result is larger, but much closer to the true value:

>>> n = 295147905179352891391
>>> float (n)
2.9514790517935289e+20

>>> n — long(float (n))

-1L

(Implemented by Mark Dickinson; issue 3166.)

Integer division is also more accurate in its rounding behaviours. (Also implemented by Mark Dickinson; issue
1811.)

* Implicit coercion for complex numbers has been removed; the interpreter will no longer ever attempt to call a
__coerce__ () method on complex objects. (Removed by Meador Inge and Mark Dickinson; issue 5211.)

http://bugs.python.org/issue2333
http://codereview.appspot.com/53094
http://bugs.python.org/issue7117
http://bugs.python.org/issue3166
http://bugs.python.org/issue1811
http://bugs.python.org/issue1811
http://bugs.python.org/issue5211

e The str.format () method now supports automatic numbering of the replacement fields. This makes using
str.format () more closely resemble using $s formatting:

>>> ' {}:{}:{}’ .format (2009, 04, ’'Sunday’)
72009:4:Sunday’

>>> ' {}:{}:{day}’ .format (2009, 4, day=’Sunday’)
72009:4:Sunday’

The auto-numbering takes the fields from left to right, so the first { . . . } specifier will use the first argument to
str.format (), the next specifier will use the next argument, and so on. You can’t mix auto-numbering and
explicit numbering — either number all of your specifier fields or none of them — but you can mix auto-numbering
and named fields, as in the second example above. (Contributed by Eric Smith; issue 5237.)

Complex numbers now correctly support usage with format (), and default to being right-aligned. Specifying
a precision or comma-separation applies to both the real and imaginary parts of the number, but a specified field
width and alignment is applied to the whole of the resulting 1 . 5+3 7 output. (Contributed by Eric Smith; issue
1588 and issue 7988.)

The ‘F’ format code now always formats its output using uppercase characters, so it will now produce ‘INF’ and
‘NAN’. (Contributed by Eric Smith; issue 3382.)

A low-level change: the object._ format__ () method now triggers a
PendingDeprecationWarning if it’s passed a format string, because the __format__ () method for
object converts the object to a string representation and formats that. Previously the method silently applied
the format string to the string representation, but that could hide mistakes in Python code. If you’re supplying
formatting information such as an alignment or precision, presumably you’re expecting the formatting to be
applied in some object-specific way. (Fixed by Eric Smith; issue 7994.)

e The int () and long () types gained a bit_length method that returns the number of bits necessary to
represent its argument in binary:

>>> n = 37

>>> bin (n)

"0bl00101"

>>> n.bit_length ()

6

>>> n = 2%x123-1

>>> n.bit_length ()

123

>>> (n+1) .bit_length()
124

(Contributed by Fredrik Johansson and Victor Stinner; issue 3439.)

e The import statement will no longer try an absolute import if a relative import (e.g. from .os import
sep) fails. This fixes a bug, but could possibly break certain import statements that were only working by
accident. (Fixed by Meador Inge; issue 7902.)

¢ It’s now possible for a subclass of the built-in unicode type to override the __unicode__ () method. (Im-
plemented by Victor Stinner; issue 1583863.)

* The bytearray type’s translate () method now accepts None as its first argument. (Fixed by Georg
Brandl; issue 4759.)

* When using @classmethod and @staticmethod to wrap methods as class or static methods, the wrapper
object now exposes the wrapped function as their ___func___ attribute. (Contributed by Amaury Forgeot d’ Arc,
after a suggestion by George Sakkis; issue 5982.)

* When a restricted set of attributes were set using __slots__, deleting an unset attribute would not raise
AttributeError as you would expect. Fixed by Benjamin Peterson; issue 7604.)

http://bugs.python.org/issue5237
http://bugs.python.org/issue1588
http://bugs.python.org/issue1588
http://bugs.python.org/issue7988
http://bugs.python.org/issue3382
http://bugs.python.org/issue7994
http://bugs.python.org/issue3439
http://bugs.python.org/issue7902
http://bugs.python.org/issue1583863
http://bugs.python.org/issue4759
http://bugs.python.org/issue5982
http://bugs.python.org/issue7604

* Two new encodings are now supported: “cp720”, used primarily for Arabic text; and “cp858~, a variant of CP
850 that adds the euro symbol. (CP720 contributed by Alexander Belchenko and Amaury Forgeot d’ Arc in issue
1616979; CP858 contributed by Tim Hatch in issue 8016.)

e The file object will now set the £ilename attribute on the IOError exception when trying to open a
directory on POSIX platforms (noted by Jan Kaliszewski; issue 4764), and now explicitly checks for and forbids
writing to read-only file objects instead of trusting the C library to catch and report the error (fixed by Stefan
Krah; issue 5677).

* The Python tokenizer now translates line endings itself, so the compile () built-in function now accepts code
using any line-ending convention. Additionally, it no longer requires that the code end in a newline.

 Extra parentheses in function definitions are illegal in Python 3.x, meaning that you get a syntax error from
def f((x)): pass. InPython3-warning mode, Python 2.7 will now warn about this odd usage. (Noted
by James Lingard; issue 7362.)

* It’s now possible to create weak references to old-style class objects. New-style classes were always weak-
referenceable. (Fixed by Antoine Pitrou; issue 8268.)

* When a module object is garbage-collected, the module’s dictionary is now only cleared if no one else is holding
a reference to the dictionary (issue 7140).

10.1 Interpreter Changes

A new environment variable, PYTHONWARNINGS, allows controlling warnings. It should be set to a string containing
warning settings, equivalent to those used with the —w switch, separated by commas. (Contributed by Brian Curtin;
issue 7301.)

For example, the following setting will print warnings every time they occur, but turn warnings from the Cookie
module into an error. (The exact syntax for setting an environment variable varies across operating systems and
shells.)

export PYTHONWARNINGS=all,error:::Cookie:0

10.2 Optimizations

Several performance enhancements have been added:

* A new opcode was added to perform the initial setup for with statements, looking up the __enter__ () and
__exit__ () methods. (Contributed by Benjamin Peterson.)

* The garbage collector now performs better for one common usage pattern: when many objects are being allo-
cated without deallocating any of them. This would previously take quadratic time for garbage collection, but
now the number of full garbage collections is reduced as the